JPH05200583A - Welding structure excellent in hic resistance and ssc resistance - Google Patents

Welding structure excellent in hic resistance and ssc resistance

Info

Publication number
JPH05200583A
JPH05200583A JP3127892A JP3127892A JPH05200583A JP H05200583 A JPH05200583 A JP H05200583A JP 3127892 A JP3127892 A JP 3127892A JP 3127892 A JP3127892 A JP 3127892A JP H05200583 A JPH05200583 A JP H05200583A
Authority
JP
Japan
Prior art keywords
less
weld metal
welded structure
base material
ssc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3127892A
Other languages
Japanese (ja)
Other versions
JP2596868B2 (en
Inventor
Tadashi Kasuya
正 糟谷
Yukihiko Horii
行彦 堀井
Nobutaka Yurioka
信孝 百合岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4031278A priority Critical patent/JP2596868B2/en
Publication of JPH05200583A publication Critical patent/JPH05200583A/en
Application granted granted Critical
Publication of JP2596868B2 publication Critical patent/JP2596868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To provide a welding structure showing a good SSC resistance even in excess of Hv248 by adequately controlling the component of a welding metal. CONSTITUTION:In reference to a base material part, in accordance with the conventional technique, the shape of the inclusion is controlled and the component is set so as to satisfy Hv248. Consequently, the welding structure secures HIC resistance and SSC resistance, under a welding metal of C; 0.03-0.14%, Si; 0.1-0.6%, Mn; 0.70-1.8%, P<=0.02%, S<=0.02%, O; 0.015-0.05%, Al; 0.01-0.055%, Cr<=0.5%, Mo<=0.5%, Ni<=1.0%, Cu<=1.0%, and also if B; 0.0006-0.005%, Ti; 0.005-0.05%, by making Pwm; 0.25-0.43%; and if B<=0.0005%, then by making Pwm; 0.25-0.55%; provided Pwm=C+Si/24+Mn/5+Cr/7, +Mo/4+Ni/10+Cu/14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化水素雰囲気にさら
される球形タンク等の溶接構造物に係わり、詳しくは耐
HIC性及び耐SSC性に優れた溶接構造物に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded structure such as a spherical tank exposed to a hydrogen sulfide atmosphere, and more particularly to a welded structure having excellent HIC resistance and SSC resistance.

【0002】[0002]

【従来の技術】硫化水素雰囲気にさらされるLPG・ガ
ス貯蔵用球形タンクなどの溶接構造物は、使用中に水素
誘起割れ(HIC)や硫化物応力腐食割れ(SSC)が
生じる可能性があり、これらが生じた場合、構造物の信
頼性に多大な影響を及ぼすため、種々の厳しい要求がな
されている。鋼材及び鋼材HAZについての具体的な例
としては、HIC防止のために、硫化物(MnS)等の
非金属介在物の低減やその形態制御をする、SSC防止
のために、NACEが提唱する、最高硬さをロックウェ
ルC硬さで22以下(ビッカース硬さ248以下に相
当、以後Hv248以下と記す)に抑え、かつNiを1
%以下に抑えると言う要求がある。これら特性を満足さ
せるため、鋼材については、添加元素を低めに抑え制御
圧延制御冷却プロセスなどの方法により、鋼材の強度等
特性を確保する方法が現在採用されている。
2. Description of the Related Art Welded structures such as LPG and spherical tanks for gas storage that are exposed to hydrogen sulfide atmosphere may undergo hydrogen-induced cracking (HIC) or sulfide stress corrosion cracking (SSC) during use. When these occur, the reliability of the structure is greatly affected, and various strict requirements are made. As specific examples of steel materials and steel materials HAZ, non-metallic inclusions such as sulfide (MnS) are reduced and their morphology is controlled to prevent HIC, and NACE proposes to prevent SSC. The maximum hardness of the Rockwell C hardness is 22 or less (corresponding to Vickers hardness of 248 or less, hereinafter referred to as Hv248 or less), and Ni is 1
There is a demand to keep it below%. In order to satisfy these characteristics, for steel materials, a method of securing strength and other characteristics of the steel material is currently adopted by a method such as a controlled rolling control cooling process in which the additive element is kept low.

【0003】一方、溶接金属の場合についても、構造物
の信頼性を確保するために、母材や溶接熱影響部と同様
な特性が要求される。溶接金属については、鋼材と異な
り、圧延プロセスを経ないため、非金属介在物が球状で
存在し、しかも鋼材に比べ非常に微細なためHICは起
こらないとされている。SSCについては、母材同様
に、ある条件下では起こる可能性があり、特に焼き入れ
性が高まるとその危険性は増大する。しかし、溶接金属
の特性は、溶接条件で決定される冷却過程と溶接金属の
成分で、その特性がほぼ決定されるため、母材と同じ組
成では、同等な特性が得られない場合が多い。従って、
従来は、母材と同じ特性を得るために、溶接金属の合金
元素を母材のそれより高めに設定し、この問題を解決し
てきた。この方法は、溶接金属の強度、靱性を確保する
上で必要不可欠であるが、合金元素の添加は、溶接金属
の焼き入れ性を上げる結果となり、耐SSC性と言う観
点からは好ましくない。この傾向は、特に溶接金属がそ
の後の溶接により熱影響を受けて硬くなった場合、さら
に顕著になる。
On the other hand, also in the case of weld metal, in order to secure the reliability of the structure, the same characteristics as those of the base material and the weld heat affected zone are required. Unlike the steel material, the weld metal does not undergo a rolling process, so that non-metallic inclusions are present in a spherical shape and are extremely fine compared to the steel material, so that HIC does not occur. Similar to the base metal, SSC may occur under certain conditions, and its risk increases as hardenability increases. However, the characteristics of the weld metal are almost determined by the cooling process and the components of the weld metal that are determined by the welding conditions. Therefore, in the same composition as the base metal, it is often impossible to obtain equivalent characteristics. Therefore,
Conventionally, in order to obtain the same properties as the base metal, the alloying element of the weld metal is set higher than that of the base metal to solve this problem. This method is indispensable for ensuring the strength and toughness of the weld metal, but the addition of alloying elements results in an increase in the hardenability of the weld metal and is not preferable from the viewpoint of SSC resistance. This tendency becomes more remarkable especially when the weld metal is hardened due to the heat effect of the subsequent welding.

【0004】従来の技術によれば、特開昭63−258
8号公報にあるように、NACEが提唱する最高硬さを
Hv248以下にすると言う要求を溶接金属にも適用
し、耐SSC性を確保しながら、靱性等の特性を確保す
るのが通常であった。しかし、Hv248以下と言う低
硬度を保ちながら強度、靱性を確保する方法も、もとも
と相反する特性を両立させると言う点から考えると、適
用範囲はおのずと限定されてくる。特に、母材の強度が
向上し、溶接金属にも同様の強度が求められるようにな
ってくると、低硬度、高強度を両立させることは、きわ
めて困難となる。この問題は、構造物使用中に補修溶接
等を行う場合、その熱影響を受けて硬化するのは、母材
より添加元素の多い溶接金属となる可能性が大きいた
め、より困難となってくる。
According to the prior art, Japanese Patent Application Laid-Open No. 63-258.
As disclosed in Japanese Patent Publication No. 8, it is usual to apply the requirement that the maximum hardness proposed by NACE is Hv 248 or less to weld metal as well, and secure characteristics such as toughness while securing SSC resistance. It was However, the application range of the method of securing strength and toughness while maintaining low hardness of Hv 248 or less is naturally limited in view of satisfying the originally contradictory characteristics. In particular, when the strength of the base metal is improved and the same strength is required for the weld metal, it is extremely difficult to achieve both low hardness and high strength. This problem becomes more difficult when repair welding is performed while the structure is in use because it is more likely that the weld metal will have more additive elements than the base metal and will be hardened under the influence of the heat. ..

【0005】[0005]

【発明が解決しようとする課題】このような問題を打ち
破るためには、溶接金属については、Hv248以下を
満足する場合は言うに及ばず、Hv248以下を満足し
なくても、低硬度が達成された(Hv248以下を満足
する)母材、母材HAZの耐SSC性と同等な特性をも
たせる必要がある。言い替えれば、SSCをおこさない
最高の硬さ(以下単に限界硬さという)が、Hv248
を上回るような溶接金属の発明が必要である。このこと
は、溶接構造物使用中、補修溶接が必要となった場合、
その溶接条件によっては、溶接金属についてはHv24
8以下の条件を満たさない可能性があることを考える
と、その意義は大きい。すなわち、本発明はHv248
以下という条件が満足されない場合であっても、良好な
耐SSC性を示す溶接金属を持つことを特徴とする溶接
構造物を提供することを目的とするものである。
In order to overcome such a problem, not only when the weld metal satisfies Hv248 or less, but also when the weld metal does not satisfy Hv248 or less, low hardness is achieved. It is necessary to have the same characteristics as the SSC resistance of the base material and the base material HAZ (satisfying Hv 248 or less). In other words, the maximum hardness that does not cause SSC (hereinafter simply referred to as the limit hardness) is Hv248.
The invention of weld metal that exceeds the above is required. This means that when repair welding is required while using the welded structure,
Depending on the welding conditions, Hv24 for weld metal
Considering that the condition of 8 or less may not be satisfied, its significance is great. That is, the present invention is Hv248
It is an object of the present invention to provide a welded structure characterized by having a weld metal exhibiting good SSC resistance even when the following conditions are not satisfied.

【0006】[0006]

【課題を解決するための手段】本発明者らは、以上のよ
うな事情に着目し、また、溶接金属は母材と比べ酸素量
が非常に多いなどの違いがあることから、SSC感受性
が母材のそれとは異なるに違いないと確信し、主とし
て、溶接金属中の成分の、SSC感受性に及ぼす影響を
研究してきた。本発明は、かかる研究の結果完成された
ものであり、その構成とは、母材部が、重量%で、C;
0.02〜0.06%、Si;0.6%以下、Mn;
1.0〜1.6%、P;0.020%以下、S;0.0
01%以下、Al;0.001〜0.060%、Nb;
0.005〜0.04%、Ti;0.005〜0.03
0%、Ca;0.001〜0.006%、N;0.00
6%以下、必要に応じて、Mo;0.05〜0.5%、
Ni;0.05〜0.5%、Cu;0.05〜0.5
%、V;0.01〜0.10%の範囲で1種または2種
以上を含有し、残部鉄及び不可避的不純物からなり、溶
接金属が、(1)式に示す指数Pwm;0.25〜0.
43%であり、かつ、C;0.03〜0.14%、S
i;0.1〜0.6%、Mn;0.70〜1.8%、
P;0.02%以下、S:0.02%以下、Ti;0.
005〜0.05%、B;0.0006〜0.005
%、O;0.015〜0.05%、Al;0.01〜
0.055%とし、必要に応じて、Cr;0.5%以
下、Mo;0.5%以下、Ni;1.0%以下、Cu;
1.0%以下の1種または2種以上を含有し、残部が鉄
及び不可避的不純物からなるか、もしくは、Pwm;
0.25〜0.55%、C;0.03〜0.14%、S
i;0.1〜0.6%、Mn;0.70〜1.8%、
P;0.02%以下、S;0.02%以下、B;0.0
006%未満、O;0.015〜0.08%、Al;
0.01〜0.055%とし、必要に応じて、Cr;
0.5%以下、Mo;0.5%以下、Ni;1.0%以
下、Cu;1.0%以下の1種または2種以上を含有
し、残部が鉄及び不可避的不純物からなることを特徴と
する溶接構造物にその要旨が存在する。 Pwm=C+Si/24+Mn/5+Cr/7+Mo/4 +Ni/10+Cu/14 (1) 以下に本発明の詳細な説明を行う。
The present inventors have paid attention to the above-mentioned circumstances, and because the weld metal has a large amount of oxygen as compared with the base metal, the SSC sensitivity is high. Being convinced that it must be different from that of the base metal, I have mainly studied the effect of the components in the weld metal on the SSC susceptibility. The present invention has been completed as a result of such research, and its constitution is that the base material portion is C by weight% and is C;
0.02-0.06%, Si; 0.6% or less, Mn;
1.0-1.6%, P; 0.020% or less, S; 0.0
01% or less, Al; 0.001-0.060%, Nb;
0.005-0.04%, Ti; 0.005-0.03
0%, Ca; 0.001-0.006%, N; 0.00
6% or less, if necessary, Mo; 0.05 to 0.5%,
Ni: 0.05-0.5%, Cu: 0.05-0.5
%, V: 0.01 to 0.10% in the range of 1 type or 2 types or more, the balance is iron and unavoidable impurities, and the weld metal has an index Pwm of 0.25; ~ 0.
43% and C: 0.03 to 0.14%, S
i; 0.1 to 0.6%, Mn; 0.70 to 1.8%,
P; 0.02% or less, S: 0.02% or less, Ti;
005-0.05%, B; 0.0006-0.005
%, O; 0.015 to 0.05%, Al; 0.01 to
0.055%, and if necessary, Cr; 0.5% or less, Mo; 0.5% or less, Ni; 1.0% or less, Cu;
1.0% or less of one kind or two kinds or more, the balance consisting of iron and unavoidable impurities, or Pwm;
0.25-0.55%, C; 0.03-0.14%, S
i; 0.1 to 0.6%, Mn; 0.70 to 1.8%,
P: 0.02% or less, S: 0.02% or less, B; 0.0
Less than 006%, O; 0.015-0.08%, Al;
0.01 to 0.055%, and if necessary, Cr;
0.5% or less, Mo; 0.5% or less, Ni; 1.0% or less, Cu; 1.0% or less, and one or more kinds, and the balance consists of iron and unavoidable impurities. The gist exists in the welded structure characterized by. Pwm = C + Si / 24 + Mn / 5 + Cr / 7 + Mo / 4 + Ni / 10 + Cu / 14 (1) The present invention will be described in detail below.

【0007】[0007]

【作用】まず母材部について述べる。母材の耐HIC性
及び耐SSC性は、従来より採用されている、母材中の
硫化物低減及びその形態制御、母材及びHAZの最高硬
さをHv248以下を確保することにより達成すること
とした。そのための成分範囲について以下に説明する。
C及びMnは、母材の強度靱性を確保する上で不可欠な
成分である。しかし、過度の添加は焼き入れ性を上げす
ぎるため、その範囲を、それぞれ0.02〜0.06
%、1.0〜1.6%とした。Siは、添加量が多すぎ
ると、HAZ靱性が劣化するので、上限を0.6%とし
た。P及びSは、本発明においては不純物であるが、母
材、HAZの靱性を劣化させ、かつSは硫化物を生成す
るので、上限をそれぞれ、0.020%、0.001%
とした。
[Function] First, the base metal portion will be described. The HIC resistance and SSC resistance of the base material should be achieved by reducing the sulfide content in the base material and controlling its morphology, and ensuring the maximum hardness of the base material and HAZ of Hv 248 or less, which has been conventionally adopted. And The component range therefor will be described below.
C and Mn are essential components for ensuring the strength and toughness of the base material. However, excessive addition raises the hardenability too much, so the range is set to 0.02-0.06, respectively.
%, 1.0 to 1.6%. If the amount of Si added is too large, the HAZ toughness deteriorates, so the upper limit was made 0.6%. Although P and S are impurities in the present invention, they deteriorate the toughness of the base material and HAZ, and S forms sulfides, so the upper limits are 0.020% and 0.001%, respectively.
And

【0008】Alは、脱酸に必要な量、及び、靱性劣化
を起こさない量という点から0.001〜0.060%
とした。Nbは、析出効果による強度向上のため0.0
05%は必要であるが、HAZ硬さを抑えるため上限を
0.04%とした。Tiは、TiNとして母材及びHA
Zの細粒化に有効であるため、必須である。しかし、T
i、N共過度の添加は母材及びHAZの靱性を劣化させ
るので、その範囲を0.005〜0.030%、0.0
06%以下とした。Caは硫化物の形態を制御するた
め、また靱性を向上させるために必要であるが、Ca
O、CaSが多量に生成されれば、逆に靱性劣化を招く
ためその範囲を0.001〜0.006%とした。以上
は基本成分についてであるが、本発明構造物の母材部は
この外に必要に応じて下記付加成分を1種又は2種以上
を含有できる。
Al is 0.001 to 0.060% in terms of the amount required for deoxidation and the amount that does not cause deterioration of toughness.
And Nb is 0.0 to improve strength due to precipitation effect.
05% is necessary, but the upper limit was made 0.04% to suppress the HAZ hardness. Ti is a base material and HA as TiN
It is essential because it is effective for making Z fine. But T
Since excessive addition of both i and N deteriorates the toughness of the base metal and HAZ, the range is set to 0.005 to 0.030%, 0.0
It was set to 06% or less. Ca is necessary for controlling the morphology of sulfide and improving toughness.
If a large amount of O and CaS is generated, on the contrary, the toughness is deteriorated, so the range is set to 0.001 to 0.006%. The above is the basic components, but the base material portion of the structure of the present invention may contain one or more of the following additional components, if necessary.

【0009】Moは母材の強度、靱性を向上させるが、
添加量が多すぎると靱性、溶接性の劣化を招くため、
0.5%以下とした。下限は、実質的効果が得られるた
めという意味で、0.05%とした。下限については、
Ni、Cuについても同様である。Niの上限は、HA
Z靱性に悪影響を及ぼさないと言う点から0.5%とし
た。Cuは、母材製造時のCuクラック防止と言う点か
ら上限を0.5%とした。Vは、Nb同様析出効果に寄
与するものであるが、Nb程の働きが無いため、その範
囲を0.01〜0.10%とした。以上のような成分範
囲の鋼を、必要に応じ制御圧延制御冷却、あるいは、焼
き入れ焼き戻しを行うことにより、強度を50kgf/
mm2以上にし、かつ、良好な耐HIC性及び低硬度
(Hv248以下)すなわち良好な耐SSC性を確保す
ることが可能となる。
Mo improves the strength and toughness of the base material,
If the addition amount is too large, toughness and weldability will be deteriorated.
It was set to 0.5% or less. The lower limit is set to 0.05% in the sense that a substantial effect is obtained. For the lower limit,
The same applies to Ni and Cu. The upper limit of Ni is HA
From the viewpoint of not adversely affecting the Z toughness, it was set to 0.5%. The upper limit of Cu is set to 0.5% from the viewpoint of preventing Cu cracks during the production of the base material. V, like Nb, contributes to the precipitation effect, but does not work as much as Nb, so the range was made 0.01 to 0.10%. By subjecting the steel having the above composition range to controlled rolling controlled cooling or quenching and tempering as required, the strength is increased to 50 kgf /
It becomes possible to secure a high HIC resistance and a low hardness (Hv 248 or less), that is, a good SSC resistance, with the thickness being at least 2 mm 2 .

【0010】次に溶接金属について述べる。溶接金属に
ついては既に述べたようにHICは起こらないとされて
いる。SSCに関しては、母材及びHAZについてはH
v248以下を満足させることによって良好な耐SSC
性を確保してきたが、溶接金属についてはHv248以
下という条件を満足しなくても良好な耐SSC性を示す
ための成分範囲を設定しなければならない。
Next, the weld metal will be described. Regarding weld metal, it is said that HIC does not occur as described above. For SSC, H for base metal and HAZ
Good SSC resistance by satisfying v248 or less
However, it is necessary to set the component range for the weld metal to exhibit good SSC resistance even if the condition of Hv 248 or less is not satisfied.

【0011】まずC、Si、Mn、Cr、Mo、Ni、
Cuについてであるが、これらの成分は、溶接金属の耐
SSC性から考えると、いずれもSSCを起こさない最
高の硬さ(限界硬さ)を下げる働きがある。しかし、そ
の影響度が異なるため、(1)式で計算される指数Pw
mを導入した。そして、Pwm≦0.55%とすること
により、良好な耐SSC性を得ることができる。逆に、
Pwm>0.55%の場合は、NACEが提唱するHv
248以下を満足してもSSCを防ぐことができない場
合が生じる。Pwmの上限を0.55%としたのはこの
理由による。
First, C, Si, Mn, Cr, Mo, Ni,
Regarding Cu, these components have the function of lowering the maximum hardness (critical hardness) at which SSC does not occur in view of the SSC resistance of the weld metal. However, since the degree of influence is different, the index Pw calculated by equation (1)
m was introduced. By setting Pwm ≦ 0.55%, good SSC resistance can be obtained. vice versa,
If Pwm> 0.55%, Hv advocated by NACE
Even if 248 or less is satisfied, SSC may not be prevented. This is the reason why the upper limit of Pwm is set to 0.55%.

【0012】但し、Pwmの上限も他の元素によって変
化してくる。即ち、後に述べるBによってPwmの上限
は減少してくる。しかし、BはTiと共に溶接金属に添
加され、靱性の向上には非常に有効なため、本発明者ら
は、溶接金属にBを添加しないとするのは不合理と考え
た。そこで、Bを添加しても良好な耐SSC性が得られ
る上限として0.43%を見いだしたものである。
However, the upper limit of Pwm also changes depending on other elements. That is, the upper limit of Pwm decreases due to B described later. However, since B is added to the weld metal together with Ti and is very effective in improving the toughness, the present inventors considered it unreasonable not to add B to the weld metal. Therefore, 0.43% was found as the upper limit at which good SSC resistance can be obtained even if B is added.

【0013】一方、Pwm≦0.43%を満たせば、B
の添加・無添加にかかわらずHv248以下を満たさな
くとも良好な耐SSC性を得られるものであるが、Pw
m<0.25%の範囲においては、母材と同等な強度を
確保するのが困難になり、かつ、通常の溶接施工時で考
えられる低入熱量においても最高硬さがHv248以下
となってしまい、従来の技術による耐SSC性確保と同
一になる。従って、Pwm<0.25%の範囲は、本発
明の範囲から外れるとして、Pwmの下限を0.25%
とした。
On the other hand, if Pwm ≦ 0.43% is satisfied, B
It is possible to obtain good SSC resistance even if Hv 248 or less is not satisfied with or without addition of Pw.
In the range of m <0.25%, it becomes difficult to secure the strength equivalent to that of the base metal, and the maximum hardness becomes Hv248 or less even at the low heat input amount that is considered during normal welding work. This is the same as securing SSC resistance by the conventional technique. Therefore, assuming that the range of Pwm <0.25% is out of the range of the present invention, the lower limit of Pwm is 0.25%.
And

【0014】次に、溶接金属の各成分に付いて、その範
囲限定理由に付いて述べる。Cは、過剰に添加すると、
焼き入れ性を過度に上げ、かつ溶接中に凝固割れを引き
起こし、また、耐SSC性を低下させることもあること
から上限を0.14%とした。下限の0.03%は、強
度、焼き入れ性を確保する最小の値である。Mnは、C
同様、強度、靱性を確保する上で、必要不可欠である。
Mnの下限、0.70%は、これらを確保する上で必要
な最小値である。逆に、Mnは、1.8%を超すと、過
度の焼き入れ性が生じ、かつ限界硬さがHv248以下
になってしまうのでこの値を上限とした。
Next, each component of the weld metal will be described with respect to the reason for limiting the range. When C is added excessively,
The hardenability is excessively increased, solidification cracking is caused during welding, and the SSC resistance may be deteriorated, so the upper limit was made 0.14%. The lower limit of 0.03% is the minimum value that secures strength and hardenability. Mn is C
Similarly, it is essential to secure strength and toughness.
The lower limit of Mn, 0.70%, is the minimum value required to secure these. On the other hand, if Mn exceeds 1.8%, excessive hardenability occurs and the limit hardness becomes Hv 248 or less, so this value was made the upper limit.

【0015】Siは脱酸元素であり、後に述べるOの量
に大きな影響を与える。また、Siは、溶接作業時の作
業性にも大きな影響を与える。耐SSC性確保という観
点からはSiは少ないほどよい(O量が多いほどよい)
が、実用上充分な作業性を確保すると言う点、及び過度
のO増大を防ぐという点から、その下限を0.1%とし
た。上限は、焼き入れ性の過度の上昇、靱性劣化、O量
を下げることによる耐SSC性の低下の点から、0.6
%とした。
Si is a deoxidizing element and has a great influence on the amount of O described later. In addition, Si greatly affects workability during welding work. From the viewpoint of ensuring SSC resistance, the smaller the amount of Si, the better (the larger the amount of O, the better).
However, the lower limit is set to 0.1% from the viewpoint of ensuring practically sufficient workability and preventing an excessive increase in O 2. The upper limit is 0.6 from the viewpoint of excessive increase in hardenability, deterioration of toughness, and deterioration of SSC resistance due to reduction of O content.
%.

【0016】P及びSは、本発明においては不純物であ
る。しかし、P及びSは、溶接金属中では、粒界に偏析
しやすく、この点によるSR脆化、靱性劣化の問題が生
じる可能性があるため、上限をそれぞれ0.020%と
した。
P and S are impurities in the present invention. However, P and S are easily segregated at the grain boundaries in the weld metal, and there is a possibility that SR embrittlement and toughness deterioration may occur due to this point, so the upper limits were made 0.020% respectively.

【0017】Bは、それを添加することによって限界硬
さを下げる。従って、Bの働きが大きくない、0.00
06%未満については、(1)式に示す、Pwmは、上
限を0.55%としても良いが、それ以上添加する場合
は、Pwmの上限を0.43%としなければならない。
このことは、B添加により、C、Si、Mn、Cr、M
o、Ni、Cuの選択範囲を狭くすることを意味し、好
ましいことではないが、BはTiと共に添加することに
より、溶接金属の靱性を飛躍的に向上させることができ
る。しかも、B添加による限界硬さの減少は、Bが0.
001%以上では、Bの限界硬さに与える影響は非常に
小さい。以上のことにより、本発明者らは、Pwmの範
囲を狭くしても、B添加は実用上有効と考えた。B添加
の下限0.0006%は、実質的な効果が得られるため
の最小値である。しかし、Bは、過剰に添加すると、オ
ーステナイト粒界に偏析し、初析フェライトの成長を抑
え、過大な焼き入れ性を生じせしめるので、B添加の上
限を0.005%とした。
B reduces the critical hardness by adding it. Therefore, the function of B is not large, 0.00
If it is less than 06%, the upper limit of Pwm shown in the formula (1) may be 0.55%, but if it is added more than that, the upper limit of Pwm must be 0.43%.
This means that by adding B, C, Si, Mn, Cr, M
This means narrowing the selection range of o, Ni, and Cu, which is not preferable, but the addition of B together with Ti can drastically improve the toughness of the weld metal. Moreover, the decrease in the critical hardness due to the addition of B is 0.
If it is 001% or more, the effect of B on the critical hardness is very small. From the above, the present inventors considered that addition of B was practically effective even if the range of Pwm was narrowed. The lower limit of 0.0006% of B addition is the minimum value for obtaining a substantial effect. However, if B is added excessively, it segregates at the austenite grain boundaries, suppresses the growth of pro-eutectoid ferrite, and causes excessive hardenability, so the upper limit of B addition was made 0.005%.

【0018】Oは、本発明の中で扱う溶接金属成分のな
かで、添加量を増大させることにより、限界硬さを上げ
る、即ち耐SSC性を向上させることができる唯一の成
分である。しかし、Oの多くは溶接金属中の非金属介在
物として存在し、フェライトの生成核として働くため、
過剰に添加すると焼き入れ性が低くなりすぎ、所定の靱
性が確保できなくなる可能性も生じてくる。さらに、O
は溶接金属中にBが存在する場合、Bと結合しB23
なり、有効Bを減少させる可能性がある。そこで、Bを
添加する場合、その効果を損なわない範囲として、Oの
上限を0.05%とした。B添加をしない場合について
は、所定の靱性確保する上限として0.08%とした。
下限の0.015%は、良好な耐SSC性を得るための
最小の値である。
O is the only component among the weld metal components handled in the present invention, which can increase the critical hardness, that is, the SSC resistance by increasing the addition amount. However, most of O exists as non-metallic inclusions in the weld metal and acts as nuclei for ferrite formation,
If added excessively, the hardenability becomes too low, and there is a possibility that the predetermined toughness cannot be secured. Furthermore, O
When B is present in the weld metal, it combines with B to form B 2 O 3 , which may reduce the effective B. Therefore, when B is added, the upper limit of O is set to 0.05% so as not to impair the effect. In the case where B was not added, the upper limit for ensuring the predetermined toughness was 0.08%.
The lower limit of 0.015% is the minimum value for obtaining good SSC resistance.

【0019】Alは、Oと非金属介在物を形成する。A
lの量が不十分だと十分な脱酸が行われず、溶接金属の
過剰なOがC、Si、Mnなどと反応を起こすため所定
の焼き入れ性が確保できなくなる可能性がある。Alの
下限0.01%は十分な脱酸を行うため最少の値であ
る。一方、Alの過剰な添加は過度の脱酸が生じ溶接金
属中のOの量が適切な範囲にならない場合がある。Al
の上限は、適切なOの量を確保する最大値として、0.
055%とした。
Al forms a nonmetallic inclusion with O. A
If the amount of 1 is insufficient, sufficient deoxidation is not performed, and excessive O in the weld metal reacts with C, Si, Mn, etc., so that the prescribed hardenability may not be ensured. The lower limit of 0.01% of Al is the minimum value for sufficient deoxidation. On the other hand, excessive addition of Al may cause excessive deoxidation and the amount of O in the weld metal may not be in an appropriate range. Al
The upper limit of 0. is the maximum value that secures an appropriate amount of O.
It was set to 055%.

【0020】以上は、溶接金属における基本成分につい
てであるが、この他に必要に応じて、Cr、Mo、N
i、Cu、Tiのうち1種又は2種以上添加することが
できる。Cr、Moは、本発明の優れた特性を生かすた
めに添加されるべき元素である。しかし、Cr、Mo
は、C、Mn同様、焼き入れ性を上げる働きがあり、か
つC、Mnに比べ高価であるためそれぞれ上限を0.5
%とした。
The above is the basic components of the weld metal. In addition to these, if necessary, Cr, Mo, N
One or more of i, Cu, and Ti can be added. Cr and Mo are elements to be added in order to utilize the excellent properties of the present invention. However, Cr, Mo
Has a function of improving hardenability like C and Mn, and is more expensive than C and Mn, so the upper limit of each is 0.5.
%.

【0021】CuはPwm中のCuの係数を、Mn、C
r、Mo等のそれと比較しても理解できるように、耐S
SC特性への影響は小さい。従って、Cr、Moより選
択の範囲を広くすることが出来る。しかし、影響が全く
無いわけではなく、しかも過度の添加は溶接金属、さら
にSRを行った後の溶接金属の靱性を劣化させるためそ
の上限を1.0%とした。
Cu is the coefficient of Cu in Pwm, Mn, C
As can be understood by comparing with r, Mo, etc., S resistance
The effect on SC characteristics is small. Therefore, the selection range can be made wider than that of Cr and Mo. However, there is no influence at all, and excessive addition deteriorates the toughness of the weld metal and further the weld metal after SR is performed, so the upper limit was made 1.0%.

【0022】Niは、Cu同様Pwm中の係数は比較的
小さい。しかし、過度の添加は溶接金属の焼入性を上げ
すぎ、靱性劣化を生じせしめるのでその上限を1.0%
とすることにした。
Like Ni, Ni has a relatively small coefficient in Pwm. However, excessive addition raises the hardenability of the weld metal too much and causes deterioration of toughness, so the upper limit is 1.0%.
I decided to.

【0023】TiはBと共に添加し、溶接金属の靱性の
向上に用いるべきものである。Tiの下限、0.005
%は実質的な効果を得るために必要な最小量である。T
iはTiN、TiO等となり、フェライトの生成核とし
て働き、微細な組織を形成する効果があるが、その反
面、TiCなどの析出物を形成し、これが過度に存在す
ると溶接金属の靱性劣化をもたらすため、上限を0.0
5%とした。
Ti should be added together with B and used to improve the toughness of the weld metal. Lower limit of Ti, 0.005
% Is the minimum amount required to obtain a substantial effect. T
i becomes TiN, TiO, etc., which acts as a nucleus for forming ferrite and has an effect of forming a fine structure. On the other hand, however, precipitates such as TiC are formed, and if they are excessively present, the toughness of the weld metal is deteriorated. Therefore, the upper limit is 0.0
It was set to 5%.

【0024】以上、母材及び溶接金属の成分範囲につい
て述べてきたが、上記溶接金属の成分範囲は、その溶接
方法によって制限されるものではない。また、溶接金属
の成分を所定の範囲に制限する手段として、溶接ワイヤ
の成分を制限する、あるいは、溶接フラックスの成分を
制限するなどがあるが、溶接後の溶接金属成分が所定の
範囲内にあれば、これら手段にも依存しない。
Although the component ranges of the base metal and the weld metal have been described above, the component range of the weld metal is not limited by the welding method. Further, as a means for limiting the composition of the weld metal within a predetermined range, there is a limitation of the composition of the welding wire or the composition of the welding flux, but the weld metal composition after welding is within the predetermined range. If so, it does not depend on these means.

【0025】[0025]

【実施例】表1に示すような成分を持つ母材に、JIS
のZ3101に従い、溶接熱影響部の最高硬さ試験を行
い、母材及びHAZの最高硬さを測定することにより、
これらの耐SSC性を評価した。本発明によれば、溶接
熱影響部最高硬さが、Hv248を上回ることはなく、
良好な耐SSC性を示すことがわかる。さらに、超音波
探傷により測定したNACE環境下におけるHIC割れ
率(CAR)も示した。比較例に比べ、本発明はHIC
は発生せず、良好な耐HIC性を示している。また、4
点曲げのSSC試験を実降伏応力に相当する曲げ応力を
負荷して行っても、本発明の場合、割れは全く認められ
なかった。
Example: A base material having the components shown in Table 1 was JIS
According to Z3101 of No. 3, by performing the maximum hardness test of the welding heat affected zone and measuring the maximum hardness of the base metal and HAZ,
These SSC resistance was evaluated. According to the present invention, the maximum weld heat-affected zone hardness does not exceed Hv248,
It can be seen that good SSC resistance is exhibited. Further, the HIC cracking ratio (CAR) under NACE environment measured by ultrasonic flaw detection is also shown. Compared to the comparative example, the present invention is HIC
Does not occur and shows good HIC resistance. Also, 4
In the case of the present invention, no crack was observed even when the SSC test of point bending was carried out by applying a bending stress corresponding to the actual yield stress.

【0026】種々の溶接継手を作製するために、図1に
あるように、2本のビードを置き、図2に示す部分よ
り、SSC試験片3を採取した。図1において、第2ビ
ード2は、第1ビード1に熱影響を与えるためのもの
で、第2ビードの入熱量を変化させることにより、第1
ビードの最高硬さをコントロールできる。第1ビードに
用いた溶接方法は、サブマージドアーク溶接(SA
W)、手溶接(SMAW)、ガスシールド溶接(GMA
W)の3種であり、これら3種の溶接方法は、一般的か
つ代表的溶接方法で、ステンレス鋼におけるティグ溶
接、溶接金属中の酸素量を確保することが難しいセルフ
シールド溶接などを除けば、サワー環境中で用いられる
溶接構造物のほとんどが、これら3種の溶接方法で施工
される。
In order to produce various welded joints, two beads were placed as shown in FIG. 1 and SSC test pieces 3 were taken from the portion shown in FIG. In FIG. 1, the second bead 2 is for exerting a thermal influence on the first bead 1, and by changing the heat input amount of the second bead,
You can control the maximum hardness of the bead. The welding method used for the first bead is submerged arc welding (SA
W), manual welding (SMAW), gas shield welding (GMA)
W) are three types, and these three types of welding methods are general and typical welding methods, except for TIG welding in stainless steel and self-shield welding in which it is difficult to secure the amount of oxygen in the weld metal. Most of the welded structures used in the sour environment are constructed by these three welding methods.

【0027】第2ビードは、第1ビード及び母材熱影響
部の最高硬さをコントロールするためのものであるが、
SSCが第2ビードより生じる場合は、第1ビードまた
は母材熱影響部のSSC試験ではなくなるため、第2ビ
ードにたいしては、入熱量5kJ/cmでもSSCを起
こさなかった表2DにあるY−3のワイヤとシールドガ
スの組合せを用いた。
The second bead is for controlling the maximum hardness of the first bead and the base material heat affected zone.
When the SSC is generated from the second bead, the SSC test of the first bead or the heat affected zone of the base material is not performed. Therefore, for the second bead, the SSC was not caused even with the heat input amount of 5 kJ / cm. A combination of wire and shielding gas was used.

【0028】表2A、2B、2Cは、各溶接方法に用い
た溶接材料の成分を示している。表2は、第1ビードに
用いた溶接条件及び溶接材料を示している。表3A,B
はSSC試験結果をまとめたものである。溶接金属の化
学組成とは、第1ビードの組成を指す。限界硬さは、第
2ビードにより第1ビードの最高硬さを変化させた溶接
継手部を作製し、それぞれの継手よりSSC試験片を図
2に示すように採取し、実降伏応力に相当する曲げ応力
をNACE環境下において負荷し、SSCを発生しない
最高の硬さとして決定した。本発明によれば、母材及び
母材熱影響部にはSSCが起こらず、また、溶接金属の
限界硬さは全てHv248を超えており、NACEが提
唱するHv248以下という条件を満たさなくとも良好
な耐SSC性が得られることがわかる。
Tables 2A, 2B and 2C show the components of the welding material used for each welding method. Table 2 shows the welding conditions and welding materials used for the first bead. Table 3A, B
Is a summary of the SSC test results. The chemical composition of the weld metal refers to the composition of the first bead. The critical hardness is equivalent to the actual yield stress obtained by producing welded joints in which the maximum hardness of the first bead was changed by the second bead and sampling SSC test pieces from each joint as shown in FIG. Bending stress was applied in a NACE environment and determined as the maximum hardness that does not generate SSC. According to the present invention, SSC does not occur in the base material and the heat-affected zone of the base material, and the critical hardness of the weld metal is all above Hv248, which is good even if the condition of Hv248 or less proposed by NACE is not satisfied. It can be seen that excellent SSC resistance can be obtained.

【0029】一方、比較例では、YC3,YC4,YD
2,YE2,YE3,YF2,YG2,MA3,SA,
SFのように、溶接金属の限界硬さに達する前に母材ま
たは母材HAZにSSCやHICが生じ、溶接金属の限
界硬さが決定できないものや、MD,ME,SL,S
U,SV,SYのように溶接金属の限界硬さがHv24
8を下回るものが生じている。
On the other hand, in the comparative example, YC3, YC4, YD
2, YE2, YE3, YF2, YG2, MA3, SA,
SSC or HIC occurs in the base material or the base material HAZ before reaching the limit hardness of the weld metal, such as SF, and the limit hardness of the weld metal cannot be determined, or MD, ME, SL, S
Limit hardness of weld metal is Hv24 like U, SV, SY
Some have fallen below eight.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2A】 [Table 2A]

【0032】[0032]

【表2B】 [Table 2B]

【0033】[0033]

【表2C】 [Table 2C]

【0034】[0034]

【表2D】 [Table 2D]

【0035】[0035]

【表2E】 [Table 2E]

【0036】[0036]

【表3A】 [Table 3A]

【0037】[0037]

【表3B】 [Table 3B]

【0038】[0038]

【発明の効果】本発明により、これまで広く信じられて
きた、SSCを防ぐ基準、Hv248以下と言う条件を
必ずしも満足しなくとも、良好な耐SSC性を示す溶接
金属を持つ溶接構造物を提供することができる。このこ
とは、溶接金属成分の選択の幅が広がることを意味し、
耐SSC性及びそれ以外の特性の確保など、溶接構造物
の信頼性の向上、補修溶接作業の能率向上等、期待され
る有用性はきわめて大である。
EFFECTS OF THE INVENTION The present invention provides a welded structure having a weld metal exhibiting good SSC resistance even if it does not always satisfy the condition widely believed in the art, Sv prevention standard, Hv 248 or less. can do. This means that the range of choices of weld metal components will be expanded,
Expected usefulness is extremely high, such as improving the reliability of the welded structure and improving the efficiency of repair welding work, such as ensuring SSC resistance and other properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶接試験に供した溶接継手を示す斜視図、FIG. 1 is a perspective view showing a welded joint subjected to a welding test,

【図2】溶接継手部から採取したSSC試験に供する試
験片の採取位置を示す正面図である。
FIG. 2 is a front view showing a sampling position of a test piece used for an SSC test collected from a welded joint.

【符号の説明】[Explanation of symbols]

1 第1ビード 2 第2ビード 3 SSC試験片 4 母材部 1 1st bead 2 2nd bead 3 SSC test piece 4 Base metal part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 母材部が、重量%で、C;0.02〜
0.06%、Si;0.6%以下、Mn;1.0〜1.
6%、P;0.020%以下、S;0.001%以下、
Al;0.001〜0.060%、Nb;0.005〜
0.04%、Ti;0.005〜0.030%、Ca;
0.001〜0.006%、N;0.006%以下、残
部が鉄及び不可避的不純物からなる鋼であることを特徴
とし、溶接金属が、下記式で示される指数Pwm;0.
25〜0.43%を満たし、C;0.03〜0.14
%、Si;0.1〜0.6%、Mn;0.70〜1.8
%、P;0.02%以下、S;0.02%以下、Ti;
0.005〜0.05%、B;0.0006〜0.00
5%、O;0.015〜0.05%、Al;0.01〜
0.055%とし、残部が鉄及び不可避的不純物からな
ることを特徴とする溶接構造物。
1. A base material part, in% by weight, has a C content of 0.02 to 0.02.
0.06%, Si; 0.6% or less, Mn; 1.0 to 1.
6%, P; 0.020% or less, S; 0.001% or less,
Al: 0.001-0.060%, Nb: 0.005-
0.04%, Ti; 0.005-0.030%, Ca;
0.001 to 0.006%, N; 0.006% or less, the balance being steel composed of iron and unavoidable impurities, and the weld metal has an index Pwm of 0.
25 to 0.43%, C: 0.03 to 0.14
%, Si; 0.1 to 0.6%, Mn; 0.70 to 1.8
%, P; 0.02% or less, S; 0.02% or less, Ti;
0.005-0.05%, B; 0.0006-0.00
5%, O; 0.015 to 0.05%, Al; 0.01 to
A welded structure comprising 0.055% and the balance being iron and inevitable impurities.
【請求項2】 請求項1に記載の溶接構造物において、
溶接金属が、更に重量%で、Cr;0.5%以下、M
o;0.5%以下、Ni;1.0%以下、Cu;1.0
%以下の1種または2種以上を更に含有することを特徴
とする溶接構造物。
2. The welded structure according to claim 1,
If the weld metal is further weight%, Cr; 0.5% or less, M
o; 0.5% or less, Ni; 1.0% or less, Cu; 1.0
%, 1 type or 2 types or more are further contained, The welded structure characterized by the above-mentioned.
【請求項3】 請求項1に記載の母材と同等の鋼材を母
材に持ち、溶接金属が、重量%で、下記指数Pwmが、
Pwm;0.25〜0.55%を満たし、C;0.03
〜0.14%、Si;0.1〜0.6%、Mn;0.7
0〜1.8%、P;0.02%以下、S;0.02%以
下、B;0.0006%未満、O;0.015〜0.0
8%、Al;0.01〜0.055%とし、残部が鉄及
び不可避的不純物からなることを特徴とする溶接構造
物。
3. A steel material equivalent to the base material according to claim 1 is used as a base material, and the weld metal is% by weight, and the following index Pwm is:
Pwm: 0.25 to 0.55% satisfied, C: 0.03
~ 0.14%, Si; 0.1-0.6%, Mn; 0.7
0 to 1.8%, P; 0.02% or less, S; 0.02% or less, B; less than 0.0006%, O; 0.015 to 0.0
8%, Al; 0.01 to 0.055%, the balance consisting of iron and unavoidable impurities, a welded structure.
【請求項4】 請求項3に記載の溶接構造物において、
溶接金属が、更に重量%で、Cr;0.5%以下、M
o;0.5%以下、Ni;1.0%以下、Cu;1.0
%以下の1種または2種以上を更に含有することを特徴
とする溶接構造物。
4. The welded structure according to claim 3, wherein
If the weld metal is further weight%, Cr; 0.5% or less, M
o; 0.5% or less, Ni; 1.0% or less, Cu; 1.0
%, 1 type or 2 types or more are further contained, The welded structure characterized by the above-mentioned.
【請求項5】 請求項1に記載の溶接構造物において、
母材が、重量%で、Mo;0.05〜0.5%、Ni;
0.05〜0.5%、Cu;0.05〜0.5%、V;
0.01〜0.10%の範囲で1種または2種以上を更
に含有することを特徴とする溶接構造物。
5. The welded structure according to claim 1, wherein
The base material is, by weight, Mo; 0.05 to 0.5%, Ni;
0.05-0.5%, Cu; 0.05-0.5%, V;
A welded structure further containing one or more members in the range of 0.01 to 0.10%.
【請求項6】 請求項2に記載の溶接構造物において、
母材が、重量%で、Mo;0.05〜0.5%、Ni;
0.05〜0.5%、Cu;0.05〜0.5%、V;
0.01〜0.10%の範囲で1種または2種以上を更
に含有することを特徴とする溶接構造物。
6. The welded structure according to claim 2,
The base material is, by weight, Mo; 0.05 to 0.5%, Ni;
0.05-0.5%, Cu; 0.05-0.5%, V;
A welded structure further containing one or more members in the range of 0.01 to 0.10%.
【請求項7】 請求項3に記載の溶接構造物において、
母材が、重量%で、Mo;0.05〜0.5%、Ni;
0.05〜0.5%、Cu;0.05〜0.5%、V;
0.01〜0.10%の範囲で1種または2種以上を更
に含有することを特徴とする溶接構造物。
7. The welded structure according to claim 3,
The base material is, by weight, Mo; 0.05 to 0.5%, Ni;
0.05-0.5%, Cu; 0.05-0.5%, V;
A welded structure further containing one or more members in the range of 0.01 to 0.10%.
【請求項8】 請求項4に記載の溶接構造物において、
母材が、重量%で、Mo;0.05〜0.5%、Ni;
0.05〜0.5%、Cu;0.05〜0.5%、V;
0.01〜0.10%の範囲で1種または2種以上を更
に含有することを特徴とする溶接構造物。 Pwm=C+Si/24+Mn/5+Cr/7+Mo/4 +Ni/10+Cu/14 (1)
8. The welded structure according to claim 4,
The base material is, by weight, Mo; 0.05 to 0.5%, Ni;
0.05-0.5%, Cu; 0.05-0.5%, V;
A welded structure further containing one or more members in the range of 0.01 to 0.10%. Pwm = C + Si / 24 + Mn / 5 + Cr / 7 + Mo / 4 + Ni / 10 + Cu / 14 (1)
JP4031278A 1992-01-23 1992-01-23 Welded structure with excellent HIC resistance and SSC resistance Expired - Fee Related JP2596868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031278A JP2596868B2 (en) 1992-01-23 1992-01-23 Welded structure with excellent HIC resistance and SSC resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031278A JP2596868B2 (en) 1992-01-23 1992-01-23 Welded structure with excellent HIC resistance and SSC resistance

Publications (2)

Publication Number Publication Date
JPH05200583A true JPH05200583A (en) 1993-08-10
JP2596868B2 JP2596868B2 (en) 1997-04-02

Family

ID=12326856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031278A Expired - Fee Related JP2596868B2 (en) 1992-01-23 1992-01-23 Welded structure with excellent HIC resistance and SSC resistance

Country Status (1)

Country Link
JP (1) JP2596868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329545C (en) * 2003-02-26 2007-08-01 新日本制铁株式会社 Crude oil tank with welding seam having excellent anti-corrosivity
JP2013023713A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
JP2013023714A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
JP2016523714A (en) * 2013-05-08 2016-08-12 ホバート ブラザーズ カンパニー System and method for low manganese weld alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316461A (en) * 1987-02-17 1988-01-23 Sanyo Electric Co Ltd Auto-changer for disk player
JPH028322A (en) * 1988-06-27 1990-01-11 Nippon Steel Corp Manufacture of high-tensile steel plate excellent in ssc resistance
JPH0364414A (en) * 1989-07-31 1991-03-19 Nkk Corp Production of steel sheet having high tensile strength and high toughness and excellent in hic resistance
JPH0381072A (en) * 1989-08-25 1991-04-05 Sumitomo Metal Ind Ltd Production of welded steel pipe having excellent hydrogen induced crack resistance
JPH03285770A (en) * 1990-03-30 1991-12-16 Nippon Steel Corp Manufacture of large diameter steel pipe excellent in sour gas resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316461A (en) * 1987-02-17 1988-01-23 Sanyo Electric Co Ltd Auto-changer for disk player
JPH028322A (en) * 1988-06-27 1990-01-11 Nippon Steel Corp Manufacture of high-tensile steel plate excellent in ssc resistance
JPH0364414A (en) * 1989-07-31 1991-03-19 Nkk Corp Production of steel sheet having high tensile strength and high toughness and excellent in hic resistance
JPH0381072A (en) * 1989-08-25 1991-04-05 Sumitomo Metal Ind Ltd Production of welded steel pipe having excellent hydrogen induced crack resistance
JPH03285770A (en) * 1990-03-30 1991-12-16 Nippon Steel Corp Manufacture of large diameter steel pipe excellent in sour gas resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329545C (en) * 2003-02-26 2007-08-01 新日本制铁株式会社 Crude oil tank with welding seam having excellent anti-corrosivity
JP2013023713A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
JP2013023714A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
JP2016523714A (en) * 2013-05-08 2016-08-12 ホバート ブラザーズ カンパニー System and method for low manganese weld alloys

Also Published As

Publication number Publication date
JP2596868B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
EP3620256A1 (en) Arc welding method and welding wire
US5964964A (en) Welded joint of high fatigue strength
EP3533891A1 (en) Steel for high heat input welding
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
US4210445A (en) Niobium-containing weldable structural steel having good weldability
MXPA97007729A (en) Solded gasket that has excellent resistance to the fat
JPH07195193A (en) Solid wire for thin sheet of high tension steel
JP2857318B2 (en) Welding wire for high tensile steel
EP3378962A1 (en) Steel for high heat input welding
JP2596868B2 (en) Welded structure with excellent HIC resistance and SSC resistance
JPS63157795A (en) Wire for high tensile steel
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP4736193B2 (en) Fillet welded joint with excellent fatigue characteristics and gas shielded arc fillet welding method
JP2022089304A (en) Welded joint of austenitic stainless steel, welded structure, and mother steel, and method for producing welded joint of austenitic stainless steel
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP2001246495A (en) Welding material and method for producing welded joint
JP2711755B2 (en) Welded structure with excellent HIC resistance and SSC resistance
JPH0796390A (en) Wire for welding 9cr-1mo steel
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
JPH0596397A (en) Steel wire for high electric current mig welding
JP2596868C (en)
WO2021200572A1 (en) High-strength low-alloy steel sheet having exceptional parent-material toughness and welded-joint toughness, and method for manufacturing said steel sheet
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JPH03285770A (en) Manufacture of large diameter steel pipe excellent in sour gas resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961008

LAPS Cancellation because of no payment of annual fees