JPH03285373A - Manufacture of josephson junction - Google Patents

Manufacture of josephson junction

Info

Publication number
JPH03285373A
JPH03285373A JP2086951A JP8695190A JPH03285373A JP H03285373 A JPH03285373 A JP H03285373A JP 2086951 A JP2086951 A JP 2086951A JP 8695190 A JP8695190 A JP 8695190A JP H03285373 A JPH03285373 A JP H03285373A
Authority
JP
Japan
Prior art keywords
thin film
bulk
film
mgo
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2086951A
Other languages
Japanese (ja)
Inventor
Maruo Jinno
丸男 神野
Kazuhiro Shimaoka
島岡 一博
Kazuhiko Takahashi
和彦 高橋
Masanobu Yoshisato
善里 順信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2086951A priority Critical patent/JPH03285373A/en
Publication of JPH03285373A publication Critical patent/JPH03285373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To thinly and flatly form a single crystalline insulating film having small mismatch of lattice constant on a superconductor and no defect such as pinhole, etc., by forming a single crystalline insulating thin film of crystalline orientation similar to that of the surface of a single crystalline superconducting bulk on the bulk. CONSTITUTION:A single crystalline superconducting bulk 1 is used as a substrate, and a single crystalline insulating thin film 2 made of MgO, ZrO2, Al2O3, etc., is formed, for example, several tens Angstrom thick on the surface. Thereafter, when the film 2 formed on the bulk 1 is heat treated at 735-745 deg.C and X-ray diffracted, a peak of the plane (111) is observed in the MgO, a single crystal MgO of a direction (111) is formed on the bulk 1, and a flat film is formed from a microstructure observation. This is because of high matching of 5.8Angstrom of lattice constant of the MgO (111) to 5.4Angstrom of lattice constant of Bi2Sr2CaCu2 Ox00l. Then, in order to form a Josephson junction, a superconducting thin film 3 is formed 2000-3000Angstrom on the film 2 by an ion beam sputtering method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温酸化物超電導体を用いたトランジスタ等
のジョセフソン接合作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a Josephson junction of a transistor or the like using a high-temperature oxide superconductor.

〔従来の技術〕[Conventional technology]

従来より、高温酸化物超電導体を利用する積層型ジョセ
フソン接合は、MgO等の絶縁性基板上に例えばYBa
zCu+Ox超電導薄膜を形成し、この上にMgO,A
l2O3等の絶縁性薄膜全形成すると共に、さらにこの
上にYBa2Cu30)(超電導薄膜を形成し、いわゆ
る515構造にすることにより作製されている。
Conventionally, stacked Josephson junctions using high-temperature oxide superconductors have been made using YBa, for example, on an insulating substrate such as MgO.
zCu+Ox superconducting thin film is formed, and MgO, A
It is fabricated by completely forming an insulating thin film such as l2O3, and further forming a YBa2Cu30 (superconducting thin film) on top of this to form a so-called 515 structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述したような薄膜による積層構造の場合、超
電導薄膜は酸化物であることからこれ全平坦に形成する
ことが困難であり、また、トンネルバリアである絶縁性
薄膜は酸化物超電導体のコヒーレンス長(数10人)ま
でに薄くしなければならず、しかもこれを平坦化が困難
な酸化物超電導薄膜上に形成することから−様な膜厚に
ならず、ピンホール等の欠陥のない絶縁性薄膜全薄く超
電導薄膜上に形成することが困難となり、再現性良くジ
ョセフソン接合を得ることができない欠点がある。
However, in the case of the laminated structure of thin films as described above, since the superconducting thin film is an oxide, it is difficult to form it completely flat, and the insulating thin film that serves as the tunnel barrier is difficult to form due to the coherence of the oxide superconductor. It must be made as thin as possible (several tens of nanometers), and because it is formed on an oxide superconducting thin film that is difficult to planarize, it is possible to achieve an insulation that is free from defects such as pinholes and does not have an unusually thick film. However, it is difficult to form a completely thin superconducting thin film on a superconducting thin film, and a Josephson junction cannot be obtained with good reproducibility.

本発明は、従来の技術の有するこのような問題点に留意
してなされたものであり、その目的とするところは、再
現性良く積層型ジョセフソン接合を形成できる作製方法
を提供することにある。
The present invention has been made with these problems of the prior art in mind, and its purpose is to provide a manufacturing method that can form a stacked Josephson junction with good reproducibility. .

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明のジョセフソン接合
作製方法においては、単結晶超電導バルクの表面にこの
表面の結晶方位と近似した結晶方位の単結晶絶縁薄膜全
形成し、この絶縁薄膜の表面に超電導薄膜を形成するよ
うにしたことを特徴としている。
In order to achieve the above object, in the Josephson junction fabrication method of the present invention, a single crystal insulating thin film with a crystal orientation similar to that of this surface is entirely formed on the surface of a single crystal superconducting bulk, and the surface of this insulating thin film is It is characterized by the fact that a superconducting thin film is formed on the surface.

〔作用〕[Effect]

単結晶超電導バルクの表面に形成された単結晶絶縁薄膜
はバルク表面の結晶方位と近似した結晶方位?有してい
るため、両者の格子定数のミスマツチが小さく、ピンホ
ール等の欠陥のない単結晶絶縁膜が超電導バルクの表面
に薄く形成され、この上に超電導薄膜全形成することに
より、再現性良く積層型のジョセフソン接合が得られる
Does the single-crystal insulating thin film formed on the surface of a single-crystal superconducting bulk have a crystal orientation similar to that of the bulk surface? As a result, the mismatch in the lattice constants between the two is small, and a single crystal insulating film without defects such as pinholes is formed thinly on the surface of the superconducting bulk, and by forming the entire superconducting thin film on top of this, it is possible to achieve high reproducibility. A stacked Josephson junction is obtained.

〔実施例〕〔Example〕

実施例につき図面を用いて説明する。 Examples will be explained using drawings.

第1図はジョセフソン接合の分解斜視図であり、まず、
C軸配向のB】系単結晶超電導バルク(1)ヲ、例エバ
、出発原料トL テB12O3、SrCO3,CaCO
3,CuOを用い、これらを所定比(Bi25r2Ca
Cu20x)に混合した後、自己フラックス法により作
製する。
Figure 1 is an exploded perspective view of a Josephson junction.
C-axis oriented B] system single crystal superconducting bulk (1), e.g. Eva, starting material L Te B12O3, SrCO3, CaCO
3. Using CuO, these were mixed in a predetermined ratio (Bi25r2Ca
After mixing with Cu20x), it is produced by a self-flux method.

その際の熱処理工程は、950℃〜1000℃の温度全
10〜30時間保持し、その後、35〜70時間かけて
750℃〜800°Cの温度まで下げ、さらに徐冷を行
う。
In the heat treatment step, the temperature is maintained at 950° C. to 1000° C. for a total of 10 to 30 hours, and then the temperature is lowered to 750° C. to 800° C. over 35 to 70 hours, followed by slow cooling.

このようにして得られたBi25r2CaCu20xの
単結晶は、0.5X O,5x O,01麿3程度であ
り、その単結晶のX線回折ピークは第2図に示すように
なり、C軸配向の単結晶が得られていることがわかる。
The single crystal of Bi25r2CaCu20x obtained in this way has a particle size of about 0.5X O,5x O,013, and the X-ray diffraction peak of the single crystal is as shown in Figure 2, indicating that the C-axis orientation is It can be seen that a single crystal was obtained.

この単結晶は、臨界温度Tce =81K kもつ超電
導体である。
This single crystal is a superconductor with a critical temperature Tce =81K k.

次に、前記単結晶超電導バルクn+ 1基板として用い
、この表面にMgO,ZrO2,Al2O3等からなる
単結晶絶縁薄膜(2)を例えば数10人の膜厚に形成す
る。
Next, using the single crystal superconducting bulk n+1 substrate, a single crystal insulating thin film (2) made of MgO, ZrO2, Al2O3, etc. is formed on the surface to a thickness of, for example, several tens of layers.

この絶縁薄膜(2)としてMgOf用いた場合の成膜条
件は、ターゲットとして直径4インチのMgOfez用
い、チャンバ内の初期圧力f IQ ’Pa以下、イオ
ンガンの出力k 120mA、ik〜′、バイアス電圧
ヲ150■、スパッタ時のチャンバ内圧力11QPa以
下、成膜速度f 0.O3nm/seeとした。
When MgOf is used as the insulating thin film (2), the film formation conditions are as follows: MgOfez with a diameter of 4 inches is used as a target, the initial pressure in the chamber is below f IQ 'Pa, the output of the ion gun is k 120 mA, ik~', and the bias voltage is 150■, chamber internal pressure during sputtering 11QPa or less, film formation rate f 0. It was set to O3nm/see.

その後、バルク(])土に形成した絶縁薄膜f21’t
 735〜745℃の間で熱処理全行い、X線回折した
ところ、第3図に示すように、MgOではその(111
)面のピークのみが見られ、バルク(1)上に(111
)方向の単結晶MgOが形成されていることがわかり、
SEM(走査電子顕微鏡)等の微構造観察からも平坦性
の良好な膜であることを確認している。
After that, an insulating thin film f21't was formed on the bulk (]) soil.
All heat treatment was carried out between 735 and 745°C, and X-ray diffraction was performed. As shown in Figure 3, MgO has a
) plane peak is seen, and (111
) It was found that single crystal MgO was formed in the direction.
It has been confirmed that the film has good flatness from microstructural observation using SEM (scanning electron microscope) and the like.

これらのことは、第1図に示したように、Mg0(11
1)の格子定数(5,8人)とBizSr2CaCuz
Ox(OOlり tD格子定数(5,4A)とのマツチ
ングの良さ(ミスマツチ7%)によるものである。
As shown in Figure 1, these things are true for Mg0(11
1) Lattice constant (5, 8 people) and BizSr2CaCuz
This is due to the good matching (7% mismatch) with Ox (OOl) tD lattice constant (5,4A).

次に、ジョセフソン接合を形成するために、バルク(1
)上の絶縁薄膜(2,、の表面に、イオンビームスパッ
タリング法により、Bi25r2CaCu20x(00
r)よりなる超電導薄膜iaiを2000〜3000X
の膜厚に形成する。
Next, to form a Josephson junction, the bulk (1
) Bi25r2CaCu20x (00
r) Superconducting thin film iai consisting of 2000-3000X
Formed to a film thickness of .

この場合の成膜条件は、ターゲットとして直径4 イン
% ノBizSrzCu20x f用い、初期圧力10
−’Pa以下、イオンガン出力120mA 、 1 k
V 、バイアス電圧150■、スパッタ時圧力1o−2
pa以下、成膜速度0.041m/s+!cであり、さ
らに、基板温度’i 600−650°Cと上げた状態
で02アシストを行うことにより、BlzSrzCaC
u 20Xの超電導薄膜(3)全形成することができる
In this case, the film forming conditions were as follows: BizSrzCu20x f with a diameter of 4 in% was used as the target, and an initial pressure of 10
-'Pa or less, ion gun output 120mA, 1k
V, bias voltage 150■, sputtering pressure 1o-2
Pa or less, film formation speed 0.041 m/s+! By performing 02 assist with the substrate temperature 'i raised to 600-650°C, BlzSrzCaC
A superconducting thin film (3) of u 20X can be completely formed.

このようにして、第1図に示すジョセフソン接合が作製
できる。
In this way, the Josephson junction shown in FIG. 1 can be manufactured.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているため、次
に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

単結晶超電導バルクにこの表面の結晶方位と近似した結
晶方位の単結晶絶縁薄膜を形成するようにしたので、超
電導体上に格子定数のミスマツチが小さく、ピンホール
等の欠陥のない単結晶絶縁膜を薄くかつ平坦に形成する
ことができ、再現性良くジョセフソン接合を形成できる
ものである。
By forming a single-crystal insulating thin film with a crystal orientation similar to the surface crystal orientation on the single-crystal superconductor bulk, we can create a single-crystal insulating film with small lattice constant mismatches and no defects such as pinholes on the superconductor. can be formed thin and flat, and Josephson junctions can be formed with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明によるンヨセフソン接合作製方法の1実施
例を示し、第1図は分解斜視図、第2図は単結晶超電導
バルクのX線回折パターン図、第3図はバルク上に単結
晶絶縁薄膜全形成した場合のX線回折パターン図である
。 jll・−・単結晶超電導バルク、 (2) 単結晶絶縁薄膜、 3)・ 超電導薄膜。
The drawings show one embodiment of the method for manufacturing a Nyosefson junction according to the present invention, in which Fig. 1 is an exploded perspective view, Fig. 2 is an X-ray diffraction pattern of a single-crystal superconducting bulk, and Fig. 3 is a single-crystal insulating thin film on the bulk. It is an X-ray diffraction pattern diagram when completely formed. jll -- Single crystal superconducting bulk, (2) Single crystal insulating thin film, 3) Superconducting thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)超電導体/絶縁体/超電導体の積層型ジョセフソ
ン接合作製方法において、 単結晶超電導バルクの表面に該バルクの表面の結晶方位
と近似した結晶方位の単結晶絶縁薄膜を形成する工程と
、 前記絶縁薄膜の表面に超電導薄膜を形成する工程と、 よりなるジョセフソン接合作製方法。
(1) A method for producing a stacked Josephson junction of superconductor/insulator/superconductor, which includes the step of forming a single-crystal insulating thin film on the surface of a single-crystal superconducting bulk with a crystal orientation similar to that of the surface of the bulk; A method for manufacturing a Josephson junction, comprising: forming a superconducting thin film on the surface of the insulating thin film.
JP2086951A 1990-03-31 1990-03-31 Manufacture of josephson junction Pending JPH03285373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086951A JPH03285373A (en) 1990-03-31 1990-03-31 Manufacture of josephson junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086951A JPH03285373A (en) 1990-03-31 1990-03-31 Manufacture of josephson junction

Publications (1)

Publication Number Publication Date
JPH03285373A true JPH03285373A (en) 1991-12-16

Family

ID=13901181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086951A Pending JPH03285373A (en) 1990-03-31 1990-03-31 Manufacture of josephson junction

Country Status (1)

Country Link
JP (1) JPH03285373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565415A (en) * 1991-01-10 1996-10-15 Sumitomo Electric Industries, Ltd. Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565415A (en) * 1991-01-10 1996-10-15 Sumitomo Electric Industries, Ltd. Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material

Similar Documents

Publication Publication Date Title
US5077266A (en) Method of forming weak-link josephson junction, and superconducting device employing the junction
EP0576633A1 (en) Grain boundary junctions in high temperature superconductor films
JPH05508610A (en) Growth method of perovskite thin film along a and b axes
JPH0577347B2 (en)
EP0468868B1 (en) Superconducting device having a layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same
JPH0297427A (en) Production of oxide superconducting thin film
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH03285373A (en) Manufacture of josephson junction
JPH01117376A (en) Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof
JPH03275504A (en) Oxide superconductor thin film and its production
JPH03166776A (en) Tunnel junction element and manufacture thereof
JPH01183496A (en) Production of single crystal oxide superconducting thin film
JPH02120229A (en) Production of superconducting thin film of oxide
JPH04334074A (en) Superconducting device
JP3167768B2 (en) Grain boundary Josephson device and method of manufacturing the same
JP2959290B2 (en) Superconducting laminated thin film and manufacturing method thereof
JPH0563247A (en) Superconducting joint structure and production thereof
JPH02120232A (en) Production of superconducting thin film of oxide
JP2768066B2 (en) Method for laminating upper thin film on oxide superconducting thin film
JPH06183894A (en) Method for forming surface of oxide single crystal
JPH01115899A (en) Production of oxide superconductor film
JP3188912B2 (en) Method for producing oxide superconducting thin film
JPH02120231A (en) Production of superconducting thin film of oxide
JPH0195576A (en) Manufacture of thin-film superconducting device
JPH04144993A (en) Substrate for forming oxide superconductor thin film