JPH03285368A - Gaas solar cell - Google Patents

Gaas solar cell

Info

Publication number
JPH03285368A
JPH03285368A JP2087797A JP8779790A JPH03285368A JP H03285368 A JPH03285368 A JP H03285368A JP 2087797 A JP2087797 A JP 2087797A JP 8779790 A JP8779790 A JP 8779790A JP H03285368 A JPH03285368 A JP H03285368A
Authority
JP
Japan
Prior art keywords
epitaxial layer
type
layer
solar cell
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2087797A
Other languages
Japanese (ja)
Other versions
JP2722761B2 (en
Inventor
Masaharu Niizawa
新沢 正治
Tsunehiro Unno
恒弘 海野
Tomoki Inada
稲田 知己
Youhei Otogi
洋平 乙木
Shoji Kuma
隈 彰二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2087797A priority Critical patent/JP2722761B2/en
Publication of JPH03285368A publication Critical patent/JPH03285368A/en
Application granted granted Critical
Publication of JP2722761B2 publication Critical patent/JP2722761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain a high energy conversion efficiency by employing carbon as p-type dopant element for forming a p-type epitaxial layer, and forming it in a p-type epitaxial layer laminated with a layer having carbon concentration exceeding a specific value. CONSTITUTION:An n-type GaAs epitaxial layer 2, a p-type GaAs epitaxial layer 3, and a high carrier concentration p<+> type GaAs epitaxial layer 8 are sequentially epitaxially grown and laminated on an n-type GaAs substrate 1. A front surface electrode 5 and a p-type GaAlAs epitaxial layer 4 of a window material are formed on the layer 8, and a reflection preventive film 6 is further provided. It is introduced to the layer 3 of the p-type epitaxial layer, the layer 8 and the layer 4. Carbon concentration can be controlled arbitrarily from 1X10<15>cm<-3> or less to about 1.5X10<21>cm<-3> of high concentration. The carbon concentration of the layer 8 is set to 1X10<19>cm<-3> or more.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は太陽電池、特にGaAs系のエビタ牛ンヤル層
を有する太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a solar cell, and particularly to a solar cell having a GaAs layer.

[従来の技術] GaAs系を用いた太陽電池は、GaAsの禁制帯幅が
1.43eVと大きく、太陽電池の理想とされるl、5
eVに近いことから、SlやInPなど他の多くの太陽
電池の中でも最も高い変換効率を示す。その構造の代表
的な例を第2図に示す。
[Prior art] Solar cells using GaAs have a large forbidden band width of 1.43 eV, which is considered to be the ideal solar cell.
Since it is close to eV, it has the highest conversion efficiency among many other solar cells such as Sl and InP. A typical example of its structure is shown in FIG.

n型GaAs基板1上にn型GaAs!ビタキシャル層
、p型GaAsエピタキシャル層を順次エピタキシャル
成長し、その上に表面電極5とp型GaA12Asエビ
タキン+ル層4を形成し、さらに反射防止M6を設けて
いる。入射した太陽光によって発生した光起電力はp型
GaAsエビタ牛シャル層3上に形成された表面電極5
と基板l下に設けた裏面電極7を通じて取り出される。
n-type GaAs on the n-type GaAs substrate 1! A bitaxial layer and a p-type GaAs epitaxial layer are sequentially epitaxially grown, and a surface electrode 5 and a p-type GaA12As epitaxial layer 4 are formed thereon, and an anti-reflection layer M6 is further provided. The photovoltaic force generated by the incident sunlight is transferred to the surface electrode 5 formed on the p-type GaAs layer 3.
and is taken out through the back electrode 7 provided under the substrate l.

ところで、p型GaAsエピタキシャル層3の表面には
不飽和結合(ダングリングボンド)による表面単位が高
密度で存在し、発生したキャリアが表面電極5に取り込
まれる荊に表面で再結合し、エネルギの変換効率が著し
く低下する。
Incidentally, surface units formed by unsaturated bonds (dangling bonds) exist at a high density on the surface of the p-type GaAs epitaxial layer 3, and the generated carriers recombine on the surface with the dangling bonds taken into the surface electrode 5, and the energy is released. Conversion efficiency decreases significantly.

そこで表面単位密度を低下し、表面へのキャリア流出を
防ぐ目的でp型GaAsエピタキシャル層3の上に上記
したp型GaA(!Asエピタキシャル層4を窓材とし
て設ける構造がとられている。
Therefore, in order to reduce the surface unit density and prevent carriers from flowing out to the surface, a structure is adopted in which the above-mentioned p-type GaA(!As epitaxial layer 4 is provided as a window material) on the p-type GaAs epitaxial layer 3.

また、この窓材となるGaA(Asエピタキシャル層4
の保護及び入射光の反射を極力少なくすることを目的と
して、GaA(Asエピタキシャル層層上上太陽光に対
して透明かつ耐久性のあるシリコンナイトライド(SI
3N4)等の材質からなる上記した反射防止膜6が設け
られる。
In addition, a GaA (As epitaxial layer 4) is used as the window material.
Silicon nitride (SI), which is transparent and durable to sunlight, was added on top of the GaA (As) epitaxial layer to protect it and minimize the reflection of incident light.
The above-mentioned antireflection film 6 made of a material such as 3N4) is provided.

これにより、変換効率20%以上のGaAs太陽電池が
得られている。
As a result, a GaAs solar cell with a conversion efficiency of 20% or more has been obtained.

このようなGaAs系太陽電池において、従来p型エピ
タ牛シャル層形成のためのドーパントとしてはZnSB
e等が専ら用いられている。
In such GaAs solar cells, ZnSB has conventionally been used as a dopant for forming a p-type epitaxial layer.
e etc. are exclusively used.

[発明が解決しようとする課題] ところで、太陽電池のエネルギ変換効率の向上を図る上
で重要な点は、短絡電流密度1scと開放電圧Vocの
他に、曲線因子FFの改善が上げられる。
[Problems to be Solved by the Invention] By the way, in addition to short circuit current density 1sc and open circuit voltage Voc, an important point in improving the energy conversion efficiency of a solar cell is improvement of fill factor FF.

曲線因子FFはダイオード特性や並列抵抗、直列抵抗に
関係しているか、特に直列抵抗の大きさには大きく依存
し、トータルとしての変換効率向上にはこれらの最適な
設計が必要である。
The fill factor FF is related to the diode characteristics, parallel resistance, and series resistance, and in particular, it greatly depends on the magnitude of the series resistance, and an optimal design of these is necessary to improve the total conversion efficiency.

すなわち、第2図の太陽電池において、表面電極5の面
積を増加し、p型GaAsエピタキシャル層3のキャリ
ア濃度を増加することは直列抵抗の低減に役立ち、曲性
因子FFの改善につながる。
That is, in the solar cell of FIG. 2, increasing the area of the surface electrode 5 and increasing the carrier concentration of the p-type GaAs epitaxial layer 3 helps to reduce the series resistance, leading to an improvement in the curvature factor FF.

しかし、一方で、表面電極5の増加は、電極の影による
影損失の増加を招き、またp型GaAsエピタキシャル
層3のキャリア濃度増加は発生キャリアのp型GaAs
エピタキシャル層3内での再結合確率を助長し、短絡電
流密度1ocを下げるという結果を招く。
However, on the other hand, the increase in the number of surface electrodes 5 causes an increase in shadow loss due to the shadow of the electrodes, and the increase in the carrier concentration in the p-type GaAs epitaxial layer 3 causes the p-type GaAs of the generated carriers to increase.
This increases the recombination probability within the epitaxial layer 3, resulting in a lower short circuit current density 1oc.

従って、変換効率を向上するにはp型GaAsエピタキ
シャル層3内のキャリア濃度分布を適正にする必要があ
るが、従来用いているp型ドーパント元素であるZnS
Be等はGaAs結晶中のでの拡散係数が大きく、適正
な分布か得られないばかりでなく、キャリア濃度を5X
IO”cm以上の高濃度にすることが非常に困難であっ
た。
Therefore, in order to improve the conversion efficiency, it is necessary to make the carrier concentration distribution within the p-type GaAs epitaxial layer 3 appropriate.
Be, etc., has a large diffusion coefficient in GaAs crystals, and not only is it difficult to obtain an appropriate distribution, but the carrier concentration is
It was extremely difficult to achieve a high concentration of IO"cm or higher.

本発明の目的は、前記した従来技術の欠点を解消し、高
いエネルギ変換効率を有するGaAs系太陽電池を提供
することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a GaAs solar cell having high energy conversion efficiency.

[課題を解決するための手段] 本発明のGaAs系太陽電池は、n型GaAs基板上に
p型のエピタキシャル層を積層して表裏に電極を形成し
たGaAs系太陽電池において、上記p型エピタキシャ
ル層を形成するためのp型ドーパント元素にカーボンを
用い、そのカーボン濃度がI X 10 ”c m−’
を越える層を上記積層したp型エピタキシャル層中に有
するものである。
[Means for Solving the Problems] The GaAs solar cell of the present invention is a GaAs solar cell in which a p-type epitaxial layer is laminated on an n-type GaAs substrate and electrodes are formed on the front and back sides. Carbon is used as a p-type dopant element to form
The laminated p-type epitaxial layer has more than 100 layers.

そして、カーボン濃度がI X 1×1018cm−’
を越えるキャリア濃度の高い上記p型エピタキシャル層
を安定に作るために、トリメチルガリウムあるいはトリ
エチルガリウム等の有機金属原料を用いた有機金属気相
成長法によって形成することが望ましい。
And the carbon concentration is I x 1 x 1018 cm-'
In order to stably produce the above p-type epitaxial layer having a high carrier concentration exceeding , it is desirable to form it by an organometallic vapor phase epitaxy method using an organometallic raw material such as trimethyl gallium or triethyl gallium.

また、カーボン濃度かI X I O”c m−’以上
ノ高キャリア濃度p型エピタキシャル層を有し、この高
キャリア濃度p型エピタ牛ンヤル層を表面電極のコンタ
クト層とすることか好ましい。
It is also preferable to have a p-type epitaxial layer with a high carrier concentration of carbon concentration IXIO''cm-' or more, and to use this high carrier concentration p-type epitaxial layer as a contact layer of the surface electrode.

さらに、上記高キャリア濃度p型エピタキシャル層のカ
ーボン濃度がI X 1×1018crr+”以上で、
かつその厚さが1μm以下であることが望ましい。
Furthermore, the carbon concentration of the high carrier concentration p-type epitaxial layer is I x 1×10 18 crrr+” or more,
Moreover, it is desirable that the thickness is 1 μm or less.

[作用] カーボンは拡散係数が小さ(高濃度のドープか可能であ
る。従って、このカーボンをp型ドーパント元素に用い
ると、p型エピタキシャル層内のキャリア分布の適正化
が可能となる。
[Function] Carbon has a small diffusion coefficient (it can be doped at a high concentration). Therefore, when carbon is used as a p-type dopant element, carrier distribution in the p-type epitaxial layer can be optimized.

また、表面電極コンタクト側のp型エビタ牛ンヤル層の
キャリア濃度がlXl×1018cm′□1以上になる
と、太陽電池に寄生する直列抵抗が減少し、それによっ
て太陽電池の変換効率が大幅に向上する。
In addition, when the carrier concentration of the p-type Evita layer on the surface electrode contact side becomes 1Xl×1018cm'□1 or more, the parasitic series resistance of the solar cell decreases, thereby significantly improving the conversion efficiency of the solar cell. .

特に、p型エピタキシャル層の電極コンタクト側のみを
薄く高濃度にドープすることにより、短絡電流密度の低
下をほとんど起こさずに接触抵抗の大幅な改善か図られ
る。
In particular, by thinly and highly doping only the electrode contact side of the p-type epitaxial layer, contact resistance can be significantly improved with almost no reduction in short-circuit current density.

[実施例] 本発明の一実施例を説明するための太陽電池構造を第1
図に示す。
[Example] A solar cell structure for explaining an example of the present invention is shown in the first example.
As shown in the figure.

太陽電池(セル)は、基板としてSiをドープしたn型
GaAs基板1 (キャリア濃度lXl×1018cm
−、厚さ300μm)を用いている。
The solar cell (cell) uses an n-type GaAs substrate 1 doped with Si (carrier concentration lXl x 1018 cm) as a substrate.
-, thickness 300 μm).

このn型GaAs基板1上にn型GaAsエピタキシャ
ル層2.  p型GaAsエピタキシャル1ii3.高
キャリア濃度p°型GaAsエピタキシャル層8を順次
エピタキシャル成長して積層する。その高キャリア濃度
p型G’aAsエピタキシャル層8の上に表面電極5と
窓材であるp型GaAQAsエピタキシャル層4を形成
し、さらに反射防止膜6を設けている。また、基板1の
裏面全面に裏面電極7が形成される。
On this n-type GaAs substrate 1, an n-type GaAs epitaxial layer 2. p-type GaAs epitaxial 1ii3. High carrier concentration p° type GaAs epitaxial layers 8 are successively epitaxially grown and stacked. A surface electrode 5 and a p-type GaAQAs epitaxial layer 4 as a window material are formed on the high carrier concentration p-type G'aAs epitaxial layer 8, and an antireflection film 6 is further provided. Further, a back electrode 7 is formed on the entire back surface of the substrate 1.

上記n型GaAsエピタキシャル層2.  p型GaA
sエピタキシャル層3.高キャリア濃度p蟹G a A
 S Z ヒ9 + ’i ヤル層8は、MOVPE法
(有機金属を用いた気相成長法)によって連続的に作成
される。
The n-type GaAs epitaxial layer 2. p-type GaA
s epitaxial layer 3. High carrier concentration p crab G a A
The SZhi9+'i layer 8 is continuously created by the MOVPE method (vapor phase epitaxy using organic metals).

また、窓材としてのp型GaALAsエピタキシャル層
4もMOVPE法により作成し、反射防止膜6はプラズ
マCVD装置によりSi、N4を堆積して形成される。
Further, the p-type GaALAs epitaxial layer 4 as a window material is also formed by the MOVPE method, and the antireflection film 6 is formed by depositing Si and N4 using a plasma CVD apparatus.

表面電極5は窓材のGaA(jAsエピタキシャル層4
を部分的にエツチングし、高キャリア濃度p型GaAs
エピタキシャル層8、あるいはp型GaAsエピタキシ
ャル層3に電極材料が直接接触するように形成しである
The surface electrode 5 is made of a window material GaA (jAs epitaxial layer 4
is partially etched to form high carrier concentration p-type GaAs.
The electrode material is formed in direct contact with the epitaxial layer 8 or the p-type GaAs epitaxial layer 3.

上記したMOVPE法では原料としてTMG(トリメチ
ルガリウム)を用いた。特にp型エピタキシャル層であ
るn型GaAsエピタキシャル層3゜高キャリア′a度
p型GaAsエピタキシャル層8゜p型GaAl2As
エピタキシャル層4に導入するカーボン濃度はキナリア
ガス中のTMGの分圧■族/m族比、基板温度を調節す
ることにより現在I X 1×1018cm−’以下が
ら1.5X1×1018cm3程度の高濃度まで任意に
制御できるようになっている。この場合、カーボンは原
料のTMGがら供給されていると考えられるが、はとん
どA sサイトを置換し、アクセプタとしてほぼ100
%活性化していることに注目すべきである。これを利用
して本実施例では高キャリア濃度p型GaAsエピタキ
シャル層8のカーボン濃度をIXIOcm−’以上にし
である。
In the MOVPE method described above, TMG (trimethyl gallium) was used as a raw material. In particular, an n-type GaAs epitaxial layer, which is a p-type epitaxial layer, has a 3° high carrier'a degree, a p-type GaAs epitaxial layer, which is a p-type epitaxial layer, and an 8° p-type GaAl2As
The carbon concentration introduced into the epitaxial layer 4 can be adjusted from the current I x 1 x 1018 cm-' to a high concentration of about 1.5 x 1 x 1018 cm3 by adjusting the partial pressure of TMG in the quinaria gas, the group II/m group ratio, and the substrate temperature. It can be controlled arbitrarily. In this case, carbon is thought to be supplied from the raw material TMG, but carbon mostly replaces the As site and serves as an acceptor at approximately 100%
It should be noted that % activation. Taking advantage of this, in this embodiment, the carbon concentration of the high carrier concentration p-type GaAs epitaxial layer 8 is set to be higher than IXIOcm-'.

このよう制御、置換はカーボン元素によりはじめて可能
となるのであって、現在使われているZnやBe等の不
純物元素では不可能であり、これらでキャリア濃度I 
X I O”cm”以上を安定的に作った報告はない。
Such control and substitution is only possible with carbon elements, and is not possible with currently used impurity elements such as Zn and Be.
There is no report on stable production of X I O "cm" or more.

次に、セル作成の詳細について述べる。Next, details of cell creation will be described.

n型GaAs基板1 (キャリア濃度lXl0目cm−
1厚さ300μm)上に作成したn型GaAsエピタキ
シャル層2は、原料ガスにジシラン(S+yHs)を添
加して作成したS1ドープ結晶でキャリア濃度は2X 
I O”cm−、厚さ6μmである。第1図のp型Ga
、Asエビタ牛ンヤル層3、高キャリア濃度p型GaA
sエピタキシャル層8は、上記MOVPE法によって連
続的に作成し、それぞれキャリア7J1度8X]O”c
m“、厚さ2μmと、同じ< I X ] O”cm 
 、厚さ002μmである。
N-type GaAs substrate 1 (carrier concentration lXl0cm-
The n-type GaAs epitaxial layer 2 created on the substrate (1 thickness: 300 μm) is an S1-doped crystal created by adding disilane (S+yHs) to the source gas, and the carrier concentration is 2X.
I O"cm-, thickness 6 μm. The p-type Ga shown in FIG.
, As Evita Gyunyaru layer 3, high carrier concentration p-type GaA
The s epitaxial layer 8 is continuously created by the above MOVPE method, and each carrier 7J1 degree 8X]O"c
m", thickness 2 μm, same < I x ] O" cm
, the thickness is 002 μm.

また、窓材としてのl)!12GaAQAsエピタ牛/
ヤル層4も原料にトリメチルアルミニウム(TMA)を
用いたMOVPE法により作成し、そのACiit品比
は0.7.キャリア濃度はIXIOcm−、厚さ01μ
mである。反射防止膜6はプラズマCVD装置により5
i2N、を約0.1μm堆積した。表面電極5はホトリ
ソグラフィを使って、窓材のGaA(jAsエピタキシ
ャル層8を部分的にエツチングし、高キャリア濃度p型
GaAsエピタキシャル層8、あるいはp型GaAsエ
ピタキシャル層3に電極材料が直接接触するように形成
した。また、裏面電極7は基板lの裏面全面に形成した
Also l) as a window material! 12GaAQAs Epita cow/
The coating layer 4 was also created by the MOVPE method using trimethylaluminum (TMA) as a raw material, and its ACiit product ratio was 0.7. Carrier concentration is IXIOcm-, thickness 01μ
It is m. The anti-reflection film 6 is formed using a plasma CVD device.
About 0.1 μm of i2N was deposited. The surface electrode 5 is formed by partially etching the window material GaA(jAs epitaxial layer 8) using photolithography, so that the electrode material directly contacts the high carrier concentration p-type GaAs epitaxial layer 8 or the p-type GaAs epitaxial layer 3. Further, the back electrode 7 was formed on the entire back surface of the substrate l.

さて、本実施例の太陽電池の効果を確認するため、第1
図の構造において高キャリア濃ftp型GaAsエピタ
キシャル層8の有無のみが異なる二種類の太陽電池を上
記MOVPE法で作成し、そのエネルギー変換効率をA
M 1 (Air Mass 1の略で、地上で太陽が
天頂にある場合の太陽光を示す。
Now, in order to confirm the effect of the solar cell of this example, the first
Two types of solar cells with the structure shown in the figure differing only in the presence or absence of the high carrier-concentrated ftp type GaAs epitaxial layer 8 were fabricated using the above MOVPE method, and the energy conversion efficiency was A
M1 (abbreviation for Air Mass 1) indicates sunlight when the sun is at the zenith on the ground.

)疑似スペクトル条件で調べた。その結果は、次に述べ
るように本実施例の有効性を十分証明し得るものであっ
た。
) investigated under pseudospectral conditions. The results were sufficient to prove the effectiveness of this example, as described below.

高キャリア濃度p型GaAsエピタキシャル層8を有す
る太陽電池の直列抵抗は低く、変換効率も高キャリア濃
度p型GaAsエピタキシャル層8を有さないものが1
73%であったのに対し、上記エビタ牛/ヤル層8を有
するものが228%となり大巾な改善が認められた。
The series resistance of the solar cell having the high carrier concentration p-type GaAs epitaxial layer 8 is low, and the conversion efficiency of the solar cell having no high carrier concentration p-type GaAs epitaxial layer 8 is 1.
The percentage was 73%, whereas the percentage for those with Evita beef/Yaru layer 8 was 228%, indicating a significant improvement.

以上述べたように本実施例は、p型エピタキシャル層形
成のためのドーパントとして従来使っていたZn、Be
等に代えてC(カーボン)を用いたものである。従って
、GaAs結晶中のでの拡散係数が小さく、適正な分布
が得られ、牛+ ’)ア濃度も5X1×1018cm−
’以上の高i#度にすることが可能となる。その結果、
表面電極への直列抵抗が小さくなって変換効率が向上す
る。
As described above, this example uses Zn and Be, which have been conventionally used as dopants for forming a p-type epitaxial layer.
etc., using C (carbon) instead. Therefore, the diffusion coefficient in the GaAs crystal is small, a proper distribution is obtained, and the a concentration is 5X1x1018cm-
'It is possible to achieve a high i# degree of more than '. the result,
The series resistance to the surface electrode is reduced and the conversion efficiency is improved.

なお、上記実施例では、カーボン濃度が1×10 ”c
 m ”を越える層としてp型GaAρAsエピタキ/
ヤル層と、表面電極直下の高キャリア濃度p型GaAs
エピタ牛シャル層とし、このうち特に後者のGaAsエ
ビタ牛/ヤル層を1×1×1018cm′□3以上とし
たが、本発明はこれに限定されるものではない。例えば
、高キャリアa度p型エビタキ/+ル層を設けずに、p
型GaAs層または/およびp型GaA(Asエピタキ
シ+ル層をI x 1×1018cm−’のカーボン濃
度としたり、あるいは高キャリア濃度p型エピタキシャ
ル層を設けるが、窓材であるp型GaAζAsエピタキ
シャル層側に設けるようにしてもよい。
In the above example, the carbon concentration was 1×10”c
p-type GaAρAs epitaxy/
layer and high carrier concentration p-type GaAs directly under the surface electrode.
The epitaxial layer was made to have a thickness of 1×1×10 18 cm'□3 or more, especially the latter GaAs epitaxial layer, but the present invention is not limited thereto. For example, without providing a high carrier a degree p type shrimp layer/+
type GaAs layer or/and p-type GaA (As epitaxial layer) with a carbon concentration of I x 1 x 1018 cm-' or a high carrier concentration p-type epitaxial layer, but the p-type GaAζAs epitaxial layer which is the window material It may also be provided on the side.

[発明の2/l果] 本発明によれば次のような効果を発揮する。[2/1 result of invention] According to the present invention, the following effects are achieved.

(1)I求項】のGaAs系太陽電池においては、p型
ドーパント元素として、拡散係数が小さく、高濃度にド
ープすることができるカーボンを用いたことにより、p
型エピタキシャル層内のキャリア濃度分布の最適化が容
易に行える。
In the GaAs solar cell of (1) I, carbon is used as the p-type dopant element, and carbon has a small diffusion coefficient and can be doped at a high concentration.
The carrier concentration distribution within the type epitaxial layer can be easily optimized.

(2)請求項2のGaAs系太陽電池においては、p型
エピタキシャル層を低濃度から高濃度まで任意に制御で
きる有機金属原料を用いた有機金属気相成長法によって
形成されるので、高濃度のキャリアを安定的に作ること
ができる。
(2) In the GaAs-based solar cell of claim 2, the p-type epitaxial layer is formed by an organometallic vapor phase epitaxy method using an organometallic raw material that can be arbitrarily controlled from a low concentration to a high concentration. You can create a stable career.

(3)請求項3のGaAs系太陽電池においては、表面
電極のコンタクト層を高キャリア濃妾p梨エピタキシャ
ル層で形成したので、接触抵抗を小さくできる。
(3) In the GaAs solar cell of the third aspect, since the contact layer of the surface electrode is formed of a high carrier concentration epitaxial layer, the contact resistance can be reduced.

(4)請求項4のGaAs系太陽電池においては、p型
エピタキ/ヤル層の電極接触側のみを薄(高濃度にドー
プすることにより、短絡電流密度の低下をほとんど起こ
さずに接触抵抗の大幅な改善が図られる。そのため、太
陽電池としての直列抵抗が減りエネルギー変換効率を大
幅に改善できる。
(4) In the GaAs solar cell of claim 4, only the electrode contact side of the p-type epitaxial layer is thinly (highly doped), thereby significantly increasing the contact resistance without causing almost any decrease in short-circuit current density. As a result, the series resistance of the solar cell can be reduced and the energy conversion efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高キャリア濃度p型GaAsエピタキ
シャル層ををするGaAs系太陽電池の一実施例の構造
を示す断面図、第2図は従来の代表的なGaAs太陽電
池の構造を示す断面図である。 1はn型GaAs基板、2はn型GaAsエビタキノヤ
ル層、3はp型GaAsエビタキ/セル層、4はp型G
aAsxビタキ/ヤル(窓層)、51表面電極、6は反
i+tろ重膜、7は表面電極、8ハA +ヤリアa度p
型G a A sエピタキシャル層である。
Fig. 1 is a cross-sectional view showing the structure of an embodiment of a GaAs solar cell having a high carrier concentration p-type GaAs epitaxial layer according to the present invention, and Fig. 2 is a cross-sectional view showing the structure of a typical conventional GaAs solar cell. It is a diagram. 1 is an n-type GaAs substrate, 2 is an n-type GaAs layer, 3 is a p-type GaAs layer/cell layer, and 4 is a p-type G layer.
aAsx Vitaki/Yaru (window layer), 51 surface electrode, 6 is anti-i+t filter membrane, 7 is surface electrode, 8ha A + Yaria a degree p
It is a type GaAs epitaxial layer.

Claims (4)

【特許請求の範囲】[Claims] (1)n型GaAs基板上にp型のエピタキシャル層を
積層して表裏に電極を形成したGaAs系太陽電池にお
いて、 上記p型エピタキシャル層を形成するためのp型ドーパ
ント元素にカーボンを用い、 そのカーボン濃度が1×10^1^8cm^−^3を越
える層を上記積層したp型エピタキシャル層中に有する
ことを特徴とするGaAs系太陽電池。
(1) In a GaAs solar cell in which a p-type epitaxial layer is laminated on an n-type GaAs substrate and electrodes are formed on the front and back sides, carbon is used as a p-type dopant element for forming the p-type epitaxial layer, and A GaAs solar cell characterized in that the laminated p-type epitaxial layer has a layer having a carbon concentration exceeding 1×10^1^8 cm^-^3.
(2)カーボン濃度が1×10^1^8cm^−^3を
越える上記p型エピタキシャル層がトリメチルガリウム
あるいはトリエチルガリウム等の有機金属原料を用いた
有機金属気相成長法によって形成されることを特徴とす
る請求項1に記載のGaAs系太陽電池。
(2) The above p-type epitaxial layer with a carbon concentration exceeding 1 x 10^1^8 cm^-^3 is formed by organometallic vapor phase epitaxy using an organometallic raw material such as trimethyl gallium or triethyl gallium. The GaAs solar cell according to claim 1.
(3)カーボン濃度が1×10^1^8cm^−^3以
上の高キャリア濃度p型エピタキシャル層を有し、この
高キャリア濃度p型エピタキシャル層を表面電極のコン
タクト層としたことを特徴とする請求項1または2に記
載のGaAs系太陽電池。
(3) It has a high carrier concentration p-type epitaxial layer with a carbon concentration of 1×10^1^8 cm^-^3 or more, and this high carrier concentration p-type epitaxial layer is used as the contact layer of the surface electrode. The GaAs solar cell according to claim 1 or 2.
(4)上記高キャリア濃度p型エピタキシャル層の厚さ
が1μm以下であることを特徴とする請求項3に記載の
GaAs系太陽電池。
(4) The GaAs solar cell according to claim 3, wherein the high carrier concentration p-type epitaxial layer has a thickness of 1 μm or less.
JP2087797A 1990-04-02 1990-04-02 GaAs solar cell Expired - Fee Related JP2722761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087797A JP2722761B2 (en) 1990-04-02 1990-04-02 GaAs solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087797A JP2722761B2 (en) 1990-04-02 1990-04-02 GaAs solar cell

Publications (2)

Publication Number Publication Date
JPH03285368A true JPH03285368A (en) 1991-12-16
JP2722761B2 JP2722761B2 (en) 1998-03-09

Family

ID=13924972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087797A Expired - Fee Related JP2722761B2 (en) 1990-04-02 1990-04-02 GaAs solar cell

Country Status (1)

Country Link
JP (1) JP2722761B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111667A2 (en) * 2008-03-05 2009-09-11 Varian Semiconductor Equipment Associates Establishing a high phosphorus concentration in solar cells
WO2010126665A2 (en) * 2009-04-30 2010-11-04 Abound Solar, Inc. Doping of semiconductor layer for improved efficiency of semiconductor structures
JP2012099807A (en) * 2010-11-03 2012-05-24 Alta Devices Inc Optoelectronic device having heterojunction
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US10326033B2 (en) 2008-10-23 2019-06-18 Alta Devices, Inc. Photovoltaic device
US10615304B2 (en) 2010-10-13 2020-04-07 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
US11271133B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device with group IV semiconductor as a bottom junction
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846617A (en) * 1981-09-14 1983-03-18 Nec Corp Formation of compound semiconductor p-n junction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846617A (en) * 1981-09-14 1983-03-18 Nec Corp Formation of compound semiconductor p-n junction

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111667A2 (en) * 2008-03-05 2009-09-11 Varian Semiconductor Equipment Associates Establishing a high phosphorus concentration in solar cells
WO2009111667A3 (en) * 2008-03-05 2009-12-10 Varian Semiconductor Equipment Associates Establishing a high phosporus concentration in solar cells
US10505058B2 (en) 2008-10-23 2019-12-10 Alta Devices, Inc. Photovoltaic device
US9136418B2 (en) 2008-10-23 2015-09-15 Alta Devices, Inc. Optoelectronic devices including heterojunction and intermediate layer
US9178099B2 (en) 2008-10-23 2015-11-03 Alta Devices, Inc. Methods for forming optoelectronic devices including heterojunction
US10326033B2 (en) 2008-10-23 2019-06-18 Alta Devices, Inc. Photovoltaic device
WO2010126665A2 (en) * 2009-04-30 2010-11-04 Abound Solar, Inc. Doping of semiconductor layer for improved efficiency of semiconductor structures
WO2010126665A3 (en) * 2009-04-30 2011-01-13 Abound Solar, Inc. Doping of semiconductor layer for improved efficiency of semiconductor structures
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US11271133B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device with group IV semiconductor as a bottom junction
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US10615304B2 (en) 2010-10-13 2020-04-07 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
JP2012099807A (en) * 2010-11-03 2012-05-24 Alta Devices Inc Optoelectronic device having heterojunction
US10008628B2 (en) 2012-01-19 2018-06-26 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
US11942566B2 (en) 2012-01-19 2024-03-26 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching

Also Published As

Publication number Publication date
JP2722761B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
US10916676B2 (en) Optoelectronic devices including heterojunction and intermediate layer
US5342453A (en) Heterojunction solar cell
US6300558B1 (en) Lattice matched solar cell and method for manufacturing the same
US5316593A (en) Heterojunction solar cell with passivated emitter surface
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
JP3318658B2 (en) High efficiency solar cell and its manufacturing method
US20120305059A1 (en) Photon recycling in an optoelectronic device
JP2010512664A (en) Zinc oxide multi-junction photovoltaic cell and optoelectronic device
Kim et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers
US20120103406A1 (en) Metallic contacts for photovoltaic devices and low temperature fabrication processes thereof
JPH03285368A (en) Gaas solar cell
KR20180107174A (en) Multi-junction optoelectronic devices with IV junction semiconductors in bottom junction
Saxena et al. High‐efficiency AlGaAs/GaAs concentrator solar cells by organometallic vapor phase epitaxy
JP3250425B2 (en) Compound semiconductor wafer and solar cell
JPH08204215A (en) Series connected solar cell
JPS60218881A (en) Gaas solar battery
JP2001102608A (en) Solar cell and tunnel diode
JPH0955522A (en) Tunnel diode
JPH08162659A (en) Solar cell
JPH03272186A (en) Ultrahigh efficiency solar cell with tandem structure
JPS60218880A (en) Inp solar battery
JPH04275465A (en) Manufacture of solar cell
JPH03272185A (en) Ultrahigh efficiency solar cell with tandem structure
JP2003282929A (en) Method of manufacturing light receiving element
JPH07283428A (en) Solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees