JPS5846617A - Formation of compound semiconductor p-n junction - Google Patents

Formation of compound semiconductor p-n junction

Info

Publication number
JPS5846617A
JPS5846617A JP56145316A JP14531681A JPS5846617A JP S5846617 A JPS5846617 A JP S5846617A JP 56145316 A JP56145316 A JP 56145316A JP 14531681 A JP14531681 A JP 14531681A JP S5846617 A JPS5846617 A JP S5846617A
Authority
JP
Japan
Prior art keywords
junction
carbon atoms
single crystal
implanted
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56145316A
Other languages
Japanese (ja)
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56145316A priority Critical patent/JPS5846617A/en
Publication of JPS5846617A publication Critical patent/JPS5846617A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials

Abstract

PURPOSE:To preserve the impurity profile and to avoid damage to a crystal substrate by ion-implanting carbon atoms into a III-V group compound single crystal having the N type electric conduction characteristic and substituting most of the implanted carbon atoms for atoms on Vb group element lattice points by means of heat treatment. CONSTITUTION:An N type GaAs single crystal substrate 2 having a low electron density of about 10<14>cm<-3> is formed by epitaxial growth on an N type GaAs single crystal substrate 1, and carbon atoms are implanted with a density of 10<15>cm<-3> from the crystal orientation in which the channeling effect is avoidable to form a carbon-contained layer 3 having a carbon density of 10<18>-10<19>cm<-3> on the substrate 2. This is then annealed for a long time in a Ga solution to substitute most of the implanted carbon atoms for atoms on the As lattice points, thus forming a P type layer 5 and a P-N junction 4. As compared to the P-N junction formed by Zn diffusion or ion implantation this P-N junction has a precisely-controlled impurity profile and a low degree of damage, therefore, the efficiency of photoelectric conversion is improved, giving superior characteristics to an LED, a laser diode and an optical detector.

Description

【発明の詳細な説明】 本発明は化合物半導体PNg合の形成方法に関する。[Detailed description of the invention] The present invention relates to a method for forming a compound semiconductor PNg composite.

近年1m−v族半導体結晶、なかんずくガリウム砒素(
GiAi)単結晶を用いた光デバイス、すなわち発光ダ
イオード(LED)、半導体レーザダイオード、光検出
器等においてイオン注入技術を利用して不純物プロフィ
ールを正確に制御し、拡散あるいは成長法によりては達
成しえない高度の性能を有する化合物半導体PN接合を
形成する技術と関心が寄せられている。さらに最近、単
一のGaAs単結晶基板上に複数個数の電子デバイスな
らびに光デバイスを機能的く形成せんとする光電子複合
集積デバイスが登場するに及んでかかる技術の重要性は
一層増加するものと考えられている。
In recent years, 1m-v group semiconductor crystals, especially gallium arsenide (
Ion implantation technology can be used to accurately control impurity profiles in single-crystal optical devices, such as light emitting diodes (LEDs), semiconductor laser diodes, and photodetectors, which can be achieved by diffusion or growth methods. There is a lot of interest in the technology for forming compound semiconductor PN junctions with unprecedentedly high performance. Furthermore, with the recent appearance of optoelectronic composite integrated devices that attempt to functionally form multiple electronic devices and optical devices on a single GaAs single crystal substrate, it is believed that the importance of such technology will further increase. It is being

従来、化合物半導体においてイオン注入技術をもってP
N接合を形成する際にはNilの電気伝導度をもつ結晶
基板にZn、MgあるいはBeなど璽族O不純物を注入
することが一般に行なわれていた。しかしこの中でzf
iは注入後の活性化の際に再拡散が行なわれる結果注入
プロフィールを保つことが困難であ)ま九201Mgは
ともに原子量が大きいため注入によりて結晶基板に損傷
を与え。
Conventionally, in compound semiconductors, ion implantation technology has been used to
When forming an N junction, it has been common practice to implant O impurities such as Zn, Mg, or Be into a crystal substrate having an electrical conductivity of Nil. But in this zf
(i) is difficult to maintain the implantation profile as a result of re-diffusion during activation after implantation; and (9) 201Mg both have large atomic weights and damage the crystal substrate during implantation.

ル電ネセ/ス、光起電力など光電的特性を著しく低下せ
しめるのが常でTo)た。一方、B・は原子量が小さい
ため損傷効果を与えることは少ないことが知られている
がしかし毒性が強く散扱いが容易でないなどの欠点を有
するため、一般に実用のデバイスに使用されるに到らな
かった。このように従来の方法では化合物半導体に損傷
を与えることなく、シかも不純物プロフィールを正確に
保存してPN接合を形成することが困難であるという欠
点があった。
It usually causes a significant decrease in photoelectric properties such as energy consumption and photovoltaic force. On the other hand, B. is known to cause little damage due to its small atomic weight, but it has disadvantages such as being highly toxic and not easy to handle, so it is not generally used in practical devices. There wasn't. As described above, the conventional method has the disadvantage that it is difficult to form a PN junction while accurately preserving the impurity profile without damaging the compound semiconductor.

本発明は上記欠点を除き、取扱い容易で不純物プロフィ
ールが正確に保存され、しかも結晶基板に損傷を与える
ことが極めて少ない化合物半導体PN接合の形成方法を
提供するものである。
The present invention eliminates the above drawbacks and provides a method for forming a compound semiconductor PN junction that is easy to handle, accurately preserves the impurity profile, and causes very little damage to the crystal substrate.

本発明の化合物半導体PN接合の形成方法は。A method for forming a compound semiconductor PN junction according to the present invention is as follows.

N型の電気伝導特性を有する曹−v族化合物単結晶の表
面KIO”Ca1−”以上の密度で炭素原子をイオン注
入したのち、真空中1b族金属蒸気中、あるいは型層を
形成することを特徴とする。
After ion-implanting carbon atoms at a density higher than KIO "Ca1-" on the surface of a single crystal of a Ca-V group compound having N-type electrical conductivity, it is carried out in a vacuum, in Group 1b metal vapor, or by forming a mold layer. Features.

本発明の実施例について図面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.

図は本発明の一実施例を説明するための化合物半導体の
断面図である。
The figure is a cross-sectional view of a compound semiconductor for explaining one embodiment of the present invention.

101613以上の電子密度を有するN型Ga As単
結晶基板上I K 1014am−”程度の低い電子密
度t4)NllのGmAm単結晶層2をエピタキシアル
法で厚さ3μmK成長させた結晶基板上K 200Ke
Vのエネルギーで炭素原子を1615α−2の密度でチ
ャンネリング効果を避けうる公知の結晶方位から注入す
ると厚さ0.5μmの深さから表面にかけて1018乃
至10”cm−”の濃度を有する炭素金層3が形成され
る。よく知られているように。
On an N-type GaAs single crystal substrate with an electron density of 101613 or more I K 1014 am-'' Low electron density t4) On a crystal substrate on which a GmAm single crystal layer 2 of Nll is grown to a thickness of 3 μmK by epitaxial method K 200Ke
When carbon atoms are implanted at a density of 1615α-2 with an energy of V from a known crystal orientation that avoids channeling effects, carbon gold with a concentration of 1018 to 10 cm-2 from a depth of 0.5 μm to the surface is obtained. Layer 3 is formed. As is well known.

QaA魯結晶中で炭素原子は両性不純物であり、適当な
活性化によってドナーとしても、あるいはアクセプタと
しても作用しうるが1人$格子点に置換せしめてアクセ
プタとしてP製電導度を実現するためKは通常行なわれ
ている8i3N4被覆下におけるか、あるいはA、H,
雰囲気におけるアニールによる活性化Kかわって、真空
中、Ga蒸気中あるいはGa融液中におけるアニールを
行なう必要がある。実験結果の例では10000あるい
けそれ以下の温度でGa融液中で1時間あるいはそれ以
上の温度で長時間のアニールを行なえば注入した炭素原
子の大部分をAs格子点に置換することができ%P型層
5とPN接合4が形成される。この−ようにして形成さ
れたGaAm結晶のPN接合はZn拡散あるいはイオン
注入によって得られたPN接合と比較して不純物プロフ
ィルは正確に制御され。
Carbon atoms are amphoteric impurities in QaA crystals, and can act as either donors or acceptors by appropriate activation; under the usual 8i3N4 coating, or under A, H,
Instead of activation by annealing in an atmosphere, it is necessary to perform annealing in a vacuum, Ga vapor, or Ga melt. Examples of experimental results show that most of the implanted carbon atoms can be replaced with As lattice points by annealing in a Ga melt for 1 hour or more at a temperature of 10,000 ℃ or less. A P-type layer 5 and a PN junction 4 are formed. The impurity profile of the GaAm crystal PN junction formed in this manner is more accurately controlled than that obtained by Zn diffusion or ion implantation.

しかも損傷を受ける程度が甚だ低いために発光効率ある
いは光電変換効率においてすぐれ、 IJD%レーザー
ダイオード、光検出器を製作する場合によりすぐれた特
性を与える。
Moreover, since the degree of damage is extremely low, it has excellent luminous efficiency or photoelectric conversion efficiency, and provides excellent characteristics when manufacturing IJD% laser diodes and photodetectors.

注入された炭素原子を人S格子点く置換させるためには
上述の如く真空中、ガリウム蒸気中あるいはガリウム融
液中でアニールを行なう必要があるが、Asi原子の過
度の逃散を防止し、800℃以上の高い温度で有効に活
性化を行なうためにはGa融液中がもつとも有利である
。1000℃以上の温度ではGaAm結晶の分解を招き
有利でない。
In order to replace the implanted carbon atoms at the As lattice sites, it is necessary to perform annealing in vacuum, gallium vapor, or gallium melt as described above. In order to carry out the activation effectively at a high temperature of .degree. C. or higher, it is advantageous to use the Ga melt. A temperature of 1000° C. or higher is not advantageous because it causes decomposition of the GaAm crystal.

まえ、8isN4などの薄膜キャヅプ層を付着するかあ
るいはAsH1中でアニールを行なうときけ炭素原子の
大部分はGa格子点に置換されPN接合は形成されない
。なお炭素原子は拡散法あるいは成長法によってはGa
Am結晶中に高い濃度で導入し活性化を行なうことは容
易でないととはすでに知られておシ、イオン注入と適当
なアニール方法を組合わせる方法がPg、N型ともに充
分な電導性を得るほとんど唯一の方法である。また、充
分低いシート抵抗を得るためには10 ” cm−”以
上の濃度の炭素原子の打込みを行なうことが必要である
O 上記実施例はGaAsの場合であるが1本発明はこれに
限定されず、GmP 、 InPのような■−v族化合
物、GaA?As 、InGaAsPなどのI−V以上
詳細に説明したように1本発明によれば。
Before depositing a thin film cap layer such as 8isN4 or annealing in AsH1, most of the carbon atoms are replaced by Ga lattice points and no PN junction is formed. Note that carbon atoms can be converted to Ga depending on the diffusion method or growth method.
It is already known that it is not easy to introduce Am into a crystal at a high concentration and activate it, but a method that combines ion implantation and an appropriate annealing method can obtain sufficient conductivity for both Pg and N types. It's almost the only way. In addition, in order to obtain a sufficiently low sheet resistance, it is necessary to implant carbon atoms at a concentration of 10" cm or more. Although the above example is for GaAs, the present invention is not limited to this. -V group compounds such as GmP and InP, GaA? According to the present invention, as described in detail above, IV of As, InGaAsP, etc.

不純物プロフィールが正確に保存され、しかも結晶基板
に損傷を与えることが極めて少ない化合物半導体PN接
合の形成方法が得られるのでその効果は大きい。
This is highly effective because it provides a method for forming a compound semiconductor PN junction in which the impurity profile is accurately preserved and damage to the crystal substrate is extremely small.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を説明するための化合物半導体の
断面図である。 l・・・・・・NWGaAs単結晶基板、2・・・・・
・N WGaAs単結晶層、3・・・・・・炭素含有層
、4・・・・・・PN接合。
The figure is a cross-sectional view of a compound semiconductor for explaining one embodiment of the present invention. l... NWGaAs single crystal substrate, 2...
-N WGaAs single crystal layer, 3...carbon-containing layer, 4...PN junction.

Claims (1)

【特許請求の範囲】 N型の電気伝導特性を有する■−■族化合物単結晶の表
面にl tyn”あ九〇1018個以上の濃度で炭素原
子をイオノ注入法によって打ち込んだのち。 真空中、■b族金属雰囲気中、あるいは溶融11b形成
することを特徴とする化合物半導体PN接合の形成方法
[Claims] After implanting carbon atoms at a concentration of 901018 or more l tyn into the surface of a single crystal of a ■-■ group compound having N-type electrical conductivity characteristics by iono-implantation. In a vacuum. (2) A method for forming a compound semiconductor PN junction, which is characterized in that it is formed in a group b metal atmosphere or by molten 11b.
JP56145316A 1981-09-14 1981-09-14 Formation of compound semiconductor p-n junction Pending JPS5846617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145316A JPS5846617A (en) 1981-09-14 1981-09-14 Formation of compound semiconductor p-n junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145316A JPS5846617A (en) 1981-09-14 1981-09-14 Formation of compound semiconductor p-n junction

Publications (1)

Publication Number Publication Date
JPS5846617A true JPS5846617A (en) 1983-03-18

Family

ID=15382336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145316A Pending JPS5846617A (en) 1981-09-14 1981-09-14 Formation of compound semiconductor p-n junction

Country Status (1)

Country Link
JP (1) JPS5846617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113811A (en) * 1983-11-25 1985-06-20 筒中シート防水株式会社 Fixing of screw to aerated concrete
JPH03285368A (en) * 1990-04-02 1991-12-16 Hitachi Cable Ltd Gaas solar cell
US5212101A (en) * 1989-04-14 1993-05-18 Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Substitutional carbon in silicon
JPH05196017A (en) * 1992-08-12 1993-08-06 Akio Yamamoto Nail holding member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113811A (en) * 1983-11-25 1985-06-20 筒中シート防水株式会社 Fixing of screw to aerated concrete
JPS6233447B2 (en) * 1983-11-25 1987-07-21 Tsutsunaka Shiito Bosui Kk
US5212101A (en) * 1989-04-14 1993-05-18 Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Substitutional carbon in silicon
JPH03285368A (en) * 1990-04-02 1991-12-16 Hitachi Cable Ltd Gaas solar cell
JPH05196017A (en) * 1992-08-12 1993-08-06 Akio Yamamoto Nail holding member

Similar Documents

Publication Publication Date Title
JP5033279B2 (en) Zinc oxide film containing P-type dopant and method for producing the same
EP0451852A1 (en) Avalanche photodiode having guard ring and method of manufacturing the same
CN101635255A (en) A method of forming a semiconductor structure
US20030234400A1 (en) Semiconductor device, semiconductor layer and production method thereof
US4122476A (en) Semiconductor heterostructure
Tell et al. Motion of p‐n junctions in CuInSe2
JPS5846617A (en) Formation of compound semiconductor p-n junction
GB2023927A (en) Solar cell incorporating a layer of indium gallium phosphide
Wang et al. Materials and process development for ZnMgO/ZnO light-emitting diodes
US4178195A (en) Semiconductor structure
JP2803353B2 (en) Semiconductor crystal growth method
Choi et al. P/N InP homojunction solar cells by LPE and MOCVD techniques
JP2013197485A (en) Epitaxial substrate and semiconductor element manufacturing method using the same
Arnoldussen et al. Ion‐Implanted Gallium‐Arsenide‐Phosphide Surfaces
EP0048546A1 (en) Semiconductive grey tin
JPS5853827A (en) Manufacture of compound semiconductor p-n junction
Lee et al. Rapid thermal annealing of Be+‐implanted In0. 52Al0. 48As
JPS5846630A (en) Formation of compound semiconductor p-n junction
JP2940831B2 (en) p-type II-VI compound semiconductor
Bagraev et al. p+-CdB2-n-CdF2 and p+-Si-p-CdB2-n-CdF2 Diffusion Heterostructures
US4089713A (en) Diffusion of donors into (Hg Cd) Te through use of Ga-Al alloy
JPS621293A (en) Semiconductor light-emitting element
JP2929632B2 (en) Optical device manufacturing method
Okabayashi Effects of electrically inactive ion implantation in GaAs1− x P x (x≃ 0.38) on photoluminescence intensity
JPS597233B2 (en) Narrow wavelength band photodetector