JPH07283428A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH07283428A
JPH07283428A JP6077266A JP7726694A JPH07283428A JP H07283428 A JPH07283428 A JP H07283428A JP 6077266 A JP6077266 A JP 6077266A JP 7726694 A JP7726694 A JP 7726694A JP H07283428 A JPH07283428 A JP H07283428A
Authority
JP
Japan
Prior art keywords
layer
type
solar cell
layers
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6077266A
Other languages
Japanese (ja)
Other versions
JP2600603B2 (en
Inventor
Ryuichi Nakazono
隆一 中園
Tsunehiro Unno
恒弘 海野
Shoji Kuma
彰二 隈
Takeshi Takahashi
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP6077266A priority Critical patent/JP2600603B2/en
Publication of JPH07283428A publication Critical patent/JPH07283428A/en
Application granted granted Critical
Publication of JP2600603B2 publication Critical patent/JP2600603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a sufficient photoelectric conversion efficiency while p and n layers are made thinner by inserting a thin-film layer with a small refractive index than that of p-type and n-type semiconductor layers into the p-type and n-type semiconductor layers. CONSTITUTION:Light entering p layer is reflected by a thin-film layer 4 in n layer, the reflected light is reflected by a thin-film layer 7 in the p layer, and the reflection is repeated, thus confining light between two thin-film layers 4 and 7. Light can be effectively absorbed into a pn junction region sandwiched by the thin-film layers 4 and 7 and a high absorption coefficient can be obtained even if the p and n layers are made thinner. By setting a distance (d) between the thin-film layers 4 and 7 inserted into the p and n layers to values so that an expression I (n indicates the refractive index of p and n-type semiconductor layer constitution materials, Eg (ev) indicates a band gap energy, and d indicates the distance between the thin-film layers and is expressed by nm) can be met, light can be absorbed effectively by the pn junction region and a sufficient photoelectric conversion efficiency can be obtained while the p and n layers are made thinner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の技術分野】本発明は太陽電池に関し、特に薄
型で高効率の太陽電池に関するものである。
TECHNICAL FIELD The present invention relates to a solar cell, and more particularly to a thin and highly efficient solar cell.

【0002】[0002]

【従来の技術】太陽電池はクリーンなエネルギー源とし
て注目されているが、製造コストが高いため、既存の商
用電源と比べて発電コストが高いことが実用化の大きな
障害となっている。そのため、変換効率を高くするため
の研究開発が行われている。これまで、単一材料の太陽
電池の高効率化がすすめられ、実用化の試みが始まって
いる。高効率化の観点では、太陽電池を構成する材料と
しては、GaAs系化合物半導体が非常に優れており、
現在、25%余りの変換効率が得られている。しかし、
太陽電池の構成材料にGaAs系化合物半導体を用い、
基板にもGaAsを用いる現在の製法で太陽電池を作製
した場合、製造コストが非常に高くなり、発電コストが
高くなってしまう。このため、低発電コストを目指すた
めに、効率をさらに高く、また、製造コストを低減しな
ければならない。
2. Description of the Related Art Solar cells have been attracting attention as a clean energy source, but their production costs are high, so that their power generation costs are higher than existing commercial power sources, which is a major obstacle to their practical use. Therefore, research and development are being conducted to improve the conversion efficiency. Up to now, the efficiency of single-material solar cells has been promoted, and attempts for practical use have begun. From the viewpoint of high efficiency, GaAs-based compound semiconductors are extremely excellent as materials for solar cells,
Currently, a conversion efficiency of over 25% is obtained. But,
GaAs compound semiconductor is used as the constituent material of the solar cell,
When a solar cell is manufactured by the current manufacturing method using GaAs also for the substrate, the manufacturing cost becomes very high and the power generation cost becomes high. Therefore, in order to achieve low power generation cost, it is necessary to further improve efficiency and reduce manufacturing cost.

【0003】高効率を得るためには、太陽電池をバンド
ギャップの異なる複数の太陽電池を積層した構造としな
ければならない。具体的には、太陽光の入射側(上部)
にバンドギャップの大きな半導体材料よりなる太陽電池
を、その下部にバンドギャップの小さな半導体材料より
なる太陽電池を配置する。上部の太陽電池では太陽光ス
ペクトルの短波長域の光が吸収されて光電変換される。
下部の太陽電池では上部で吸収されずに透過した残りの
長波長域の光が吸収されて光電変換される。太陽光のス
ペクトルを分割利用することにより、太陽光エネルギー
を電気エネルギーに有効に変換できる。Henry らの理論
計算によると、2層構造で効率35%を達成できる可能
性が示されている( C.H.Henry,"Limiting Efficiency
of IdealSingle and Multiple Energy Gap Terrestrial
Solar Cells" J.Appl.Phys.514494(1980) )。たとえ
ば、GaAs太陽電池とAlGaAs太陽電池とをトン
ネル接合中間層を用いて接続した2段の積層型太陽電池
が提案されている。
In order to obtain high efficiency, the solar cell must have a structure in which a plurality of solar cells having different band gaps are laminated. Specifically, the incident side of sunlight (upper part)
A solar cell made of a semiconductor material having a large bandgap is arranged in the lower part, and a solar cell made of a semiconductor material having a small bandgap is arranged below it. In the upper solar cell, light in the short wavelength region of the sunlight spectrum is absorbed and photoelectrically converted.
In the lower solar cell, the remaining long-wavelength light that is not absorbed and transmitted in the upper part is absorbed and photoelectrically converted. By dividing and utilizing the spectrum of sunlight, sunlight energy can be effectively converted into electric energy. Henry et al.'S theoretical calculations show that a two-layer structure can achieve an efficiency of 35% (CHHenry, "Limiting Efficiency
of IdealSingle and Multiple Energy Gap Terrestrial
Solar Cells "J. Appl. Phys. 514494 (1980)). For example, a two-stage stacked solar cell in which a GaAs solar cell and an AlGaAs solar cell are connected using a tunnel junction intermediate layer has been proposed.

【0004】製造コストを下げるためには安価な基板の
使用と太陽電池構成材料の節約を図らなければならな
い。基板については、現在用いているGaAsをSiに
換えることが提案されている。また、太陽電池構成材料
の節約については太陽電池の薄膜化が望ましい。
In order to reduce the manufacturing cost, it is necessary to use inexpensive substrates and save solar cell constituent materials. Regarding the substrate, it has been proposed to replace the currently used GaAs with Si. Further, in order to save the solar cell constituent materials, it is desirable to thin the solar cell.

【0005】[0005]

【発明が解決しようとする課題】先に述べたようにSi
基板を用いた高効率のGaAs系太陽電池の開発がすす
められているが、以下の問題がある。
Problems to be Solved by the Invention As described above, Si
Development of high-efficiency GaAs solar cells using substrates has been promoted, but there are the following problems.

【0006】高い光電変換効率を得るためには、十分な
光吸収と励起キャリアの有効利用の2つの主な要因があ
る。このうち、光吸収の観点からは、エピ層であるp型
半導体層(p層)並びにn型半導体層(n層)が厚い方
がよい。しかし、基板であるSiと太陽電池を構成する
GaAs系結晶とでは格子定数や熱膨張係数が異なるた
め、Si上にGaAs系結晶を3μm以上の膜厚で成長
させるとクラックが起き、結晶欠陥が多量に発生してし
まう。
In order to obtain high photoelectric conversion efficiency, there are two main factors: sufficient light absorption and effective use of excited carriers. Among these, from the viewpoint of light absorption, it is preferable that the p-type semiconductor layer (p layer) and the n-type semiconductor layer (n layer), which are epi layers, are thick. However, since the lattice constant and the coefficient of thermal expansion are different between the substrate Si and the GaAs-based crystal that constitutes the solar cell, when a GaAs-based crystal is grown on Si with a film thickness of 3 μm or more, cracks occur and crystal defects occur. A large amount will be generated.

【0007】一方、励起キャリアを有効に取り出す観点
からは、p層並びにn層の厚さを薄くするか、もしく
は、励起キャリアの拡散長を長くすればよい。励起キャ
リアの拡散長を長くする研究はすすめられているが、顕
著な進展は得られていない。そこで、p層とn層の厚さ
を薄くすることが考えられる。このためには、薄い層で
光吸収係数を高くできる構造が必要となる。
On the other hand, from the viewpoint of effectively extracting the excited carriers, the thickness of the p layer and the n layer may be reduced or the diffusion length of the excited carriers may be increased. Research on increasing the diffusion length of excited carriers has been promoted, but no significant progress has been made. Therefore, it is considered to reduce the thickness of the p layer and the n layer. For this purpose, a structure capable of increasing the light absorption coefficient with a thin layer is required.

【0008】本発明はかかる事情の下に創案されたもの
であり、その目的はp層並びにn層の厚さを薄くした状
態で十分な光電変換効率を得ることが可能な新規な太陽
電池を提供することにある。
The present invention was created under such circumstances, and an object thereof is to provide a novel solar cell capable of obtaining a sufficient photoelectric conversion efficiency in a state where the p layer and the n layer are thin. To provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、p層とn層とを接合してなる太陽電池にお
いて、上記p層及びn層中にこれらよりも屈折率の小さ
い薄膜層を挿入したことを特徴とする。
In order to achieve the above object, the present invention provides a solar cell in which a p layer and an n layer are joined to each other, and the p layer and the n layer have a smaller refractive index than these. It is characterized in that a thin film layer is inserted.

【0010】本発明の太陽電池において、p層に挿入さ
れた上記薄膜層とn層に挿入された上記薄膜層との間隔
が式(1)を満足するように設定されていることが望ま
しい。
In the solar cell of the present invention, it is desirable that the distance between the thin film layer inserted in the p layer and the thin film layer inserted in the n layer is set so as to satisfy the expression (1).

【0011】[0011]

【数1】 [Equation 1]

【0012】上記p層及びn層の材料としてGaAs
を、上記薄膜層の材料としてAlGaAsを用いること
が望ましい。
GaAs is used as the material for the p-layer and the n-layer.
It is desirable to use AlGaAs as the material of the thin film layer.

【0013】[0013]

【作用】上記のごとく構成される本発明の太陽電池によ
れば、太陽電池のpn接合を構成するp層中とn層中に
これらよりも屈折率の小さい薄膜層を各々挿入したこと
により、p層に入射した光がn層中の薄膜層で反射さ
れ、この反射した光がp層中の薄膜層で反射され、この
反射が繰り返されることによって2つの薄膜層の間に光
が閉じ込められる。これにより薄膜層間に挟まれたpn
接合領域に光が有効に吸収されるようになり、p層とn
層の厚さを薄くしても高い光吸収係数を得ることが可能
になる。上記p層及びn層の材料として、それ自体吸収
効率の良い直接遷移形の III−V族化合物半導体を用い
れば、薄い層による光の吸収がより効果的に達成される
ようになる。また、p層に挿入された上記薄膜層とn層
に挿入された上記薄膜層との間隔dが前記式(1)を満
足するようにしておけば、薄膜層の間での光の反射が光
電変換に有利な波長の光に対して繰り返され、この光が
pn接合領域に有効に吸収されるようになる。
According to the solar cell of the present invention constructed as described above, by inserting thin film layers each having a smaller refractive index than these into the p layer and the n layer constituting the pn junction of the solar cell, The light incident on the p layer is reflected by the thin film layer in the n layer, the reflected light is reflected by the thin film layer in the p layer, and the light is confined between the two thin film layers by repeating this reflection. . As a result, the pn sandwiched between the thin film layers
Light is effectively absorbed in the junction region, and the p layer and n
It is possible to obtain a high light absorption coefficient even if the layer is thin. If a direct transition type III-V group compound semiconductor, which itself has a high absorption efficiency, is used as the material for the p-layer and the n-layer, light absorption by the thin layer can be more effectively achieved. Also, if the distance d between the thin film layer inserted in the p layer and the thin film layer inserted in the n layer satisfies the above formula (1), the reflection of light between the thin film layers is prevented. This is repeated for light having a wavelength advantageous for photoelectric conversion, and this light is effectively absorbed in the pn junction region.

【0014】以下に、式(1)の導出法を示す。A method of deriving the equation (1) will be shown below.

【0015】上記2つの薄膜層の間で光の反射が繰り返
し起こる条件(共鳴反射条件)は、次の式(2)で表さ
れる。
The condition (resonance reflection condition) in which light is repeatedly reflected between the two thin film layers is expressed by the following equation (2).

【0016】 d=1/2×λ/n ・・・(2) ここで、dは薄膜層の間隔(図5参照)、nはp層及び
n層の屈折率、λはpn層で吸収して欲しい光の波長で
ある。
D = 1/2 × λ / n (2) where d is the distance between the thin film layers (see FIG. 5), n is the refractive index of the p layer and the n layer, and λ is the absorption of the pn layer. It is the wavelength of the light you want to do.

【0017】ところで、光の吸収は、半導体のバンドギ
ャップEg に相当する波長(発光波長)λEgよりも単波
長の光に対して起こる。そして、光の吸収の度合(光の
吸収係数)は、光の波長が短くなればなる程大きくな
る。逆の見方をすれば、光の波長がλEgに近い程透過し
やすくなる。
By the way, absorption of light occurs with respect to light having a single wavelength longer than the wavelength (emission wavelength) λ Eg corresponding to the band gap Eg of the semiconductor. The degree of light absorption (light absorption coefficient) increases as the wavelength of light decreases. From the opposite viewpoint, the closer the wavelength of light is to λ Eg , the easier it is for light to pass.

【0018】そこでこの発明では、波長がλEg/2から
λEgの光に対して、上記反射が繰り返されるよう条件を
設定する。すなわち、pn層で最も吸収して欲しい光の
波長λの範囲を次式(3)の範囲とする。 λEg×0.5 <λ<λEg×1.0 ・・・(3) さて、発光波長λEgは λEg=1240/Eg ・・・(4) で表され、この式(4)を式(3)に代入すると、 1240/Eg ×0.5 <λ<1240/Eg ×1.0 ・・・(5) となる。さらに、式(2)を変形すると λ=2・n・d ・・・(2´) となり、これを式(5)に代入すると 1240/Eg ×0.5 <2・n・d<1240/Eg ×1.0 ・・・(6) となる。この式(6)を2・nで割ると、前記式(1)
が得られる。GaAsの場合バンドギャップEg は 1.4
24eV、屈折率nは波長λ= 800nmの光に対して3.68(図
3参照)であるので、この場合上記2つの薄膜層の間隔
は、式(1)より 59nm<d<118nm の範囲が良いことになる。
Therefore, in the present invention, conditions are set so that the above-mentioned reflection is repeated for light having a wavelength of λ Eg / 2 to λ Eg . That is, the range of the wavelength λ of the light that the pn layer wants to absorb most is set to the range of the following expression (3). λ Eg × 0.5 <λ <λ Eg × 1.0 ・ ・ ・ (3) Now, the emission wavelength λ Eg is expressed by λ Eg = 1240 / Eg ・ ・ ・ (4), and this formula (4) is expressed by formula (3). Substituting into 1240 / Eg × 0.5 <λ <1240 / Eg × 1.0 (5). Further, by transforming the equation (2), λ = 2 · n · d (2 ′), and substituting this into the equation (5), 1240 / Eg × 0.5 <2 · n · d <1240 / Eg × 1.0 (6) If this equation (6) is divided by 2 · n, the above equation (1)
Is obtained. In the case of GaAs, the band gap Eg is 1.4
Since 24 eV and the refractive index n are 3.68 (see FIG. 3) for light of wavelength λ = 800 nm, the distance between the two thin film layers is 59 nm <d <118 nm according to equation (1). It will be.

【0019】[0019]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0020】本発明の太陽電池の有効性を示すために、
従来技術による太陽電池と本発明による太陽電池とを実
際に作製し、両者の特性比較を行った。
In order to show the effectiveness of the solar cell of the present invention,
A solar cell according to the related art and a solar cell according to the present invention were actually manufactured, and their characteristics were compared.

【0021】図1は本発明の一実施例を示す太陽電池の
断面図である。各層の成長には有機金属気相成長法(M
OVPE法)を用いた。その際のGa、Al、Asの原
料にはそれぞれトリメチルガリウム(TMG)、トリメ
チルアルミニウム(TMA)、アルシン(AsH3 )を
用いた。n型、p型のドーパントにはそれぞれジシラン
(Si2 6 )、ジエチル亜鉛(DEZn)を用いた。
成長温度は 725℃である。(110) 方向に 2°傾けた(10
0) 面を基板表面とする厚さ350 μm、キャリア濃度 5.
0×1017cm-3のn型GaAs基板1の上に厚さ 0.2μ
m、キャリア濃度 5.0×1017cm-3のn型Al0.2 Ga0.
8 As層2、キャリア濃度 5.0×1017cm-3のn型GaA
s層3を成長させた後、厚さ0.01μm、キャリア濃度
5.0×1017cm-3のn型Al0.5 Ga0.5 As層(n型薄
膜層)4、キャリア濃度 5.0×1017cm-3のn型GaAs
層5、キャリア濃度 1.0×1018cm-3のp型GaAs層
6、厚さ0.01μm、キャリア濃度 1.0×1018cm-3のp型
Al0.5 Ga0.5 As層(p型薄膜層)7、キャリア濃
度 1.0×1018cm-3のp型GaAs層8、厚さ0.05μm、
キャリア濃度 1.0×1018cm-3のp型Al0.85Ga0.15A
s層9及び厚さ 0.2μm、キャリア濃度 1.0×1019cm-3
のp型GaAs層10を成長させた。そしてp型GaA
s層10を図示のようにエッチング整形した後、その表
面と基板1の裏面に電極11,12を形成した。ここで
太陽電池として作用するのはp型半導体層13とn型半
導体層14とからなるpn層である。n型Al0.2 Ga
0.8 As層2はn型GaAs基板1で生成した電子が太
陽電池の効率に寄与しないようにするためのバリア層、
つまり、この太陽電池の効率に対してpn層の構造がい
かに影響するかを明確にするために設けられた層であ
る。また、p型Al0.85Ga0.15As層9は表面再結合
を抑えるウィンドウ層、p型GaAs層10は電極との
接触抵抗を下げるための層である。
FIG. 1 is a sectional view of a solar cell showing an embodiment of the present invention. Metal organic vapor phase epitaxy (M
OVPE method) was used. Trimethylgallium (TMG), trimethylaluminum (TMA), and arsine (AsH 3 ) were used as the raw materials of Ga, Al, and As at that time. Disilane (Si 2 H 6 ) and diethyl zinc (DEZn) were used as the n-type and p-type dopants, respectively.
The growth temperature is 725 ° C. Inclined by 2 ° in the (110) direction (10
0) surface as substrate surface, thickness 350 μm, carrier concentration 5.
0.2μ thickness on 0 × 10 17 cm -3 n-type GaAs substrate 1
m, carrier concentration 5.0 × 10 17 cm -3 n-type Al0.2 Ga0.
8 As layer 2, n-type GaA with carrier concentration 5.0 × 10 17 cm -3
After growing the s layer 3, the thickness is 0.01 μm, the carrier concentration is
5.0 × 10 17 cm -3 n-type Al0.5 Ga0.5 As layer (n-type thin film layer) 4, carrier concentration 5.0 × 10 17 cm -3 n-type GaAs
Layer 5, p-type GaAs layer 6 having a carrier concentration 1.0 × 10 18 cm -3, thickness of 0.01 [mu] m, p-type Al0.5 Ga0.5 As layer having a carrier concentration 1.0 × 10 18 cm -3 (p-type thin film layer) 7, p-type GaAs layer 8 with carrier concentration 1.0 × 10 18 cm -3 , thickness 0.05 μm,
Carrier concentration 1.0 × 10 18 cm -3 p-type Al0.85Ga0.15A
s layer 9 and thickness 0.2 μm, carrier concentration 1.0 × 10 19 cm -3
The p-type GaAs layer 10 was grown. And p-type GaA
After the s layer 10 was etched and shaped as shown in the figure, electrodes 11 and 12 were formed on the front surface and the back surface of the substrate 1. Here, it is the pn layer composed of the p-type semiconductor layer 13 and the n-type semiconductor layer 14 that functions as a solar cell. n-type Al0.2 Ga
The 0.8 As layer 2 is a barrier layer for preventing electrons generated in the n-type GaAs substrate 1 from contributing to the efficiency of the solar cell,
That is, it is a layer provided to clarify how the structure of the pn layer affects the efficiency of this solar cell. The p-type Al0.85Ga0.15As layer 9 is a window layer for suppressing surface recombination, and the p-type GaAs layer 10 is a layer for reducing the contact resistance with the electrode.

【0022】n型薄膜層4とp型薄膜層7は、GaAs
の吸収端波長より短波長の光を共鳴反射させるための層
である。これら2つの薄膜層4,7の間隔を40nm、60n
m、80nm、100nm 、115nm 、140nm とそれぞれ変えて太
陽電池を製作した。その際2つの薄膜層4,7の丁度中
間がn型GaAs層5とp型GaAs層6との界面(p
n界面)となるようにした。また、n型GaAs層3と
n型GaAs層5との厚さの和を 1.2μmとし、p型G
aAs層6とp型GaAs層8との厚さの和を1.2 μm
とした。したがって、本発明の太陽電池において実質的
に太陽電池として作用するpn層の厚さは、n型薄膜層
4及びp型薄膜層7を含めて1.72μmである。
The n-type thin film layer 4 and the p-type thin film layer 7 are made of GaAs.
Is a layer for resonance-reflecting light having a wavelength shorter than the absorption edge wavelength. The distance between these two thin film layers 4 and 7 is 40 nm and 60n.
Solar cells were manufactured by changing m, 80 nm, 100 nm, 115 nm and 140 nm respectively. At that time, the interface between the n-type GaAs layer 5 and the p-type GaAs layer 6 (p
n interface). Also, the sum of the thickness of the n-type GaAs layer 3 and the n-type GaAs layer 5 is 1.2 μm, and the p-type G
The sum of the thickness of the aAs layer 6 and the p-type GaAs layer 8 is 1.2 μm.
And Therefore, in the solar cell of the present invention, the thickness of the pn layer that substantially acts as a solar cell is 1.72 μm including the n-type thin film layer 4 and the p-type thin film layer 7.

【0023】図2は従来の太陽電池の断面図である。こ
の場合、図1と同じ基板1の上に上記と同様の方法で厚
さ 0.2μm、キャリア濃度 5.0×1017cm-3のn型Al0.
2 Ga0.8 As層2、厚さ 4.0μm、キャリア濃度 5.0
×1017cm-3のn型GaAs層15、厚さ 0.5μm、キャ
リア濃度 1.0×1018cm-3のp型GaAs層16、キャリ
ア濃度 1.0×1018cm-3のp型Al0.85Ga0.15As層9
及び厚さ 0.2μm、キャリア濃度 1.0×1019cm-3のp型
GaAs層10を成長させた。そして、p型GaAs層
10の表面と基板1の裏面に電極11,12を形成し
た。太陽電池として作用するのはn型GaAs層15と
p型GaAs層16とからなるpn層であり、この場合
のpn層の厚さは 4.5μmである。
FIG. 2 is a sectional view of a conventional solar cell. In this case, n-type Al0. With a thickness of 0.2 μm and a carrier concentration of 5.0 × 10 17 cm -3 was formed on the same substrate 1 as in FIG. 1 by the same method as above.
2 Ga0.8 As layer 2, thickness 4.0 μm, carrier concentration 5.0
× 10 17 cm -3 n-type GaAs layer 15, thickness 0.5 μm, carrier concentration 1.0 × 10 18 cm -3 p-type GaAs layer 16, carrier concentration 1.0 × 10 18 cm -3 p-type Al 0.85 Ga 0. 15As layer 9
And a p-type GaAs layer 10 having a thickness of 0.2 μm and a carrier concentration of 1.0 × 10 19 cm −3 was grown. Then, electrodes 11 and 12 were formed on the front surface of the p-type GaAs layer 10 and the back surface of the substrate 1. The pn layer consisting of the n-type GaAs layer 15 and the p-type GaAs layer 16 acts as a solar cell, and the thickness of the pn layer in this case is 4.5 μm.

【0024】図1,図2に示す太陽電池の各層を構成す
る材料の屈折率は図3のとおりである。
The refractive index of the material forming each layer of the solar cell shown in FIGS. 1 and 2 is as shown in FIG.

【0025】これらの太陽電池の真性変換効率を測定し
た結果、図2の従来構造の太陽電池では16.8%であっ
た。
As a result of measuring the intrinsic conversion efficiency of these solar cells, it was 16.8% for the solar cell of the conventional structure shown in FIG.

【0026】図4は本発明の太陽電池における測定結果
であり、ここには波長800nm の光に対する光電変換効率
のn型薄膜層4とp型薄膜層7との間隔依存性が示され
ている。同図より、2つの薄膜層4,7の間隔が60nmか
ら115nm の間で従来よりも高い効率を発揮できることが
わかる。
FIG. 4 shows the measurement results of the solar cell of the present invention, which shows the space dependence of the photoelectric conversion efficiency for the light of wavelength 800 nm between the n-type thin film layer 4 and the p-type thin film layer 7. . From the figure, it can be seen that when the distance between the two thin film layers 4 and 7 is between 60 nm and 115 nm, higher efficiency than before can be exhibited.

【0027】以上より、本発明の太陽電池は僅か1.72μ
mの厚さのp型及びn型GaAs層13,14で 4.5μ
mの厚さのGaAs層を有する従来構造の太陽電池以上
の性能を発揮することが確かめられた。
From the above, the solar cell of the present invention is only 1.72μ.
4.5 μ in the p-type and n-type GaAs layers 13 and 14 with a thickness of m
It was confirmed that the performance of the solar cell of the related art having a GaAs layer having a thickness of m is better than that of the conventional solar cell.

【0028】なお、通常太陽電池の表面にはエピタキシ
ャル層表面での反射を抑えるために反射防止膜が設けら
れるが、本発明と従来技術とを比較する上では必要ない
ので本実施例ではあえてこれを省略した。
An antireflection film is usually provided on the surface of the solar cell in order to suppress reflection on the surface of the epitaxial layer, but it is not necessary for comparing the present invention with the prior art, so this is intentionally omitted in this embodiment. Was omitted.

【0029】[0029]

【発明の効果】以上要するに本発明によれば、太陽電池
のpn接合を構成するp型半導体層中とn型半導体層中
にこれらよりも屈折率の小さい薄膜層を各々挿入したこ
とにより、これら2つの薄膜層間の薄いpn層で十分に
光を吸収でき、その結果、高効率の薄型太陽電池を実現
できる。
In summary, according to the present invention, thin film layers each having a smaller refractive index than these are inserted into the p-type semiconductor layer and the n-type semiconductor layer which form the pn junction of the solar cell, respectively. A thin pn layer between two thin film layers can sufficiently absorb light, and as a result, a highly efficient thin solar cell can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の太陽電池の一実施例を示す断面図であ
る。
FIG. 1 is a sectional view showing an embodiment of a solar cell of the present invention.

【図2】従来の太陽電池を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional solar cell.

【図3】図1,図2の太陽電池の各層を構成する材料の
屈折率の波長依存性を示す図である。
FIG. 3 is a diagram showing wavelength dependence of a refractive index of a material forming each layer of the solar cells of FIGS. 1 and 2.

【図4】本発明の太陽電池の変換効率のn型薄膜層とp
型薄膜層との間隔依存性を示す図である。
FIG. 4 shows the conversion efficiency of an n-type thin film layer and p of the solar cell of the present invention.
It is a figure which shows the space dependence with a type | mold thin film layer.

【図5】n型薄膜層とp型薄膜層との間隔を規定する数
式の導出過程を説明するための模式図である。
FIG. 5 is a schematic diagram for explaining a process of deriving a mathematical formula that defines a distance between an n-type thin film layer and a p-type thin film layer.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型Al0.2 Ga0.8 As層(バリア層) 3 n型GaAs層 4 n型Al0.5 Ga0.5 As層(n型薄膜層) 5 n型GaAs層 6 p型GaAs層 7 p型Al0.5 Ga0.5 As層(p型薄膜層) 8 p型GaAs層 9 p型Al0.85Ga0.15As層(ウィンドウ層) 10 p型GaAs層(低抵抗化層) 11 電極 12 電極 13 p型半導体層 14 n型半導体層 1 n-type GaAs substrate 2 n-type Al0.2 Ga0.8 As layer (barrier layer) 3 n-type GaAs layer 4 n-type Al0.5 Ga0.5 As layer (n-type thin film layer) 5 n-type GaAs layer 6 p-type GaAs layer 7 p-type Al0.5 Ga0.5 As layer (p-type thin film layer) 8 p-type GaAs layer 9 p-type Al0.85 Ga0.15 As layer (window layer) 10 p-type GaAs layer (low resistance layer) 11 electrode 12 electrode 13 p-type semiconductor layer 14 n-type semiconductor layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 健 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Takahashi 3550 Kidayomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Ltd. Advanced Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 p形半導体層とn形半導体層とを接合し
てなる太陽電池において、上記p形及びn形半導体層中
にこれらよりも屈折率の小さい薄膜層を各々挿入したこ
とを特徴とする太陽電池。
1. A solar cell in which a p-type semiconductor layer and an n-type semiconductor layer are joined to each other, characterized in that thin film layers each having a smaller refractive index than the p-type and n-type semiconductor layers are inserted into the solar cell. And solar cells.
【請求項2】 請求項1記載の太陽電池において、p形
半導体層に挿入された上記薄膜層とn形半導体層に挿入
された上記薄膜層との間隔が式(1)を満足することを
特徴とする太陽電池。 【数1】
2. The solar cell according to claim 1, wherein the distance between the thin film layer inserted in the p-type semiconductor layer and the thin film layer inserted in the n-type semiconductor layer satisfies the formula (1). The characteristic solar cell. [Equation 1]
【請求項3】 上記p形及びn形半導体層の材料として
GaAsを、上記薄膜層の材料としてAlGaAsを各
々用いてなる請求項2又は3記載の太陽電池。
3. The solar cell according to claim 2, wherein GaAs is used as a material of the p-type and n-type semiconductor layers, and AlGaAs is used as a material of the thin film layer.
JP6077266A 1994-04-15 1994-04-15 Solar cell Expired - Lifetime JP2600603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6077266A JP2600603B2 (en) 1994-04-15 1994-04-15 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6077266A JP2600603B2 (en) 1994-04-15 1994-04-15 Solar cell

Publications (2)

Publication Number Publication Date
JPH07283428A true JPH07283428A (en) 1995-10-27
JP2600603B2 JP2600603B2 (en) 1997-04-16

Family

ID=13629047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6077266A Expired - Lifetime JP2600603B2 (en) 1994-04-15 1994-04-15 Solar cell

Country Status (1)

Country Link
JP (1) JP2600603B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261882A (en) * 1987-04-20 1988-10-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element
JPH06163962A (en) * 1992-11-26 1994-06-10 Sumitomo Electric Ind Ltd Solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261882A (en) * 1987-04-20 1988-10-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element
JPH06163962A (en) * 1992-11-26 1994-06-10 Sumitomo Electric Ind Ltd Solar cell

Also Published As

Publication number Publication date
JP2600603B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
JP4064592B2 (en) Photoelectric conversion device
JP3657143B2 (en) Solar cell and manufacturing method thereof
US7217882B2 (en) Broad spectrum solar cell
US4547622A (en) Solar cells and photodetectors
US20120305059A1 (en) Photon recycling in an optoelectronic device
US5753050A (en) Thermophotovoltaic energy conversion device
JP2722761B2 (en) GaAs solar cell
JPH07101753B2 (en) Stacked solar cells
CN111430493B (en) Multi-junction solar cell and power supply equipment
CN111725332A (en) High-performance three-junction gallium arsenide solar cell
JP3250425B2 (en) Compound semiconductor wafer and solar cell
JP2600603B2 (en) Solar cell
JP2737705B2 (en) Solar cell
JPH08204215A (en) Series connected solar cell
JP2001102608A (en) Solar cell and tunnel diode
JPH06291341A (en) Solar cell
JPH0955522A (en) Tunnel diode
Kurita et al. High-efficiency monolithic InGaP/GaAs tandem solar cells with improved top-cell back-surface-field layers
CN111276560B (en) Gallium arsenide solar cell and manufacturing method thereof
CN212257428U (en) Heterogeneous PN junction space battery epitaxial wafer
JP2004103692A (en) Solar cell
JPH09283778A (en) Solar cell
JPH08162659A (en) Solar cell
CN117096210A (en) Reverse three-junction solar cell structure with high external radiation efficiency structure