JPH03284630A - Production of tetraethylbenzene - Google Patents

Production of tetraethylbenzene

Info

Publication number
JPH03284630A
JPH03284630A JP8128390A JP8128390A JPH03284630A JP H03284630 A JPH03284630 A JP H03284630A JP 8128390 A JP8128390 A JP 8128390A JP 8128390 A JP8128390 A JP 8128390A JP H03284630 A JPH03284630 A JP H03284630A
Authority
JP
Japan
Prior art keywords
triethylbenzene
tetraethylbenzene
reaction
ethylbenzenes
diethylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8128390A
Other languages
Japanese (ja)
Other versions
JPH0639423B2 (en
Inventor
Tadanori Hara
原 忠則
Noboru Daito
昇 大東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP8128390A priority Critical patent/JPH0639423B2/en
Priority to US07/543,518 priority patent/US5225572A/en
Publication of JPH03284630A publication Critical patent/JPH03284630A/en
Publication of JPH0639423B2 publication Critical patent/JPH0639423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To advantageously obtain the title compound by reacting benzenes containing diethylbenzene and triethylbenzene with an ethylating agent in the presence of a solid acid catalyst, separating the title compound from other ethylbenzene by distillation and returning an unreacted raw material to the reaction system. CONSTITUTION:Benzenes containing diethylbenzene or triethylbenzene are reacted with an ethylating agent in the presence of a solid acid catalyst and ethylated until an amount of ethyl group per mol of benzene ring becomes 3.6-4.8mol and then subjected to rearrangement reaction of ethyl group in the presence of the above-mentioned catalyst and then (a) tetraethylbenzenes and (b) other ethylbenzenes are separated from the resultant reaction product by distillation. Further, at least part of fraction containing diethylbenzene or triethylbenzene is returned to the above-mentioned reaction system. Thereby tetraethylbenzene useful as a solvent or heat medium, etc., is industrially advantageously and selectively obtained in good yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、テトラエチルベンゼンの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing tetraethylbenzene.

テトラエチルベンゼンは溶剤、熱媒等の他、ヘンセンポ
リカルボン酸類、ビニルベンセン類の製造原料等として
も有用である。
Tetraethylbenzene is useful as a solvent, a heating medium, and the like, as well as a raw material for producing Hensen polycarboxylic acids and vinylbenzenes.

〔従来の技術〕[Conventional technology]

テトラエチルベンゼンは、ベンセンをエチレン等のエチ
ル化剤でエチル化することにより得られるが、工業的に
生産するために適した方法等については報告されていな
い。エチル化等のアルキル化はフリーデルクラフッ触媒
の存在下に進行する(特公昭52−12.178号、特
開昭61−95.827号公報)が、エチルベンゼンの
ようなエチル基か1つついたものに比へ、テトラエチル
ベンゼンのようにエチル基が4つもついたものを選択的
に製造することは困難である。
Tetraethylbenzene can be obtained by ethylating benzene with an ethylating agent such as ethylene, but a method suitable for industrial production has not been reported. Alkylation such as ethylation proceeds in the presence of a Friedel Krach catalyst (Japanese Patent Publication No. 52-12.178, JP-A No. 61-95.827), but when an ethyl group such as ethylbenzene is It is difficult to selectively produce a compound with four ethyl groups, such as tetraethylbenzene.

また、エチルベンゼンはスチレン原料として大量に生産
されており、この際ジエチルベンゼンを主体とするポリ
エチルベンゼンが副生ずるが、これはトランスアルキル
化工程に戻したりあるいは残油等として排出されている
Furthermore, ethylbenzene is produced in large quantities as a raw material for styrene, and at this time polyethylbenzene, which is mainly composed of diethylbenzene, is produced as a by-product, which is either returned to the transalkylation process or discharged as residual oil.

その他、キシレンをプロピレン又はブテンでアルキル化
してテトラアルキルベンゼンを製造する方法(特公昭5
2−12.178号、特公昭50−10.290号、特
開昭48−72.130号、特開昭48−19.526
号、特開昭48−85.540号、特開昭49−35.
339号公報)、プソイドクメン又はメシチレンをプロ
ピレンでアルキル化してテトラアルキルベンゼンを製造
する方法(特公昭52−3.369号公報)等が知られ
ているが、これらの方法とは原料及び目的物が異なる。
Another method is to alkylate xylene with propylene or butene to produce tetraalkylbenzene (Japanese Patent Publication No. 5
2-12.178, JP 50-10.290, JP 48-72.130, JP 48-19.526
No., JP-A-48-85.540, JP-A-49-35.
339), a method for producing tetraalkylbenzene by alkylating pseudocumene or mesitylene with propylene (Japanese Patent Publication No. 3.369/1982), but the raw materials and target products are different from these methods. .

また、固体酸触媒を用いてエチルベンゼンを製造するこ
とは特公昭60−21.571号公報等で知られている
Furthermore, the production of ethylbenzene using a solid acid catalyst is known from Japanese Patent Publication No. 60-21.571 and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、テトラエチルベンゼンを工業的に有利に製造
する方法を提供することを目的とする。
An object of the present invention is to provide an industrially advantageous method for producing tetraethylbenzene.

他ノ目的はテトラエチルベンゼンを選択的に収率よく製
造することである。
Another objective is to selectively produce tetraethylbenzene in good yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ジエチルベンゼン又はトリエチルベンゼンヲ
含むエチルベンゼン類とエチル化剤とを固体酸触媒の存
在する反応系において反応させ、得られた反応生成物か
らテトラエチルベンゼンと他のエチルベンゼン類を蒸留
分離し、他のエチルベンゼン類の内ジエチルベンゼン又
はトリエチルベンゼンを含む留分の少なくとも一部を前
記反応系に戻すことからなるテトラエチルベンゼンの製
造方法及びジエチルベンゼン又はトリエチルベンゼンを
含むエチルベンゼン類を固体酸触媒の存在する反応系に
おいて、ベンゼン環1モル当たりエチル基3.6〜4゜
8モルとなるまでエチル化剤でエチル化し、次いで固体
酸触媒の存在する反応系において、エチル基の転移反応
を行わせたのち、得られた反応生成物からテトラエチル
ベンゼンと他のエチルベンゼン類を蒸留分離し、他のエ
チルベンゼン類の内ジエチルベンゼン又はトリエチルベ
ンゼンを含む留分の少なくとも一部を前記反応系に戻す
ことからなるテトラエチルベンゼンの製造方法である。
The present invention involves reacting ethylbenzenes, including diethylbenzene or triethylbenzene, with an ethylating agent in a reaction system in the presence of a solid acid catalyst, and distilling and separating tetraethylbenzene and other ethylbenzenes from the resulting reaction product. A method for producing tetraethylbenzene comprising returning at least a part of the fraction containing diethylbenzene or triethylbenzene among the ethylbenzenes of , ethylated with an ethylating agent until 3.6 to 4.8 moles of ethyl groups per mole of benzene ring are obtained, and then a transfer reaction of the ethyl groups is carried out in a reaction system in the presence of a solid acid catalyst. A method for producing tetraethylbenzene, which comprises distilling and separating tetraethylbenzene and other ethylbenzenes from the reaction product, and returning at least a part of the fraction containing diethylbenzene or triethylbenzene among the other ethylbenzenes to the reaction system. be.

本発明で原料とするエチルベンゼン類はジエチルベンゼ
ン又はトリエチルベンゼンを含むものであり、好ましく
はこの両者又は何れか一方を主体とするものである。そ
して、このようなエチルベンゼン類はベンセンとエチレ
ンとからエチルベンゼンを製造する際に副生ずるジエチ
ルベンゼン以上のポリエチルベンゼンか挙げられる他、
後述する蒸留分離で分離されるテトラエチルベンゼン以
外の留分が挙げられる。このエチルベンゼン類にはベン
セン、エチルベンゼンあるいはペンタエチルベンゼン等
が含まれても差し支えない。
The ethylbenzenes used as raw materials in the present invention contain diethylbenzene or triethylbenzene, and preferably contain either or both of them as a main ingredient. These ethylbenzenes include polyethylbenzene, which is stronger than diethylbenzene and is produced as a by-product when ethylbenzene is produced from benzene and ethylene.
Fractions other than tetraethylbenzene that are separated by distillation separation described later are included. The ethylbenzenes may include benzene, ethylbenzene, pentaethylbenzene, etc.

反応系には固体酸触媒を存在させる。塩化アルミニウム
、三フッ化ホウ素等の通常のアルキル化触媒を用いると
反応器の腐食、排水処理の問題等が生ずる。固体酸触媒
としては、公知のものが使用できるが、好ましくはぜオ
ライド、シリカアルミナである。ゼオライトとしては、
Y−ゼオライト、モルデナイト等が挙げられ、これはH
型であっても、金属イオンで修飾されたものであっても
、シリカ/アルミナ比か変成されたものであってもよい
A solid acid catalyst is present in the reaction system. When conventional alkylation catalysts such as aluminum chloride and boron trifluoride are used, corrosion of the reactor and problems with wastewater treatment occur. As the solid acid catalyst, known ones can be used, but preferably zeolide and silica alumina are used. As zeolite,
Examples include Y-zeolite, mordenite, etc., which are
It may be of a type, modified with metal ions, or modified with a silica/alumina ratio.

エチル化材としては、エチレン、ハロゲン化エタン、エ
タノール等が挙げられるか、好ましくはエチレンである
Examples of the ethylating agent include ethylene, halogenated ethane, ethanol, etc., and preferably ethylene.

前記エチルベンゼン類とエチル化剤の反応は、固体酸触
媒の存在下に行う。エチル化は、ペンセン環1モル当た
りエチル基3.6〜4,8モル、好ましくは4.0〜4
.4モルとなるまで行うことかよく、その範囲外ではい
ずれもテトラエチルベンゼンの生成割合が低下する。固
体酸触媒の使用量は触媒の種類、原料等によって異なる
か、バッチ式の場合は前記エチルベンゼン類に対し1〜
25重量%程度であり、連続的に反応を行う場合はLH
3V0. 1〜20/hrの範囲から選ぶことができる
。反応温度についても他の条件により変化するが、15
0〜350°C程度である。エチル化剤としてエチレン
を使用する場合、圧力は3〜20kg/crl−G程度
の加圧とすれば、はぼ定量的に反応が進行し、トリ体と
ペンタ体の比率をほぼ1/1に調整することも可能とな
る。
The reaction between the ethylbenzenes and the ethylating agent is carried out in the presence of a solid acid catalyst. In the ethylation, 3.6 to 4.8 mol of ethyl groups, preferably 4.0 to 4 mol of ethyl groups per mol of pentene ring are used.
.. It is preferable to carry out the reaction until the amount reaches 4 mol; outside this range, the production rate of tetraethylbenzene decreases. The amount of solid acid catalyst used varies depending on the type of catalyst, raw materials, etc., or in the case of a batch method, the amount of solid acid catalyst used is 1 to
It is about 25% by weight, and when the reaction is carried out continuously, LH
3V0. It can be selected from the range of 1 to 20/hr. The reaction temperature also changes depending on other conditions, but 15
The temperature is about 0 to 350°C. When using ethylene as an ethylating agent, if the pressure is about 3 to 20 kg/crl-G, the reaction will proceed almost quantitatively, reducing the ratio of tri-isomer to penta-isomer to approximately 1/1. It is also possible to make adjustments.

エチル化が所定のモル比となるまで行われたら、エチル
化剤の添加を止め、転移反応を生じさせることが望まし
い。すなわち、エチル化が終了した直後の反応生成物は
テトラエチルベンゼンの他、トリエチルベンゼン、ジエ
チルベンゼン、ペンタエチルベンゼン等の混合物であっ
て、比較的テトラエチルベンゼンの割合が少ない。とこ
ろが、転移反応を生じさせるとテトラエチルベンゼンの
割合が増加する。これはエチル基が3以下のポリエチル
ベンゼン類と5以上のポリエチルベンゼン類との開にエ
チル基の転移反応が起こり、結果としてテトラエチルベ
ンゼンの割合が増大することになるためと思われる。転
移反応は固体酸触媒の存在下に行うが、その条件は新た
なエチル化剤を加えない以外はエチル化反応とほぼ同じ
でよい。また、転移反応は、エチル化と同じ反応器で行
ってもよいし、その際新たな固体酸触媒を添加してもよ
いし、別の反応器に移して反応させてもよい。
Once ethylation has been carried out to a predetermined molar ratio, it is desirable to stop adding the ethylating agent and allow the rearrangement reaction to occur. That is, the reaction product immediately after ethylation is a mixture of triethylbenzene, diethylbenzene, pentaethylbenzene, etc. in addition to tetraethylbenzene, and the proportion of tetraethylbenzene is relatively small. However, when the rearrangement reaction occurs, the proportion of tetraethylbenzene increases. This is thought to be because an ethyl group transfer reaction occurs between polyethylbenzenes having 3 or less ethyl groups and polyethylbenzenes having 5 or more ethyl groups, resulting in an increase in the proportion of tetraethylbenzene. The transfer reaction is carried out in the presence of a solid acid catalyst, and the conditions may be almost the same as those for the ethylation reaction, except that no new ethylating agent is added. Further, the transfer reaction may be carried out in the same reactor as the ethylation, a new solid acid catalyst may be added at that time, or the reaction may be carried out in a separate reactor.

また、温度、攪拌等の条件もエチル化反応と同じであっ
ても差し支えないが、エチル化反応より50〜100℃
程度低くして分解反応を抑えることがよく、圧力も常圧
付近とすることがよい。エチル基のモル比を前記好まし
い範囲とし、転移反応を十分に行ったときは、テトラエ
チルベンゼンの割合は50〜85重量%程度に達する。
In addition, the conditions such as temperature and stirring may be the same as those for the ethylation reaction, but
The decomposition reaction is preferably suppressed by lowering the pressure, and the pressure is also preferably around normal pressure. When the molar ratio of ethyl groups is within the above-mentioned preferred range and the rearrangement reaction is sufficiently carried out, the proportion of tetraethylbenzene reaches about 50 to 85% by weight.

得られた反応生成物は、常法により触媒を分離したのち
、蒸留によりテトラエチルベンゼンと他のエチルベンゼ
ン類とを分離する。他のエチルベンゼン類としては、エ
チルベンゼン、ジエチルベンゼン、トリエチルベンゼン
等の低沸点留分とペンタエチルベンゼン等の高沸点留分
とがある。その他、反応生成物中にはベンゼン等の低沸
点副生物と重合物等の高沸点副生物とが含まれるが、こ
れらは蒸留により容易に分離することができる。
After the catalyst is separated from the obtained reaction product by a conventional method, tetraethylbenzene and other ethylbenzenes are separated by distillation. Other ethylbenzenes include low-boiling fractions such as ethylbenzene, diethylbenzene, and triethylbenzene, and high-boiling fractions such as pentaethylbenzene. In addition, the reaction products include low-boiling by-products such as benzene and high-boiling by-products such as polymers, which can be easily separated by distillation.

本発明においては、他のエチルベンゼン類の内、ジエチ
ルベンゼン又はトリエチルベンゼンを含む留分の少なく
とも1部を上記反応系に戻す。好ましくは、ジエチルベ
ンゼン、トリエチルベンゼン留分の全部を戻す。より好
ましくはジエチルベンゼン、トリエチルベンゼン留分の
全部とペンタエチルヘンセン、ヘキサエチルベンゼン留
分の全部をもどす。この場合、ペンタエチルベンゼン、
ヘキサエチルベンゼン留分は、エチル化を行う反応系で
はなく、転移反応を行う反応系に戻すことか望ましい。
In the present invention, at least a portion of the fraction containing diethylbenzene or triethylbenzene among other ethylbenzenes is returned to the reaction system. Preferably, all of the diethylbenzene and triethylbenzene fractions are returned. More preferably, all of the diethylbenzene and triethylbenzene fractions and all of the pentaethylbenzene and hexaethylbenzene fractions are returned. In this case, pentaethylbenzene,
It is desirable that the hexaethylbenzene fraction be returned to the reaction system where the transfer reaction is performed, rather than the reaction system where the ethylation is performed.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。なお、%は重量%を表す
Examples of the present invention will be shown below. In addition, % represents weight %.

実施例1〜3 ベンゼンを塩化アルミニウム触媒の存在下、エチレンで
アルキル化してエチルベンゼンを製造する際に副生ずる
トリエチルベンゼン留分(ジエチルベンゼン:2,8X
、トリエチルベンゼンコ97X)250g  と 2 
種類のY−ゼオライトA又はBの粉砕品50gをを攪拌
機、還流冷却器を備えた反応器に仕込み、昇温し、Aに
ついては300℃と250℃の反応温度で、Bについて
は250℃の反応温度で、エチレン圧か10〜15 k
g/ crl−Gになるようにエチレンの装入を30分
間行った。
Examples 1 to 3 Triethylbenzene fraction (diethylbenzene: 2,8X
, triethylbenzene 97X) 250g and 2
50 g of pulverized Y-zeolite A or B was charged into a reactor equipped with a stirrer and a reflux condenser, and the temperature was raised. At reaction temperature, ethylene pressure or 10-15 k
Ethylene was charged for 30 minutes to give g/crl-G.

その後、4時間攪拌を続けて転移反応を行ったのち、生
成物を取り出し、触媒を除去し、蒸留してテトラエチル
ベンゼン留分とジエチルベンゼン留分、トリエチルベン
ゼン留分、ペンタエチルベンゼン留分等とに分離し、こ
の内ジエチルベンゼン留分、トリエチルベンゼン留分、
ペンタエチルベンゼン留分の全部を混合して循環留分と
し、その一部を前記反応器に戻し、第2回の反応及び−
定時間毎のサンプリング及び分析を行った。第2回反応
では循環留分を250gを加えて全量を500gとした
エチルベンゼン類を用い、エチレンの装入を45分間、
転移反応を4時間とした他は、触媒量等の条件は第1回
反応と同様とした。
After that, stirring was continued for 4 hours to carry out a transfer reaction, and then the product was taken out, the catalyst was removed, and distilled to separate it into a tetraethylbenzene fraction, a diethylbenzene fraction, a triethylbenzene fraction, a pentaethylbenzene fraction, etc. Of these, diethylbenzene fraction, triethylbenzene fraction,
All of the pentaethylbenzene fractions are mixed to form a circulating fraction, and a portion of it is returned to the reactor for the second reaction and -
Sampling and analysis were performed at regular intervals. In the second reaction, 250 g of recycled fraction was added to make the total amount 500 g using ethylbenzenes, and ethylene was charged for 45 minutes.
The conditions such as the amount of catalyst were the same as in the first reaction, except that the rearrangement reaction was carried out for 4 hours.

反応温度及び触媒は次の通りである。The reaction temperature and catalyst are as follows.

実施例1.300℃、A 実施例2.250℃、B 実施例3.250°C,A 第1回反応生成物の組成(GC面積比%)を第1表に示
す。
Example 1: 300°C, A Example 2: 250°C, B Example 3: 250°C, A The composition (GC area ratio %) of the first reaction product is shown in Table 1.

第  1  表 第 表 第2回反応生成物の組成(GC面積比%)を第2表に示
す。
Table 1 Table 2 The composition of the second reaction product (GC area ratio %) is shown in Table 2.

(注)略称は第1表の場合と同じ。(Note) Abbreviations are the same as in Table 1.

実施例4 実施例Iと同じトリエチルベンゼン留分136gとシリ
カアルミナ27gを反応器に仕込み、300℃の反応温
度で、エチレン圧が10kg/cnr・Gとなるように
エチレンの装入を28分間行った。
Example 4 136 g of the same triethylbenzene fraction as in Example I and 27 g of silica alumina were charged into a reactor, and ethylene was charged for 28 minutes at a reaction temperature of 300°C so that the ethylene pressure was 10 kg/cnr·G. Ta.

その後2時間攪拌を続けて転移反応を行った。この結果
(組成:GC面積比%)を第3表に示す。
Thereafter, stirring was continued for 2 hours to carry out a rearrangement reaction. The results (composition: GC area ratio %) are shown in Table 3.

第 表 (注)略称は第1表の場合と同じ。No. table (Note) Abbreviations are the same as in Table 1.

〔発明の効果〕 本発明の製造方法によれば、テトラエチルベンゼンを工
業的に有利に、且つ収率よく製造することができる。
[Effects of the Invention] According to the production method of the present invention, tetraethylbenzene can be produced industrially advantageously and with good yield.

Claims (2)

【特許請求の範囲】[Claims] (1)ジエチルベンゼン又はトリエチルベンゼンを含む
エチルベンゼン類とエチル化剤とを固体酸触媒の存在す
る反応系において反応させ、得られた反応生成物からテ
トラエチルベンゼンと他のエチルベンゼン類を蒸留分離
し、他のエチルベンゼン類の内ジエチルベンゼン又はト
リエチルベンゼンを含む留分の少なくとも一部を前記反
応系に戻すことを特徴とするテトラエチルベンゼンの製
造方法。
(1) Ethylbenzenes containing diethylbenzene or triethylbenzene are reacted with an ethylating agent in a reaction system in the presence of a solid acid catalyst, and tetraethylbenzene and other ethylbenzenes are distilled and separated from the resulting reaction product. A method for producing tetraethylbenzene, which comprises returning at least a portion of a fraction containing diethylbenzene or triethylbenzene among ethylbenzenes to the reaction system.
(2)ジエチルベンゼン又はトリエチルベンゼンを含む
エチルベンゼン類を固体酸触媒の存在する反応系におい
て、ベンゼン環1モル当たりエチル基3.6〜4.8モ
ルとなるまでエチル化剤でエチル化し、次いで固体酸触
媒の存在する反応系において、エチル基の転移反応を行
わせたのち、得られた反応生成物からテトラエチルベン
ゼンと他のエチルベンゼン類を蒸留分離し、他のエチル
ベンゼン類の内ジエチルベンゼン又はトリエチルベンゼ
ンを含む留分の少なくとも一部を前記反応系に戻すこと
を特徴とするテトラエチルベンゼンの製造方法。
(2) Ethylbenzenes including diethylbenzene or triethylbenzene are ethylated with an ethylating agent in a reaction system in the presence of a solid acid catalyst until the concentration of ethyl groups is 3.6 to 4.8 moles per mole of benzene rings, and then the solid acid After carrying out a transfer reaction of ethyl groups in a reaction system in the presence of a catalyst, tetraethylbenzene and other ethylbenzenes are separated by distillation from the resulting reaction product, and among the other ethylbenzenes, diethylbenzene or triethylbenzene is included. A method for producing tetraethylbenzene, comprising returning at least a portion of the fraction to the reaction system.
JP8128390A 1989-06-27 1990-03-30 Method for producing tetraethylbenzene Expired - Lifetime JPH0639423B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8128390A JPH0639423B2 (en) 1990-03-30 1990-03-30 Method for producing tetraethylbenzene
US07/543,518 US5225572A (en) 1989-06-27 1990-06-26 Process for producing pyromellitic dianhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8128390A JPH0639423B2 (en) 1990-03-30 1990-03-30 Method for producing tetraethylbenzene

Publications (2)

Publication Number Publication Date
JPH03284630A true JPH03284630A (en) 1991-12-16
JPH0639423B2 JPH0639423B2 (en) 1994-05-25

Family

ID=13742048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8128390A Expired - Lifetime JPH0639423B2 (en) 1989-06-27 1990-03-30 Method for producing tetraethylbenzene

Country Status (1)

Country Link
JP (1) JPH0639423B2 (en)

Also Published As

Publication number Publication date
JPH0639423B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
EP0347835B1 (en) Process for preparing aryl-ethyl phenols having one or more alkyl substituents in the ethyl group and their use
JPH03284630A (en) Production of tetraethylbenzene
JPH0569095B2 (en)
US2850545A (en) Preparation of diaryl methanes
US2849505A (en) Alkylation catalyst comprising a tin halide and metallic aluminum
US4418222A (en) Continuous phenol alkylation process
JPS58172327A (en) Production of cumene and/or polyisopropylbenzenes
US2817688A (en) Preparation of m- and p-diisopropyl-benzene
JPH0395129A (en) Production of tetraethylbenzene
US3985819A (en) Process for producing alkylnaphthalenes
JPH05339177A (en) Production of tetraethylbenzene
JP2975702B2 (en) Method for producing alkyl-substituted aromatic compound
JPH0639424B2 (en) Method for producing tetraethylbenzene
JPH0639425B2 (en) Method for producing tetraethylbenzene
JPH0639427B2 (en) Method for producing 1,2,4,5-tetraethylbenzene
US3118956A (en) Alkylation process
US5225572A (en) Process for producing pyromellitic dianhydride
EP0405508A2 (en) Process for producing pyromellitic dianhydride
US2821562A (en) Process for the production of alkyl aryl hydrocarbons containing a long chain alkyl group
JPH03284633A (en) Production of 1,2,4,5-tetraethylbenzene
JP2810783B2 (en) Method for producing 4-ethylated biphenyls
JPH0395128A (en) Production of 1,2,4,5-tetraethylbenzene
CA1293000C (en) Method for producing m-ethyldiphenyls
JPS6183137A (en) Production of beta-alkyl-substituted naphthalene
JPS6143129A (en) Treatment of by-product oil