JPH03284633A - Production of 1,2,4,5-tetraethylbenzene - Google Patents

Production of 1,2,4,5-tetraethylbenzene

Info

Publication number
JPH03284633A
JPH03284633A JP8128690A JP8128690A JPH03284633A JP H03284633 A JPH03284633 A JP H03284633A JP 8128690 A JP8128690 A JP 8128690A JP 8128690 A JP8128690 A JP 8128690A JP H03284633 A JPH03284633 A JP H03284633A
Authority
JP
Japan
Prior art keywords
tetraethylbenzene
benzene
fraction
ethylation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8128690A
Other languages
Japanese (ja)
Other versions
JPH0639426B2 (en
Inventor
Tadanori Hara
原 忠則
Noboru Daito
昇 大東
Masakazu Takeuchi
正和 竹内
Kunio Wada
和田 国雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP8128690A priority Critical patent/JPH0639426B2/en
Priority to US07/543,518 priority patent/US5225572A/en
Publication of JPH03284633A publication Critical patent/JPH03284633A/en
Publication of JPH0639426B2 publication Critical patent/JPH0639426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To advantageously obtain the title compound by cooling and crystallizing tegraethylbenzene fraction obtained by distilling an ethylation reaction product of benzene and/or mono- to tri-ethylbenzene under specific conditions and then subjecting the treated fraction to centrifugal filtration to carry out solid-liquid separation. CONSTITUTION:An ethylation reaction product, preferably the above-mentioned raw material of one or more kinds of benzene compounds selected from benzene and mono- to tri-ethylbenzene are ethylated with an ethylating agent in the presence of a Friedel-Crafts catalyst and then subjected to transalkylation reaction in the presence of the above-mentioned catalyst and the resultant reaction product is distilled to provide tetraethylbenzene fraction. Then the tetraethylbenzene fraction is cooled to -5 deg.C to crystallize crystal and then subjected to centrifugal filtration in >=300G centrifugal force to carry out solid- liquid separation and preferably further the liquid phase is returned to the above-mentioned ethylation process or transalkylation reaction process and then the title compound, especially useful as a raw material for pyromellitic anhydride is obtained in high purity and good yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1.2.4.5−テトラエチルベンゼンの製
造方法に関する。1.2.4.5−テトラエチルベンゼ
ンはビニルベンゼン類やベンセンカルボン酸類、特に無
水ピロメリット酸の製造原料等としても有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing 1.2.4.5-tetraethylbenzene. 1.2.4.5-Tetraethylbenzene is also useful as a raw material for producing vinylbenzenes and benzenecarboxylic acids, especially pyromellitic anhydride.

〔従来の技術〕[Conventional technology]

テトラエチルベンゼンは、ベンセンをエチレン等のエチ
ル化剤でエチル化することにより得られるが、工業的に
生産するために適した方法等については報告されていな
い。
Tetraethylbenzene can be obtained by ethylating benzene with an ethylating agent such as ethylene, but a method suitable for industrial production has not been reported.

エチル化等のアルキル化はフリーデルクラフツ触媒の存
在下に進行する(特公昭52−12.178号、特開昭
61−65.827号公報)が、エチルベンゼンのよう
なエチル基が1つ付いたものに比べ、テトラエチルベン
ゼンのようにエチル基が4つも付いたものを選択的に製
造することは困難である。
Alkylation such as ethylation proceeds in the presence of a Friedel-Crafts catalyst (Japanese Patent Publication No. 52-12.178, JP-A No. 61-65.827), but when an ethyl group such as ethylbenzene is It is difficult to selectively produce compounds with as many as four ethyl groups, such as tetraethylbenzene.

その他、L、 2.4.5−テトラアルキルベンゼンを
選択的に得るため、キシレンをプロピレン又はブテンで
アルキル化してテトラアルキルベンゼンを製造する方法
(特公昭52−12.178号、特公昭50−10゜2
90号、特開昭48−72.130号、特開昭48−1
9.526号、特開昭48−85.540号、特開昭4
9−35.339号公報)、プソイドクメン又はメシチ
レンをプロピレンでアルキル化してテトラアルキルベン
ゼンを製造する方法(特公昭52−3.369号公報)
等が知られているが、これらの方法とは原料及び目的物
が異なる。
In addition, in order to selectively obtain L, 2,4.5-tetraalkylbenzene, there is a method of alkylating xylene with propylene or butene to produce tetraalkylbenzene (Japanese Patent Publication No. 1982-12.178, Japanese Patent Publication No. 1982-10゜). 2
No. 90, JP-A-48-72.130, JP-A-48-1
No. 9.526, JP-A-48-85.540, JP-A-4
9-35.339), a method for producing tetraalkylbenzene by alkylating pseudocumene or mesitylene with propylene (Japanese Patent Publication No. 3.369/1982)
etc. are known, but the raw materials and target objects are different from these methods.

工業的に容易に得られるベンゼン、エチルベンゼン等の
ベンゼン化合物とエチレン等のエチル化剤から1.2.
4.5−テトラエチルベンゼンが収量よく得られれば有
利なことであるが、副生物が多量に生成する他、分離が
困難な異性体が生ずるという問題がある。そして、テト
ラエチルベンゼンの異性体を有効に分離する方法は知ら
れていない。
1.2. From benzene compounds such as benzene and ethylbenzene that are easily obtained industrially and ethylating agents such as ethylene.
Although it would be advantageous if 4,5-tetraethylbenzene could be obtained in a good yield, there are problems in that a large amount of by-products are produced and isomers that are difficult to separate are produced. Furthermore, there is no known method for effectively separating isomers of tetraethylbenzene.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、1.2.4.5−テトラエチルベンゼンを工
業的に有利に製造する方法を提供することを目的とする
。他の目的は1.2.4.5−テトラエチルベンゼンを
選択的に収率よく製造すること及び無水ピロメリット酸
製造原料として有用なテトラエチルベンゼンを有利に製
造することである。
An object of the present invention is to provide an industrially advantageous method for producing 1.2.4.5-tetraethylbenzene. Other objects are to selectively produce 1.2.4.5-tetraethylbenzene in good yield and to advantageously produce tetraethylbenzene useful as a raw material for producing pyromellitic anhydride.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ベンゼン、エチルベンゼン、ジエチルベンゼ
ン及びトリエチルベンゼンからなる群れから選ばれた1
種又は2種以上のベンゼン化合物のエチル化反応生成物
を蒸留して得られたテトラエチルベンゼン留分を、−5
°C以下に冷却して結晶を析出させ、次いで300G以
上の遠心力で遠心濾過して液相と固相とを分離すること
からなる1、 2.4.5−テトラエチルベンゼンの製
造方法並ひに上記のベンゼン化合物をフリーデルクラフ
ッ触媒の存在下にエチル化剤でエチル化し、次いでこれ
をフリーデルクラフッ触媒の存在下、転移反応を行わせ
、得られた反応生成物を蒸留してテトラエチルベンゼン
留分を得、この留分を冷却晶析して結晶を析出させ、次
いで遠心分離し、液相は前記エチル化反応又は転移反応
工程へ戻すと共に、固相は無水ピロメリット酸製造原料
用テトラエチルベンゼンとして回収することからなる1
、 2.4.5−テトラエチルベンゼンの製造方法であ
る。
The present invention provides a compound selected from the group consisting of benzene, ethylbenzene, diethylbenzene and triethylbenzene.
The tetraethylbenzene fraction obtained by distilling the ethylation reaction product of a species or two or more benzene compounds, -5
A method for producing 1,2.4.5-tetraethylbenzene, which comprises cooling to below °C to precipitate crystals, followed by centrifugal filtration with a centrifugal force of 300 G or more to separate a liquid phase and a solid phase. The above benzene compound is ethylated with an ethylating agent in the presence of a Friedel-Kraf catalyst, and then a rearrangement reaction is carried out in the presence of a Friedel-Kraf catalyst, and the resulting reaction product is distilled. A tetraethylbenzene fraction is obtained, this fraction is cooled and crystallized to precipitate crystals, and then centrifuged, the liquid phase is returned to the ethylation reaction or transfer reaction step, and the solid phase is the raw material for producing pyromellitic anhydride. 1 consisting of recovering as tetraethylbenzene
, 2.4.5-Tetraethylbenzene production method.

ベンゼン化合物としては、ベンゼン、エチルベンゼン、
ジエチルベンゼン、トリエチルベンゼン又はこれらの混
合物であり、混合物としてはエチルベンセンを製造する
際に副生ずるポリエチルベンゼン等の混合物がある。好
ましくは、トリエチルベンゼン又はトリエチルベンゼン
とジエチルベンゼンを主体とするものである。
Benzene compounds include benzene, ethylbenzene,
It is diethylbenzene, triethylbenzene, or a mixture thereof. Examples of the mixture include polyethylbenzene, which is a by-product when producing ethylbenzene. Preferably, it is mainly composed of triethylbenzene or triethylbenzene and diethylbenzene.

ベンゼン化合物のエチル化反応は、通常フリーデルクラ
フッ触媒の存在下に行われる。フリーデルクラフッ触媒
としては、塩化アルミニウム、三フッ化ホウ素、塩化鉄
、イオン交換樹脂、ゼオライト、燐酸等の公知のものが
あるが、好ましくは塩化アルミニウム、ゼオライトであ
る。
The ethylation reaction of benzene compounds is usually carried out in the presence of a Friedelkraff catalyst. As the Friedel-Craft catalyst, there are known ones such as aluminum chloride, boron trifluoride, iron chloride, ion exchange resins, zeolite, and phosphoric acid, but aluminum chloride and zeolite are preferred.

エチル化剤としては、エチレン、ハロゲン化エタン、エ
タノール等か挙げられるか、好ましくはエチレンである
Examples of the ethylating agent include ethylene, halogenated ethane, and ethanol, preferably ethylene.

前記エチル化反応は、ヘンセン環1モル当たりエチル基
3.6〜4.8モル、好ましくは4.0〜4.4モルと
なるまで行うことかよく、その範囲外ではいずれもテト
ラエチルベンゼンの生成割合か低下する。フリーデルク
ラフッ触媒の使用量は触媒の種類、原料等によって異な
るか、塩化アルミニウムの場合、前記ポリエチルベンゼ
ンに対し5〜25重量%程度である。連続式で反応を行
う場合は、LH5V0. 1〜20/hr程度である。
The ethylation reaction may be carried out until the concentration of ethyl groups is 3.6 to 4.8 moles, preferably 4.0 to 4.4 moles, per mole of Hensen's ring. Outside this range, tetraethylbenzene is produced. The percentage decreases. The amount of Friedel-Crauch catalyst used varies depending on the type of catalyst, raw materials, etc., and in the case of aluminum chloride, it is about 5 to 25% by weight based on the polyethylbenzene. When carrying out the reaction in a continuous manner, LH5V0. It is about 1 to 20/hr.

反応温度についても他の条件により変化するか、塩化ア
ルミニウム触媒の場合、50〜150°C程度であり、
セオライト触媒の場合、150〜300℃程度である。
The reaction temperature also varies depending on other conditions, and in the case of an aluminum chloride catalyst, it is about 50 to 150 °C,
In the case of a theolite catalyst, the temperature is about 150 to 300°C.

エチル化反応終了後、エチル化剤の添加を止め、転移反
応を生じさせることが望ましい。すなわち、エチル化が
終了した直後の反応生成物はテトラエチルベンゼンの他
、トリエチルベンゼン、ジエチルベンゼン、ペンタエチ
ルベンゼン等の混合物であって、比較的テトラエチルベ
ンゼンの割合が少ない。ところが、転移反応を生じさせ
るとテトラエチルベンゼンの割合が増加する。これはエ
チル基が3以下のポリエチルベンゼン類と5以上のポリ
エチルベンゼン類との間にエチル基の転移反応が起こり
、結果としてテトラエチルベンゼンの割合が増大するこ
とになるためと思われる。転移反応はフリーデルクラフ
ッ触媒の存在下に行う。その条件は新たなエチル化剤を
加えない以外はエチル化反応とほぼ同じでよい。また、
転移反応の際、新たなフリーデルクラフッ触媒を添加し
てもよいが、エチル化反応混合物中に残存するフリーデ
ルクラフッ触媒だけであっても差し支えなく、また温度
、攪拌等の条件もエチル化反応と同じであっても差し支
えない。しかし、分解反応を防止する意味でエチル化反
応より50〜100℃程度低くすることが好ましい。連
続式で反応を行う場合は、転移反応用の反応器を設け、
ここにエチル化反応混合物を通すことがよい。エチル基
のモル比を前記好ましい範囲とし、転移反応を十分に行
ったときは、テトラエチルベンゼンの割合は75〜85
重量%程度に達する。
After the ethylation reaction is completed, it is desirable to stop adding the ethylating agent and allow the rearrangement reaction to occur. That is, the reaction product immediately after ethylation is a mixture of triethylbenzene, diethylbenzene, pentaethylbenzene, etc. in addition to tetraethylbenzene, and the proportion of tetraethylbenzene is relatively small. However, when the rearrangement reaction occurs, the proportion of tetraethylbenzene increases. This seems to be because an ethyl group transfer reaction occurs between polyethylbenzenes having 3 or less ethyl groups and polyethylbenzenes having 5 or more ethyl groups, resulting in an increase in the proportion of tetraethylbenzene. The rearrangement reaction is carried out in the presence of a Friedelkraff catalyst. The conditions may be almost the same as those for the ethylation reaction except that no new ethylating agent is added. Also,
During the rearrangement reaction, fresh Friedel-Kraf catalyst may be added, but it is also possible to use only the Friedel-Kraf catalyst remaining in the ethylation reaction mixture, and the conditions such as temperature and stirring may also be different from the ethyl There is no problem even if it is the same as chemical reaction. However, in order to prevent decomposition reactions, it is preferable to lower the temperature by about 50 to 100°C than the ethylation reaction. When carrying out the reaction in a continuous manner, a reactor for transfer reaction is provided,
It is preferable to pass the ethylation reaction mixture through this. When the molar ratio of ethyl groups is within the above preferred range and the rearrangement reaction is sufficiently carried out, the ratio of tetraethylbenzene is 75 to 85.
It reaches about % by weight.

更に、この転移反応の際又はエチル化反応の際、後述す
る遠心分離工程で発生する液相をここに戻すことが望ま
しい。すなわち、液相の大部分は1゜2、3.5−テト
ラエチルベンゼンであるので、ここに戻すことにより異
性化も同時に起こりl、 2.4.5−テトラエチルベ
ンゼンの収量がより増大する。この場合、テトラエチル
ベンゼン異性体比かほぼ平衡濃度となるまで、反応を行
うことが望ましい。
Furthermore, during this rearrangement reaction or ethylation reaction, it is desirable to return the liquid phase generated in the centrifugation step described below. That is, since most of the liquid phase is 1.2,3.5-tetraethylbenzene, isomerization also occurs at the same time by returning the liquid phase to this phase, thereby further increasing the yield of 2.4.5-tetraethylbenzene. In this case, it is desirable to carry out the reaction until the tetraethylbenzene isomer ratio reaches approximately equilibrium concentration.

得られた反応生成物は、常法により触媒を分離したのち
、蒸留によりテトラエチルベンゼンを分離する。テトラ
エチルベンゼンの濃度は90重量%以上とすることが望
ましく、このテトラエチルベンゼン留分中の1.2.4
.5−テトラエチルベンゼンと1.2.3.5−テトラ
エチルベンゼンの割合は、平衡濃度近辺ではほぼ6:4
である。
After the catalyst is separated from the obtained reaction product by a conventional method, tetraethylbenzene is separated by distillation. The concentration of tetraethylbenzene is desirably 90% by weight or more, and 1.2.4% in this tetraethylbenzene fraction is
.. The ratio of 5-tetraethylbenzene to 1.2.3.5-tetraethylbenzene is approximately 6:4 near the equilibrium concentration.
It is.

本発明においては、このテトラエチルベンゼン留分を冷
却して結晶を析出させる。物質の精製方法には蒸留、晶
析等多数あるが、晶析は析出する結晶の性質によっては
困難であることか多い。そして、テトラエチルベンゼン
留分から析出する結晶も、ペースト状であって固液分離
が極めて困難であることが予想された。溶媒を加えて粘
度を下げる方法も試みたが、濾過は可能となったとして
も純度は極めて低いものであった。ところが、このテト
ラエチルベンゼン留分を一5℃以下に冷却して結晶を析
出させたのち、300G以上の遠心力をかけて遠心濾過
すると容易に液相と固相が分離でき、しかも純度が高い
ものが得られることが見出された。そこで、本発明にお
いては、このテトラエチルベンゼン留分を一5℃以下、
好ましくは一10°C〜−30℃に冷却して結晶を析出
させ、次いでこれを300G以上、好ましくは500G
以上、より好ましくは600G以上の遠心力で遠心濾過
する。冷却温度が高いと回収率が低下し、低すぎると純
度が低下する。例えば、−10°Cに冷却したときは、
90%前後の純度を得ることができるが、−25℃では
80%前後の純度となる。
In the present invention, this tetraethylbenzene fraction is cooled to precipitate crystals. There are many methods for purifying substances, such as distillation and crystallization, but crystallization is often difficult depending on the nature of the precipitated crystals. It was expected that the crystals precipitated from the tetraethylbenzene fraction would also be paste-like, making solid-liquid separation extremely difficult. An attempt was made to lower the viscosity by adding a solvent, but even if filtration was possible, the purity was extremely low. However, if this tetraethylbenzene fraction is cooled to below 15°C to precipitate crystals and then centrifugally filtered by applying a centrifugal force of 300 G or more, the liquid phase and solid phase can be easily separated, and a product with high purity can be obtained. was found to be obtained. Therefore, in the present invention, this tetraethylbenzene fraction is heated below -5°C.
Preferably, the crystals are precipitated by cooling to -10°C to -30°C, and then heated to 300G or more, preferably 500G.
As mentioned above, centrifugal filtration is more preferably performed with a centrifugal force of 600 G or more. If the cooling temperature is too high, the recovery rate will decrease, and if it is too low, the purity will decrease. For example, when cooled to -10°C,
Although a purity of around 90% can be obtained, the purity becomes around 80% at -25°C.

また、遠心力が小さすぎると固液分離かできず、純度が
向上しない。そして、l、 2.4.5−テトラエチル
ベンゼンの回収率を50%程度とすれば、90%前後の
純度か得られる。
Furthermore, if the centrifugal force is too small, solid-liquid separation will not be possible and purity will not improve. If the recovery rate of 1,2,4.5-tetraethylbenzene is about 50%, a purity of about 90% can be obtained.

分離される液相は1.2.3.5−テトラエチルベンゼ
ンを主体とするものであるので、これは前記エチル化反
応又は転移反応工程に戻すことかよい。また、固相はI
、 2.4.5−テトラエチルベンゼンを主体とするも
のであるので、それを製品として回収することもできる
し、更に高純度にする必要あるときは、再結晶等の処理
を付は加えてもよい。特に、このようにして得られた固
相、好ましくは純度が80〜92%程度の固相を、気相
接触酸化して無水ピロメリット酸を製造するための原料
として用いれば、この固相中に不純物として含まれる成
分は完全酸化され、製品無水ピロメリット酸中に混入す
ることは殆どないので、極めて有利である。
Since the separated liquid phase is mainly composed of 1.2.3.5-tetraethylbenzene, it may be returned to the ethylation reaction or transfer reaction step. Also, the solid phase is I
Since it is mainly composed of 2.4.5-tetraethylbenzene, it can be recovered as a product, and if it is necessary to make it even more pure, it can be subjected to treatments such as recrystallization. good. In particular, if the solid phase obtained in this way, preferably a solid phase with a purity of about 80 to 92%, is used as a raw material for producing pyromellitic anhydride by gas phase catalytic oxidation, Components contained as impurities are completely oxidized and are hardly mixed into the product pyromellitic anhydride, which is extremely advantageous.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。なお、%は重量%を表す
Examples of the present invention will be shown below. In addition, % represents weight %.

実施例1 ベンゼンを塩化アルミニウム触媒の存在下、エチレンで
アルキル化してエチルベンゼンを製造する際に副生ずる
ポリエチルベンゼン(ジエチルベンゼン=9IN、 ト
リエチルベンゼン:7X、 その他2X)250g  
と無水塩化アルミニウム触媒を攪拌機、還流冷却器を備
えた反応器に仕込み、エチル化剤を所定の速度で供給し
てエチル化反応を行った。
Example 1 250 g of polyethylbenzene (diethylbenzene = 9IN, triethylbenzene: 7X, other 2X) produced as a by-product when ethylbenzene is produced by alkylating benzene with ethylene in the presence of an aluminum chloride catalyst.
and anhydrous aluminum chloride catalyst were placed in a reactor equipped with a stirrer and a reflux condenser, and an ethylation reaction was carried out by feeding an ethylating agent at a predetermined rate.

所定のエチル化が終了したのち、エチル化剤の供給を止
め、引き続き同じ温度条件で攪拌を続けて転移反応を行
った。転移反応は反応物の組成が一定となるまで行った
。得られた反応物から触媒を分離したのち、蒸留を行い
、テトラエチルベンゼン留分 (1,2,4,5−テト
ラエチルベンゼ:/:59.2X、  1,2,3.5
テトラエチルベンゼン:39.4X、  )ジエチルベ
ンゼン:0.4X、 その他0.3X)を得た。
After the predetermined ethylation was completed, the supply of the ethylating agent was stopped, and the stirring was continued under the same temperature conditions to carry out the rearrangement reaction. The rearrangement reaction was carried out until the composition of the reactants became constant. After separating the catalyst from the obtained reaction product, distillation was performed to obtain a tetraethylbenzene fraction (1,2,4,5-tetraethylbenzene:/:59.2X, 1,2,3.5
Tetraethylbenzene: 39.4X, ) diethylbenzene: 0.4X, others 0.3X) were obtained.

このテトラエチルベンゼン留分をステンレス製容器に装
入し、ドライアイスを用いて、攪拌しつつ、所定の温度
まで冷却し、結晶を析出させた。
This tetraethylbenzene fraction was placed in a stainless steel container, and cooled to a predetermined temperature using dry ice while stirring to precipitate crystals.

得られたスラリーを遠心分離器に装入し、670Gで遠
心濾過を2分間行い、液相と固相とに分離した。なお、
濾布は300 itシュの木綿布を用いた。条件及び結
果を第1表に示す。
The obtained slurry was charged into a centrifuge, and centrifugal filtration was performed at 670G for 2 minutes to separate it into a liquid phase and a solid phase. In addition,
A 300-it cotton cloth was used as the filter cloth. The conditions and results are shown in Table 1.

第  1  表 次に、実験No3で得られた固相を用いて、無水ピロメ
リット酸の製造を行った。条件は、不活性担体に酸化チ
タン、五酸化バナジウム及び五酸化リンを担持した触媒
を用い、反応温度380℃、固相/空気比30g/Nm
、GH3V4 、 000 /hrの条件で反応を行っ
たところ、無水ピロメリット酸が59%の収率で得られ
た。この無水ピロメリット酸の純度は95%であったか
、99%純度の1゜2、4.5−テトラエチルベンゼン
を原料として得られた無水ピロメリット酸と殆ど変わら
ない純度であった。
Table 1 Next, pyromellitic anhydride was produced using the solid phase obtained in Experiment No. 3. The conditions were to use a catalyst with titanium oxide, vanadium pentoxide and phosphorus pentoxide supported on an inert carrier, reaction temperature 380°C, solid phase/air ratio 30g/Nm.
, GH3V4, 000/hr, pyromellitic anhydride was obtained in a yield of 59%. The purity of this pyromellitic anhydride was 95%, or almost as pure as that of pyromellitic anhydride obtained using 99% pure 1°2,4.5-tetraethylbenzene as a raw material.

C発明の効果〕 本発明の製造方法によれば、1.2.4.5−テトラエ
チルベンゼンを純度良く、また歩留り良く製造すること
ができる。
C Effects of the Invention] According to the production method of the present invention, 1.2.4.5-tetraethylbenzene can be produced with high purity and high yield.

Claims (2)

【特許請求の範囲】[Claims] (1)ベンゼン、エチルベンゼン、ジエチルベンゼン及
びトリエチルベンゼンからなる群れから選ばれた1種又
は2種以上のベンゼン化合物のエチル化反応生成物を蒸
留して得られたテトラエチルベンゼン留分を、−5℃以
下に冷却して結晶を析出させ、次いで300G以上の遠
心力で遠心濾過して液相と固相とを分離することを特徴
とする1,2,4,5−テトラエチルベンゼンの製造方
法。
(1) The tetraethylbenzene fraction obtained by distilling the ethylation reaction product of one or more benzene compounds selected from the group consisting of benzene, ethylbenzene, diethylbenzene, and triethylbenzene, at -5°C or below. A method for producing 1,2,4,5-tetraethylbenzene, which comprises cooling to precipitate crystals, followed by centrifugal filtration with a centrifugal force of 300 G or more to separate a liquid phase and a solid phase.
(2)ベンゼン、エチルベンゼン、ジエチルベンゼン及
びトリエチルベンゼンからなる群れから選ばれた1種又
は2種以上のベンゼン化合物をフリーデルクラフツ触媒
の存在下にエチル化剤でエチル化し、次いでこれをフリ
ーデルクラフツ触媒の存在下、転移反応を行わせ、得ら
れた反応生成物を蒸留してテトラエチルベンゼン留分を
得、この留分を冷却晶析して結晶を析出させ、次いで遠
心分離し、液相は前記エチル化反応又は転移反応工程へ
戻すと共に、固相は無水ピロメリット酸製造原料用テト
ラエチルベンゼンとして回収することを特徴とする1,
2,4,5−テトラエチルベンゼンの製造方法。
(2) One or more benzene compounds selected from the group consisting of benzene, ethylbenzene, diethylbenzene, and triethylbenzene are ethylated with an ethylating agent in the presence of a Friedel-Crafts catalyst, and then this is converted into a Friedel-Crafts catalyst. A rearrangement reaction is carried out in the presence of 1, characterized in that the solid phase is returned to the ethylation reaction or rearrangement reaction step, and the solid phase is recovered as tetraethylbenzene for use as a raw material for producing pyromellitic anhydride;
Method for producing 2,4,5-tetraethylbenzene.
JP8128690A 1989-06-27 1990-03-30 Method for producing 1,2,4,5-tetraethylbenzene Expired - Lifetime JPH0639426B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8128690A JPH0639426B2 (en) 1990-03-30 1990-03-30 Method for producing 1,2,4,5-tetraethylbenzene
US07/543,518 US5225572A (en) 1989-06-27 1990-06-26 Process for producing pyromellitic dianhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8128690A JPH0639426B2 (en) 1990-03-30 1990-03-30 Method for producing 1,2,4,5-tetraethylbenzene

Publications (2)

Publication Number Publication Date
JPH03284633A true JPH03284633A (en) 1991-12-16
JPH0639426B2 JPH0639426B2 (en) 1994-05-25

Family

ID=13742135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8128690A Expired - Lifetime JPH0639426B2 (en) 1989-06-27 1990-03-30 Method for producing 1,2,4,5-tetraethylbenzene

Country Status (1)

Country Link
JP (1) JPH0639426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104865B2 (en) 2016-02-17 2021-08-31 Conopeo, Inc. Dishwash composition comprising rinse-activatable antifoam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104865B2 (en) 2016-02-17 2021-08-31 Conopeo, Inc. Dishwash composition comprising rinse-activatable antifoam

Also Published As

Publication number Publication date
JPH0639426B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
JP3390169B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
US2837584A (en) Process for production of durene
JPH03284633A (en) Production of 1,2,4,5-tetraethylbenzene
US6072098A (en) Process for producing highly pure 2,6-dimethylnaphthalene
US2888465A (en) Process for the preparation of trimellitic anhydride
US5225572A (en) Process for producing pyromellitic dianhydride
EP0519165B1 (en) A method for isomerization of dimethylnaphthalenes
JP4526606B2 (en) Method for producing high purity 2,6-dimethylnaphthalene
US3184517A (en) Alkylation process for preparing propylbenzenes
JPH09249586A (en) Production of high purity 2,6-dimethylnaphthalene
EP0405508A2 (en) Process for producing pyromellitic dianhydride
JPH03284635A (en) Production of 1,2,4,5-tetraethylbenzene
JPH0395128A (en) Production of 1,2,4,5-tetraethylbenzene
JPH03284634A (en) Production of 1,2,4,5-tetraethylbenzene
US3985819A (en) Process for producing alkylnaphthalenes
US2814651A (en) Tetraalkylbenzene process
EP0440250A2 (en) Method of preparing alkylnaphthalene compounds
JPH03284646A (en) Production of pyromellitic acid
JPH03109387A (en) Production of pyromellitic anhydride
JPH03284630A (en) Production of tetraethylbenzene
JPH0676349B2 (en) Method for purifying 4,4'-dihydroxydiphenyl ether
JPH01246229A (en) Separation of 4,4'-diisopropylbiphenyl
JP2008001717A (en) Method for producing highly pure 2,6-dimethylnaphthalene
JPH04288026A (en) Production of alkyl-substituted aromatic compound
JPH0395129A (en) Production of tetraethylbenzene