JPH0328371A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPH0328371A
JPH0328371A JP16163289A JP16163289A JPH0328371A JP H0328371 A JPH0328371 A JP H0328371A JP 16163289 A JP16163289 A JP 16163289A JP 16163289 A JP16163289 A JP 16163289A JP H0328371 A JPH0328371 A JP H0328371A
Authority
JP
Japan
Prior art keywords
thin film
substrate
heating
cooling
polymer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16163289A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
和義 本田
Ryuji Sugita
龍二 杉田
Kiyokazu Toma
清和 東間
Yasuhiro Kawawake
康博 川分
Tatsuro Ishida
達朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16163289A priority Critical patent/JPH0328371A/en
Publication of JPH0328371A publication Critical patent/JPH0328371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a thin film having an excellent shape by heating a polymeric substrate coated with a thin film layer in the air from the thin film layer side in a non-contact state and cooling the film from the polymeric substrate side to anneal the film without curling the polymeric substrate. CONSTITUTION:A thin film of the metal or metallic compd. is formed on a polymeric substrate of polyimide or aromatic polyamide. The substrate 3 coated with the thin film is rewound from a rewinding roll 2 and wound on a winding roll 6 through a guide roller 4. The substrate 3 is heated by a non-contact heat source such as a heater 5 from the thin film side in the air or the atmosphere having the same content of oxygen, and then annealed. In this production of the thin film, a cooling gas 8 is blown against the substrate 3 through a cooling nozzle 7 from the substrate side simultaneously with the heating, and the substrate 3 is cooled. Consequently, curling of the substrate by heating is reduced, an annealing effect is caused, and a thin film having a highly smooth surface is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は形状の優れた薄膜を形戒するための薄膜の製造
方法に関する 従来の技術 現代社会において薄膜技術の果たす役割は非常に多岐に
わたっていも 薄膜基板材料は機械的特性から高分子フ
イルム等の可とう性基板及びガラス板等の非可とう性基
板に大別でき、基板の機械特性に合った薄膜製造方法が
用いられていも 高分子フィルムの様な可とう性基板を
用いる場合に(上 薄膜の量産方法として連続巻取り方
式を用いることが出来も これは巻出しロールから巻出
されたロール状の高分子基板が走行中にめっき法・スパ
ッタ法・真空蒸着法などによって基板上に薄膜を形成し
た抵 巻取りロールに巻き取る方法で、大量生産に適し
た方法とされていも こうして形威された薄膜(よ 装
飾包装用フィルム・磁気記録媒体をはじめとした多方面
に用いられていも 薄膜の形成法においては薄膜形成後
の内部応力の緩和・表面硬度の向上などを目的としたア
ニールと呼ばれる熱処理が行われることがあん この処
理{上 第2図に示すように巻取り走行系を用いて例え
ば大気中で昇温ローラ9に沿って薄膜形戊済み高分子基
板3を走行させることによって可能であも 昇温ローラ
9を用いたアニール処理の場合は高分子基板3が昇温ロ
ーラ9にふれ始めるとき及び昇温ローラ9からはなれる
ときに急激に熱変形するので皺が発生し易(1 またア
ニール処理後の薄膜の表面性が昇温ローラ9の表面性に
依存するので表面平滑性のよい薄膜を得るには昇温ロー
ラ9の表面もまた平滑であることが必要であも 昇温ロ
ーラ9を用いたこれらの課題を回避する一つの手段とし
て、昇温ローラ9を用いない直接加熱が有効であも 即
ち第3図に示すように薄膜形成済み高分子基板3がガイ
ドローラ4、 4間を走行中に加熱用ヒータ55を用い
て非接触の加熱を行なうことによってアニール処理を行
なうことが出来も 発明が解決しようとする課題 ところがアニール処理によって高分子基板の熱収縮がお
きると薄膜が形戒された高分子基板はカール(反り〉を
おこも カールの程度はアニール温度が高いほど強く、
カールを少なくすることと十分なアニール効果を与える
ことは相反する課題であった 本発明は このような従来技術の課題を解決することを
目的とすも 課題を解決するための手段 本発明は高分子基板上に直接あるいは下地層を介して薄
膜層を形成した後に前記高分子基板を、大気中または同
等以上の酸素を含む雰囲気中で、熱源に非接触の加熱方
法によって昇温する薄膜の製造方法において、前記薄膜
層側から加熱すると同時に前記高分子基板側から冷却す
ることを特徴とする薄膜の製造方法であも 作用 本発明によれば薄膜層側から昇温しでアニールすると同
時に高分子基板側から冷却するので、高分子基板側から
冷却しない場合に比べてカールを小さくすることができ
も 実施例 以下に 本発明の実施例について図面を参照しながら説
明すも 第l図は本発明の実施例を示す図弘 従来例を示す第3
図と異なる点は加熱ヒータ5と対向して冷却ノズル7を
設けたことにあも 加熱ヒータ5としては遠赤外線ヒー
タの他 ハロゲンランプ・レーザなどを用いることがで
きも また 冷却ノズル7からの気流は圧縮機を用いて
発生した清浄空気流とした八 窒素・酸素その他のガス
も用いることができも 気流の温度はアニール温度その
他との兼ね合いで常温でL また冷凍設備を用いて冷気
流としてもよ〜ち 厚さlOμ八 幅20cmのポリイ
ミド基板上に真空蒸着法によって膜厚2 5 0 nm
のC oC r層を設けた垂直磁気記録媒体の表面酸化
を目的として、フィルム走行速度lm/分でアニール処
理を行なっf,  予備実験として加熱ヒータ側の高分
子基板面に蒸着によって熱電対を形威したものを用1.
X.冷却用気流量を変化させたときに熱電対で測定した
温度(アニール温度)を一定とするためのヒータ電力を
求めておき、実際のアニール処理に於ける冷却用気流量
とカールの強さの関係を調べた カールの強さはアニー
ル処理後の薄膜を直径30mmの円形に切り出したとき
の反り量で評価した 第4図にアニール温度300℃及
び320℃に於ける測定結果を示す。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a conventional technology relating to a thin film manufacturing method for forming a thin film with an excellent shape.In modern society, thin film technology plays a very wide variety of roles.Thin film substrates Materials can be roughly divided into flexible substrates such as polymer films and non-flexible substrates such as glass plates based on their mechanical properties. When using a flexible substrate (above), a continuous winding method can be used as a mass production method for thin films. A thin film formed on a substrate by a method such as a vacuum deposition method or a vacuum evaporation method and then wound onto a winding roll is considered to be suitable for mass production. Although it is used in many fields including thin film formation, heat treatment called annealing is sometimes performed after thin film formation for the purpose of relieving internal stress and improving surface hardness. As shown in FIG. 2, it is possible to perform an annealing process using the temperature-raising roller 9 by running the thin film-shaped hollowed polymer substrate 3 along the temperature-raising roller 9 in the atmosphere, for example, using a winding system. In this case, wrinkles are likely to occur because the polymer substrate 3 is rapidly thermally deformed when it begins to touch the temperature-raising roller 9 and when it is separated from the temperature-raising roller 9 (1). Since it depends on the surface properties of the heating roller 9, in order to obtain a thin film with good surface smoothness, the surface of the heating roller 9 must also be smooth. Avoid these problems by using the heating roller 9. Although direct heating without using the temperature raising roller 9 is effective as one means, as shown in FIG. However, the problem to be solved by the present invention is that when the thermal contraction of the polymer substrate occurs due to the annealing treatment, the polymer substrate with the thin film formed will curl ( The higher the annealing temperature, the stronger the curl.
The purpose of the present invention is to solve the problems of the prior art, where reducing curl and providing a sufficient annealing effect are contradictory issues. Production of a thin film by forming a thin film layer on a molecular substrate directly or via a base layer, and then heating the polymer substrate in the atmosphere or in an atmosphere containing an equivalent or higher amount of oxygen by a heating method that does not contact a heat source. According to the present invention, the thin film manufacturing method is characterized in that the thin film layer side is heated and the polymer substrate side is cooled at the same time. Since cooling is performed from the substrate side, curling can be reduced compared to the case where cooling is not performed from the polymer substrate side. Figure 3 shows an example of the conventional example.
The difference from the diagram is that a cooling nozzle 7 is provided opposite the heating heater 5.As the heating heater 5, in addition to a far-infrared heater, a halogen lamp, laser, etc. can be used.Also, airflow from the cooling nozzle 7 The airflow is a clean airflow generated using a compressor.Nitrogen, oxygen, and other gases can also be used.The temperature of the airflow is set at room temperature (L) depending on the annealing temperature and other factors.Also, a cold airflow is generated using a refrigeration equipment. A film with a thickness of 250 nm was formed by vacuum evaporation on a polyimide substrate with a thickness of 10 μm and a width of 20 cm.
In order to oxidize the surface of a perpendicular magnetic recording medium with a CoCr layer, an annealing treatment was performed at a film running speed of 1 m/min.As a preliminary experiment, a thermocouple was formed by vapor deposition on the surface of the polymer substrate on the heater side. 1.
X. Calculate the heater power to keep the temperature measured by the thermocouple (annealing temperature) constant when changing the cooling air flow rate, and calculate the difference between the cooling air flow rate and the curl strength in the actual annealing process. The relationship was investigated. The curl strength was evaluated by the amount of warpage when the annealed thin film was cut into a circular shape with a diameter of 30 mm. Figure 4 shows the measurement results at annealing temperatures of 300°C and 320°C.

第4図か板 気流吹き付けによる冷却によってカールが
弱くなっているのがわかも またオージ工電子分光分析
によって調べた酸化の状態(よ アニール温度が同じで
あれば冷却用気流の吹き付けによって変化しなかっtラ
  また 同様の効果が厚さ20μmのポリアミド上に
形成された膜厚300nmのCoCr薄膜の280℃及
び300℃に於けるアニール処理によっても確認され1
,発明の効果 以上の様に本発明の薄膜の製造方法によればアニール処
理時に発生するカールを小さく゜することが出来も
Figure 4: It can be seen that the curl is weakened by the cooling caused by air blowing.Also, the oxidation state investigated by electronic electron spectroscopy (Fig. A similar effect was also confirmed by annealing a 300 nm thick CoCr thin film formed on a 20 μm thick polyamide at 280°C and 300°C1.
In addition to the effects of the invention, the thin film manufacturing method of the present invention also makes it possible to reduce curls that occur during annealing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる一実施例の薄膜の製造方法にお
けるアニール処理工程の一例を示す正面は 第2図及び
第3図はアニール処理工程の従来例を示す正面は 第4
図は上記本発明にかかる実施例の薄膜の製造方法に於け
る冷却用気流量とカールの強さの関係を示すグラフであ
ム 1・・・回転方砥 2・・・巻だしロー/k  3・・
・薄膜が形成された高分子基K 4・・・ガイドローラ
、 5・・・加熱用ヒー久 6・・・巻き取りロー/t
,,  7・・・冷却ノズ&  8・・・冷却用ガ入 
9・・・昇温ローラ。
FIG. 1 is a front view showing an example of an annealing process in a thin film manufacturing method according to an embodiment of the present invention; FIGS. 2 and 3 are front views showing a conventional example of an annealing process;
The figure is a graph showing the relationship between the cooling air flow rate and the curl strength in the thin film manufacturing method according to the embodiment of the present invention. 3...
・Polymer group K on which a thin film is formed 4... Guide roller, 5... Heater for heating 6... Winding roller/t
,, 7... Cooling nozzle & 8... Cooling gas inlet
9...Temperature rising roller.

Claims (4)

【特許請求の範囲】[Claims] (1)高分子基板上に直接あるいは下地層を介して薄膜
層を形成した後に前記高分子基板を、大気中または同等
以上の酸素を含む雰囲気中で、熱源に非接触の加熱方法
によって昇温する薄膜の製造方法において、前記薄膜層
側から加熱すると同時に前記高分子基板側から冷却する
ことを特徴とする薄膜の製造方法。
(1) After forming a thin film layer on a polymer substrate directly or via a base layer, the temperature of the polymer substrate is raised in the air or in an atmosphere containing an equivalent or higher amount of oxygen using a heating method that does not contact a heat source. A thin film manufacturing method comprising: heating from the thin film layer side and cooling from the polymer substrate side at the same time.
(2)冷却手段として気流を用いることを特徴とする請
求項1記載の薄膜の製造方法。
(2) The method for producing a thin film according to claim 1, characterized in that an air stream is used as the cooling means.
(3)高分子基板の材料として、ポリイミドまたは芳香
族ポリアミドを用いることを特徴とする請求項1または
2記載の薄膜の製造方法。
(3) The method for producing a thin film according to claim 1 or 2, characterized in that polyimide or aromatic polyamide is used as the material of the polymer substrate.
(4)薄膜が金属または金属化合物からなることを特徴
とする請求項1、2または3記載の薄膜の製造方法。
(4) The method for producing a thin film according to claim 1, 2 or 3, wherein the thin film is made of a metal or a metal compound.
JP16163289A 1989-06-23 1989-06-23 Production of thin film Pending JPH0328371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16163289A JPH0328371A (en) 1989-06-23 1989-06-23 Production of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16163289A JPH0328371A (en) 1989-06-23 1989-06-23 Production of thin film

Publications (1)

Publication Number Publication Date
JPH0328371A true JPH0328371A (en) 1991-02-06

Family

ID=15738879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16163289A Pending JPH0328371A (en) 1989-06-23 1989-06-23 Production of thin film

Country Status (1)

Country Link
JP (1) JPH0328371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561884B1 (en) 2000-08-29 2003-05-13 Applied Materials, Inc. Web lift system for chemical mechanical planarization
US7030260B2 (en) 2002-02-27 2006-04-18 Honeywell International Inc. Preparation of mixed-halogen halo-silanes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561884B1 (en) 2000-08-29 2003-05-13 Applied Materials, Inc. Web lift system for chemical mechanical planarization
US7008303B2 (en) 2000-08-29 2006-03-07 Applied Materials Inc. Web lift system for chemical mechanical planarization
US7030260B2 (en) 2002-02-27 2006-04-18 Honeywell International Inc. Preparation of mixed-halogen halo-silanes

Similar Documents

Publication Publication Date Title
US4489124A (en) Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor
JPH0328371A (en) Production of thin film
US4917959A (en) Method for preparing magnetic recording medium
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JPH0328372A (en) Production of thin film
US4999220A (en) Method for manufacturing perpendicular magnetic recording medium
JPH0326378A (en) Production of thin film
JPH01149223A (en) Device for correcting curling of magnetic recording medium
JPH0326377A (en) Production of thin film
JPS6328626A (en) Method for cooling plastic film
JPS5924449A (en) Manufacture of magnetic recording film
JPH0352118A (en) Production of magnetic recording medium
JPS60133546A (en) Production of magnetic recording medium
JPS60111345A (en) Manufacture of magnetic recording medium
JPS61289533A (en) Manufacture of magnetic recording medium and its device
JPH02148414A (en) Production of perpendicular magnetic recording medium
JPH01222050A (en) Manufacture of vacuum deposition apparatus and magnetic recording medium and magnetic recording medium
JPS6174828A (en) Heat treatment method of film
JPS6132219A (en) Manufacture of vertical magnetic recording medium
JPS5898844A (en) Manufacture of magnetic recording medium
JPH04362521A (en) Production of thin film
JPS58121131A (en) Production of magnetic recording medium
JPS59124033A (en) Manufacture of magnetic recording medium
JPH11209871A (en) Continuous foil production device
JPH0322221A (en) Production of magnetic recording medium