JPH03283466A - Thin film transistor - Google Patents
Thin film transistorInfo
- Publication number
- JPH03283466A JPH03283466A JP8275890A JP8275890A JPH03283466A JP H03283466 A JPH03283466 A JP H03283466A JP 8275890 A JP8275890 A JP 8275890A JP 8275890 A JP8275890 A JP 8275890A JP H03283466 A JPH03283466 A JP H03283466A
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon oxide
- insulating film
- thin film
- gate insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 31
- 239000010408 film Substances 0.000 claims abstract description 88
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000011521 glass Substances 0.000 claims abstract description 20
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 19
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims description 17
- 239000004065 semiconductor Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 12
- 230000015556 catabolic process Effects 0.000 abstract description 10
- 238000007796 conventional method Methods 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract description 2
- 239000002356 single layer Substances 0.000 abstract description 2
- 230000007847 structural defect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 238000000059 patterning Methods 0.000 description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はガラスを基板とする薄膜トランジスタ(TPT
)に関し、特にそのゲート絶縁膜の構造に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film transistor (TPT) using glass as a substrate.
), particularly regarding the structure of the gate insulating film.
[従来の技術]
従来、薄膜トランジスタのゲート絶縁膜は単一のシリコ
ン窒化膜で形成される。[Prior Art] Conventionally, a gate insulating film of a thin film transistor is formed of a single silicon nitride film.
第3図 (a)〜(e)は従来の逆スタガード型薄膜ト
ランジスタの製造方法を示す工程順序図で、まずガラス
基板1の上面にゲート電極2がクロム(Crlスパッタ
膜のバターニングによって形成された後[第3図(a)
] 、ゲート絶縁膜としてシリコン窒化膜3が形成さ
れる状態を示したものである[第3図(b)]。ついで
チャネル領域を構成するためのアモルファスシリコン膜
6およびリン(P)などの不純物を添加したオーミック
コンタクト用のアモルファスシリコン膜7を順次バター
ニング形成した後[第3図(cl、(di ] 、ゲー
ト絶縁膜から延びるガラス基板1上のシリコン窒化膜3
上にソース、ドレイン電極8.9をクロムfcr)金属
膜のバターニングでそれぞれ形成することによって薄膜
トランジスタは完成される[第3図(e)]。FIGS. 3(a) to 3(e) are process order diagrams showing a conventional method for manufacturing an inverted staggered thin film transistor. First, a gate electrode 2 is formed on the upper surface of a glass substrate 1 by patterning a chromium (Crl) sputtered film. After [Figure 3(a)
], which shows a state in which a silicon nitride film 3 is formed as a gate insulating film [FIG. 3(b)]. Next, an amorphous silicon film 6 for forming a channel region and an amorphous silicon film 7 for ohmic contact doped with impurities such as phosphorus (P) are sequentially formed by patterning [FIG. 3 (cl, (di)], gate Silicon nitride film 3 on glass substrate 1 extending from the insulating film
The thin film transistor is completed by forming source and drain electrodes 8.9 on top by patterning a chromium (fcr) metal film [FIG. 3(e)].
[発明が解決しようとする課題]
しかしながら、上述した従来構造の薄膜トランジスタは
ゲート絶縁耐圧に大きな問題点を有する。何故ならば、
シリコン窒化膜をガラス基板上に均質に堆積させること
は本来非常に難しい技術であるので、ゲート絶縁膜とし
て利用されるゲート電極2上の膜質は兎も角、ソース。[Problems to be Solved by the Invention] However, the thin film transistor having the conventional structure described above has a major problem in gate dielectric breakdown voltage. because,
Since it is originally a very difficult technique to deposit a silicon nitride film homogeneously on a glass substrate, the quality of the film on the gate electrode 2 used as the gate insulating film is indispensable.
ドレイン電極8.9の絶縁膜として利用されるガラス基
板l上のシリコン窒化膜3には膜質不良による絶縁耐圧
の低下が常に懸念されるからである。従って、従来構造
のものでは、高耐圧の薄膜トランジスタが得られないと
いう欠点がある。This is because there is always a concern that the dielectric strength of the silicon nitride film 3 on the glass substrate l, which is used as an insulating film for the drain electrode 8.9, may decrease due to poor film quality. Therefore, the conventional structure has the disadvantage that a thin film transistor with high breakdown voltage cannot be obtained.
本発明の目的は、上記の情況に鑑み、ゲート絶縁耐圧を
向上させることが難しい従来技術の構造的欠点を解決し
た薄膜トランジスタを提供することである。SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a thin film transistor that solves the structural drawbacks of the prior art in which it is difficult to improve the gate dielectric breakdown voltage.
C課題を解決するための手段〕
本発明によれば、薄膜トランジスタは、ガラス基板と、
前記ガラス基板上に積層構造に形成されるゲート電極、
ゲート絶縁膜、チャネル形成のための半導体薄層および
ソース、ドレインの各電極とを含んで成り、前記ゲート
絶縁膜をシリコン酸化膜/シリコン窒化膜/シリコン酸
化膜の3層構造に形成することを含んで構成される。Means for Solving Problem C] According to the present invention, a thin film transistor includes a glass substrate;
a gate electrode formed in a laminated structure on the glass substrate;
The gate insulating film includes a gate insulating film, a semiconductor thin layer for forming a channel, and source and drain electrodes, and the gate insulating film is formed into a three-layer structure of silicon oxide film/silicon nitride film/silicon oxide film. It consists of:
[作 用 ]
本発明によれば、ガラス基板上の薄膜トランジスタは、
シリコン酸化膜を下地とする3層構造のゲート絶縁膜を
備えて形成される。従って、逆スタガード型のようにゲ
ート絶縁膜がガラス基板上に延びる場合でも、ゲート絶
縁膜はきわめて良好な膜質で形成される。また、3層構
造の場合には積層による耐圧性向上の効果も相乗的に加
わるので、ゲート絶縁耐圧を著しく向上させることがで
きる。この際、3層に積層したことによるゲート容量の
低減効果も見込めるので、高周波特性の改善をはかるこ
とが可能である。[Function] According to the present invention, a thin film transistor on a glass substrate has the following characteristics:
It is formed with a three-layer gate insulating film having a silicon oxide film as a base. Therefore, even when the gate insulating film extends over the glass substrate as in the case of an inverted staggered type, the gate insulating film can be formed with extremely good film quality. Furthermore, in the case of a three-layer structure, since the effect of improving voltage resistance due to lamination is added synergistically, the gate insulation voltage can be significantly improved. At this time, since the gate capacitance can be reduced by stacking three layers, it is possible to improve high frequency characteristics.
「実施例1 以下図面を参照して本発明の詳細な説明する。“Example 1 The present invention will be described in detail below with reference to the drawings.
本発明薄膜トランジスタの構造は、その製造方法を明ら
かにすることによって容易に理解し得るので、以下これ
に従って説明する。Since the structure of the thin film transistor of the present invention can be easily understood by clarifying its manufacturing method, it will be explained below accordingly.
第1図 fal〜(e)は本発明を逆スタガード型の薄
膜トランジスタに実施した場合の一実施例を得るための
製造方法の一手法を示す工程順序図である。まず、ガラ
ス基板1が準備され、この面上に厚さ1000〜200
0人のクロム(Crl金属からなるゲート電極2が従来
と同じく通常のパタニング技術を用いて形成される[第
1図fa)? 、lf@]、つぎに、第1図fbl に
示すようにゲート電極2を含むガラス基板1上にはシリ
コン酸化膜(厚さ500人)4.シリコン窒化膜(厚さ
2000〜3000人)3およびシリコン酸化膜(厚さ
500人)5かもなる3層構造の絶縁膜が形成される。FIG. 1 fal to (e) are process flow diagrams showing one method of a manufacturing method for obtaining an embodiment of the present invention in an inverted staggered type thin film transistor. First, a glass substrate 1 is prepared, and a thickness of 1000 to 200 mm is placed on this surface.
The gate electrode 2 made of Cr1 metal is formed using the conventional patterning technique [FIG. 1fa]. , lf@], Next, as shown in FIG. 1 fbl, a silicon oxide film (500 mm thick) 4. An insulating film having a three-layer structure consisting of a silicon nitride film (2000 to 3000 thick) 3 and a silicon oxide film (500 thick) 5 is formed.
すなわち、ガラス基板1上にはシリコン酸化膜4を下地
とするシリコン酸化膜/シリコン窒化膜/シリコン酸化
膜からなる3層構造の絶縁膜がゲート絶縁膜として形成
される[第1図(b)]。That is, an insulating film having a three-layer structure consisting of a silicon oxide film/silicon nitride film/silicon oxide film with a silicon oxide film 4 as a base is formed as a gate insulating film on the glass substrate 1 [FIG. 1(b)] ].
以下従来技術と同じく、チャネル領域を構成する厚さ3
000〜5000人のアモルファスシリコン随6方よび
オーミックコンタクト用の厚さ 300〜500人のア
モルファスシリコン膜7を順次パターニング形成した後
[第1図(c) 、 (di参照]、ガラス基板1上に
延び−る3層構造の絶縁膜上に、ソース、ドレイン電極
8.9をそれぞれクロム(Crl金属膜(厚さ1000
〜2000人)のバターニングで形成することによって
薄膜トランジスタを完成させることができる[第1図f
e)参昭1゜
本実施例によれば、本発明にかかる逆スタガード型の薄
膜トランジスタは、ガラス基板上にシリコン酸化膜を下
地として形成されたシリコン酸化膜/シリコン窒化膜/
シリコン酸化膜の3層構造からなるゲート絶縁膜を含ん
で構成される。従って、ゲート絶縁膜をガラス基板上に
直接形成した単一層のシリコン窒化膜で構成する従来の
薄膜トランジスタに比べれば、膜質の良質化と相俟って
積層による耐圧向上効果が加わるのでゲート絶縁耐圧を
著しく高めることができる。すなわち、実験結果による
と、例えば全体の構造的デイメンジョンを変えない場合
の絶縁耐圧は従来の3MV/cmからIOMV/cmに
飛躍的に向上することが確かめられた。この際、3層構
造とすることによってゲート絶縁膜の個有容量も低減す
ることができるので、ゲート絶縁耐圧と共に高周波特性
が併わせ改善された薄膜トランジスタを得ることが可能
である。Below, as in the prior art, the thickness 3 constituting the channel region is
After sequentially patterning and forming an amorphous silicon film 7 with a thickness of 300 to 500 layers for ohmic contact and an amorphous silicon film 7 having a thickness of 300 to 5000 mm [see FIGS. The source and drain electrodes 8 and 9 are each formed using a chromium (Crl metal film (thickness: 1000 mm) on the extending three-layer insulating film.
The thin film transistor can be completed by patterning the thin film transistor by 2,000 people (Fig. 1 f).
e) Reference 1゜According to this embodiment, the inverted staggered thin film transistor according to the present invention is a silicon oxide film/silicon nitride film/silicon nitride film formed on a glass substrate with a silicon oxide film as a base.
It is configured to include a gate insulating film having a three-layer structure of silicon oxide films. Therefore, compared to conventional thin film transistors in which the gate insulating film is made of a single layer of silicon nitride film formed directly on a glass substrate, the gate dielectric breakdown voltage can be increased because the film quality is improved and the breakdown voltage is improved by stacking layers. can be significantly increased. That is, according to the experimental results, it has been confirmed that the dielectric strength voltage is dramatically improved from the conventional 3 MV/cm to IOMV/cm, for example, when the overall structural dimension is not changed. At this time, by forming the three-layer structure, the specific capacitance of the gate insulating film can be reduced, so it is possible to obtain a thin film transistor with improved gate dielectric breakdown voltage and high frequency characteristics.
また、これらの絶縁耐圧向上効果および容量低減効果は
ソース、ドレイン電極直下の絶縁膜についても同様に生
じるので、信頼性向上の効果も大きい。Furthermore, these effects of improving dielectric strength and reducing capacitance also occur in the insulating film directly under the source and drain electrodes, so that the effect of improving reliability is also significant.
第2図 fa)〜fd)は本発明を類スタガード型の薄
膜トランジスタに実施した場合の一実施例を得るための
製造方法の一手法を示す工程順序図である。本実施例の
薄膜トランジスタは、第2図fal に示すように、ガ
ラス基板1上に厚さ1000〜2000人のソース電極
8およびドレイン電極9がクロム(Cr)金属膜のバタ
ーニングでそれぞれ形成される第1の工程から作られる
。つぎに、これら電極上にオーミックコンタクト用のア
モルファスシリコン膜7がパターニング形成され[第2
図fb)参照]、ついでチャネル領域を構成するための
アモルファスシリコン膜6およびシリコン酸化膜4/シ
リコン窒化膜3/シリコン酸化膜5からなる3層構造の
ゲート絶縁膜が順次形成され[第2図fc)参照]、最
後にゲート電極2がクロム(Cr)金属膜のパターニン
グで形成されるまでの諸工程で完成される〔第2図(d
)参照1゜
本実施例によれば、本発明にかかる順スタガド型の薄膜
トランジスタは、前実施例の逆スタガード型薄膜トラン
ジスタと同じ(シリコン酸化膜/シリコン窒化膜/シリ
コン酸化膜の3層構造からなるゲート絶縁膜を含んで構
成される。従って、本実施例の薄膜トランジスタも亦高
いゲート絶縁耐圧とすぐれた高周波特性を示すことがで
きる。FIG. 2 fa) to fd) are process flow diagrams showing one method of a manufacturing method for obtaining an embodiment of the present invention in a staggered type thin film transistor. In the thin film transistor of this embodiment, as shown in FIG. 2, a source electrode 8 and a drain electrode 9 having a thickness of 1000 to 2000 mm are formed on a glass substrate 1 by patterning a chromium (Cr) metal film. It is made from the first step. Next, an amorphous silicon film 7 for ohmic contact is formed on these electrodes by patterning [second
Refer to FIG. fc)] and finally the gate electrode 2 is formed by patterning a chromium (Cr) metal film [see Fig. 2(d)].
)Reference 1゜According to this embodiment, the forward staggered thin film transistor according to the present invention is the same as the reverse staggered thin film transistor of the previous embodiment (consisting of a three-layer structure of silicon oxide film/silicon nitride film/silicon oxide film). The thin film transistor of this embodiment includes a gate insulating film.Therefore, the thin film transistor of this embodiment can also exhibit high gate dielectric breakdown voltage and excellent high frequency characteristics.
[発明の効果]
以上詳細に説明したように、本発明によれば、薄膜トラ
ンジスタのゲート絶縁膜は良好な膜質のシリコン酸化膜
/シリコン窒化膜/シリコン酸化膜からなる3層構造で
形成されるので、従来より高いゲート絶縁耐圧とすぐれ
た高周波特性をもつ薄膜トランジスタを逆スタガド型ま
たは類スタガード型の区別なく容易に実現することが可
能である。[Effects of the Invention] As described above in detail, according to the present invention, the gate insulating film of a thin film transistor is formed with a three-layer structure consisting of a silicon oxide film/silicon nitride film/silicon oxide film with good film quality. Therefore, it is possible to easily realize a thin film transistor having a gate dielectric strength higher than that of the conventional one and excellent high frequency characteristics, regardless of whether it is an inverted staggered type or a similar staggered type.
第1図 (al〜telは本発明を逆スタガード型の薄
膜トランジスタに実施した場合の一実施例を得るための
製造方法の一手法を示す工程順序図、第2図 (a)〜
fd)は本発明を類スタガード型の薄膜トランジスタに
実施した場合の一実施例を得るための製造方法の一手法
を示す工程順序図、第3図 (al〜(e)は従来の逆
スタガード型薄膜トランジスタの製造方法を示す工程順
序図である。
l・・・ガラス基板、 2・・−ゲート電極、3・・
・シリコン窒化膜、
4.5・・−シリコン酸化膜、
6・・・チャネル領域を構成するアモルファスシリコン
膜、
7・・・オ
ミックコンタクト用のアモルファス
シリコン膜、
8・・・ソ
スミ極、
9・・−ドレイン電極。
特
許
出
願
人
日
本電気株式会社Figure 1 (al~tel is a process sequence diagram showing one method of manufacturing method for obtaining an embodiment of the present invention in an inverted staggered thin film transistor; Figure 2 (a)~
fd) is a process sequence diagram showing a manufacturing method for obtaining an embodiment of the present invention in a similar staggered thin film transistor, and FIG. It is a process order diagram showing the manufacturing method. 1...Glass substrate, 2...-gate electrode, 3...
・Silicon nitride film, 4.5...-Silicon oxide film, 6... Amorphous silicon film constituting the channel region, 7... Amorphous silicon film for ohmic contact, 8... Sosumi pole, 9. -Drain electrode. Patent applicant NEC Corporation
Claims (1)
れるゲート電極、ゲート絶縁膜、チャネル形成のための
半導体薄層およびソース、ドレインの各電極とを含んで
成り、前記ゲート絶縁膜をシリコン酸化膜/シリコン窒
化膜/シリコン酸化膜の3層構造に形成することを特徴
とする薄膜トランジスタ。It comprises a glass substrate, a gate electrode formed in a laminated structure on the glass substrate, a gate insulating film, a semiconductor thin layer for forming a channel, and source and drain electrodes, and the gate insulating film is silicon oxidized. A thin film transistor characterized in that it is formed in a three-layer structure of film/silicon nitride film/silicon oxide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8275890A JPH03283466A (en) | 1990-03-29 | 1990-03-29 | Thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8275890A JPH03283466A (en) | 1990-03-29 | 1990-03-29 | Thin film transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03283466A true JPH03283466A (en) | 1991-12-13 |
Family
ID=13783343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8275890A Pending JPH03283466A (en) | 1990-03-29 | 1990-03-29 | Thin film transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03283466A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500380A (en) * | 1993-04-16 | 1996-03-19 | Goldstar Co., Ltd. | Method for fabricating thin film transistor |
KR100400253B1 (en) * | 2001-09-04 | 2003-10-01 | 주식회사 하이닉스반도체 | Method for forming the thin film transistor of semiconductor device |
KR20160084452A (en) | 2013-11-13 | 2016-07-13 | 유니챰 가부시키가이샤 | Device and method for accumulating articles relating to absorptive articles |
-
1990
- 1990-03-29 JP JP8275890A patent/JPH03283466A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500380A (en) * | 1993-04-16 | 1996-03-19 | Goldstar Co., Ltd. | Method for fabricating thin film transistor |
KR100400253B1 (en) * | 2001-09-04 | 2003-10-01 | 주식회사 하이닉스반도체 | Method for forming the thin film transistor of semiconductor device |
KR20160084452A (en) | 2013-11-13 | 2016-07-13 | 유니챰 가부시키가이샤 | Device and method for accumulating articles relating to absorptive articles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920022372A (en) | Method and fabrication method of MOS transistor with gate and drain overlap | |
JPH01291467A (en) | Thin film transistor | |
JPS62291063A (en) | Field-effect transistor | |
JPH0194664A (en) | Field-effect transistor | |
KR980005441A (en) | Manufacturing Method of Semiconductor Device | |
JPH03283466A (en) | Thin film transistor | |
JP2592044B2 (en) | Manufacturing method of vertical thin film transistor | |
JPS6146068B2 (en) | ||
JPH08172195A (en) | Thin film transistor | |
JPH0620136B2 (en) | Thin film transistor element and manufacturing method thereof | |
JPH01220475A (en) | Insulated gate type field effect transistor | |
KR100580384B1 (en) | Thin Film Transistor with Gate Insulation | |
KR100212273B1 (en) | Storage capacitor structure and its manufacturing method of thin film transistor liquid crystal display elements | |
JPH039572A (en) | Manufacture of semiconductor device | |
JPH0595116A (en) | Semiconductor device and its manufacture | |
JPH0265274A (en) | Thin film transistor | |
JPH03171775A (en) | Thin film transistor and manufacture thereof | |
JPS60189970A (en) | Thin film transistor array | |
JPH04170066A (en) | Manufacture of semiconductor integrated circuit device | |
JPH09162395A (en) | Insulated gate transistor | |
JPH09326492A (en) | Lateral insulated gate field-effect transistor and semiconductor substrate therefor | |
KR100565840B1 (en) | Semiconductor device and method for fabricating the same | |
JPH0568861B2 (en) | ||
JPH04299574A (en) | Semiconductor device and its manufacture | |
JPH02156563A (en) | Semiconductor integrated circuit |