JPH0328275Y2 - - Google Patents

Info

Publication number
JPH0328275Y2
JPH0328275Y2 JP1983178826U JP17882683U JPH0328275Y2 JP H0328275 Y2 JPH0328275 Y2 JP H0328275Y2 JP 1983178826 U JP1983178826 U JP 1983178826U JP 17882683 U JP17882683 U JP 17882683U JP H0328275 Y2 JPH0328275 Y2 JP H0328275Y2
Authority
JP
Japan
Prior art keywords
evaporator
heat transfer
flat plate
air flow
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983178826U
Other languages
Japanese (ja)
Other versions
JPS6086873U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17882683U priority Critical patent/JPS6086873U/en
Publication of JPS6086873U publication Critical patent/JPS6086873U/en
Application granted granted Critical
Publication of JPH0328275Y2 publication Critical patent/JPH0328275Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【考案の詳細な説明】 [考案の目的] (産業上の利用分野) 本考案は、自動車用空気調和装置等に組み込ま
れ、車室内へ吹出す空気を冷却するために使用す
るエバポレータ、特に、その伝熱フインの改良に
関する。
[Detailed description of the invention] [Purpose of the invention] (Field of industrial application) The present invention is an evaporator that is incorporated into an automobile air conditioner and used to cool air blown into a vehicle interior. This invention relates to improvements to the heat transfer fins.

(従来の技術) 自動車用空気調和装置に用いるエバポレータと
しては、第1図に示すように蛇行した扁平な異形
管1の間に帯状で薄い金属板をジグザグに形成し
たコルゲート型の伝熱フイン2,2を挟持したも
のや、或いは第2図に示すように、金属板をプレ
ス成型して皿状としたものを重ね合せて成る液管
素子3,3を多数積層し、各液管素子3,3の扁
平管部4,4の間に同様の伝熱フイン2,2を挟
持したもの等が使われている。
(Prior Art) As shown in FIG. 1, an evaporator used in an air conditioner for an automobile is a corrugated heat transfer fin 2 in which a strip-shaped thin metal plate is formed in a zigzag pattern between meandering flat irregularly shaped tubes 1. , 2 sandwiched between each other, or as shown in FIG. , 3 with similar heat transfer fins 2, 2 sandwiched between flat tube parts 4, 4, etc. are used.

このように構成されたエバポレータにおいて
は、入口管5から異形管1或いは液管素子3(以
下冷媒管Hと総称する)内に流通入した液冷媒
が、フイン2,2間を通過する空気と熱交換し、
空気が冷却され、空気中に含まれる水蒸気が凝縮
して伝熱フイン2,2の表面に付着する。この凝
縮水は、空気の温度がより低くなるフイン2の風
下側に多く生じ、そしてフイン2中の空気の流れ
に押されて、フイン2の風下側端部に移動する。
すなわち、凝縮水wは、主として、第3図に示す
ように、伝熱フイン2の湾曲部6にたまり、これ
が空気の流れに押されて、第4図に示すように冷
媒管Hに沿つて流れ、風下側端部に移動する。
In the evaporator configured in this way, the liquid refrigerant flowing from the inlet pipe 5 into the irregularly shaped pipe 1 or the liquid pipe element 3 (hereinafter collectively referred to as the refrigerant pipe H) interacts with the air passing between the fins 2 and 2. exchange heat,
The air is cooled, and water vapor contained in the air condenses and adheres to the surfaces of the heat transfer fins 2, 2. A large amount of this condensed water is generated on the leeward side of the fins 2 where the air temperature is lower, and is pushed by the air flow in the fins 2 and moves to the leeward side end of the fins 2.
That is, the condensed water w mainly accumulates on the curved part 6 of the heat transfer fin 2 as shown in FIG. 3, and is pushed by the air flow and flows along the refrigerant pipe H as shown in FIG. flow and move to the leeward end.

一方この空気流は第4図に示す矢印Aのように
最も抵抗の少ない中央部の流速は速く、多量の空
気が流れるが、流通抵抗の大きい冷媒管Hの近傍
は空気流は少ない。空気流が少ない所に加えて凝
縮水が付着すれば、最も熱交換効率が高くなけれ
ばならない部分が最も熱交換効率が悪くなり、エ
バポレータが十分に冷却能力を発揮することがで
きないことになる。
On the other hand, as shown by arrow A in FIG. 4, this air flow has a high flow velocity and a large amount of air in the central part where the resistance is lowest, but there is less air flow in the vicinity of the refrigerant pipe H where the flow resistance is large. If condensed water adheres to areas where there is little air flow, the areas where heat exchange efficiency should be the highest will have the lowest heat exchange efficiency, and the evaporator will not be able to provide sufficient cooling capacity.

したがつて、伝熱フイン2には、第5図に示す
ようにその平板部7にルーバr(空気流に対し上
り傾斜したルーバ群はr1下り傾斜したルーバ群は
r2で示している)を切り起し、この切り起しによ
り生じた通孔8を通つて平板部7上を流れる凝縮
水wを風下側端部に到る前に落下させ、風下側端
部から飛水するのを防止するとともに熱交換効率
を高めるようにしている。
Therefore , as shown in FIG.
r 2 ) is cut and raised, and the condensed water w flowing on the flat plate part 7 through the through hole 8 created by this cut and raised is allowed to fall before reaching the leeward end. This prevents water from splashing from the outside and increases heat exchange efficiency.

ところが、平板部7を流通する凝縮水wは、通
孔8より落下しても、平板部7の両側端に沿つて
移動するものは、前述の通り湾曲部6の内側又は
外側に沿つて流れ、風下側端部より飛水する虞れ
がある。
However, even if the condensed water w flowing through the flat plate part 7 falls from the through hole 8, the condensed water w flowing along the both sides of the flat plate part 7 will flow along the inside or outside of the curved part 6 as described above. , there is a risk of water splashing from the leeward end.

(考案が解決しようとする課題) そこで従来から飛水を防止するため、より冷媒
管近くまでルーバrを切り起したもの(第6図参
照)とか、伝熱フイン2の風下端2aを斜めに切
り欠き、凝縮水wを冷媒管H等を伝わつて縦方向
に落下させるようにしたもの(第7図A,B参
照)とか、さらには同第7図に示す積層型エバポ
レータでは冷媒管Hの成形の容易性より風下端に
桶部9を形成し、この桶部9を伝わつて凝縮水w
が縦方向に流下するようにしたもの等が種々提案
されているが、確実に飛水を防止するものは少な
いというのが現状である。
(Problem to be solved by the invention) Therefore, in order to prevent splashing water, conventional methods have been used, such as those in which the louver r is cut up closer to the refrigerant pipe (see Fig. 6), or the leeward end 2a of the heat transfer fin 2 is tilted at an angle. In the case of a stacked evaporator shown in Fig. 7, there is a notch that allows the condensed water to fall vertically through the refrigerant pipe H, etc. (see Fig. 7 A and B). For ease of molding, a tub part 9 is formed at the leeward end, and the condensed water flows through this tub part 9.
Although various proposals have been made to allow water to flow down in the vertical direction, the current situation is that there are few that reliably prevent water from flying away.

本考案は、上述した点に鑑みてなされたもの
で、凝縮水が風下側に飛水するのを確実に防止す
るようにしたエバポレータを提供することを目的
とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an evaporator that reliably prevents condensed water from flying to the leeward side.

[考案の構成] (課題を解決するための手段) かかる目的を達成するために、本考案は、内部
に冷媒を流す冷媒管間に、空気流に対し相互に並
設した複数の平板部を有する伝熱フインを介装さ
せたエバポレータにおいて、前記平板部の空気の
流れ方向下流端部位に上流側から下流側へ向つて
次第に拡開する壁部からなる迫上げ部を形成した
ことを特徴とするエバポレータである。
[Structure of the invention] (Means for solving the problem) In order to achieve the above object, the present invention includes a plurality of flat plate parts arranged parallel to each other with respect to the air flow between the refrigerant pipes through which the refrigerant flows inside. In the evaporator having a heat transfer fin interposed therein, a raised portion consisting of a wall portion that gradually expands from the upstream side to the downstream side is formed at the downstream end portion of the flat plate portion in the air flow direction. This is an evaporator.

前記伝熱フインは、平板部に多数のルーバを切
り起したものであることが好ましい。
Preferably, the heat transfer fins are formed by cutting and raising a large number of louvers on a flat plate portion.

前記伝熱フインは、前記迫上げ部の側部であつ
て冷媒管に隣接した位置に排水口を開設すること
が好ましい。
It is preferable that the heat transfer fin has a drainage port at a position adjacent to the refrigerant pipe on the side of the raised abutment part.

(作 用) このように、伝熱フインの空気の流れ方向下流
端部位の略中央より下流に向つて次第に拡開する
壁部からなる迫上げ部を形成すれば、多量の空気
が流れる中央部分に位置する迫上げ部により空気
流は側方へ偏向され、水滴が多量に付着して流れ
ている冷媒管の側面に向つて空気流を衝突させる
ことができ、偏流による熱交換性能の向上を図る
ことができ、また、伝熱フインの下流端より風下
側へ飛水する凝縮水もきわめて少なくなり、さら
にフイン上の水滴が冷媒管を伝わつて流れるよう
になるので、フイン下流端からの水切れ性も良く
なる。
(Function) In this way, by forming an abutment portion consisting of a wall portion that gradually expands downstream from approximately the center of the downstream end portion of the heat transfer fin in the air flow direction, the central portion through which a large amount of air flows can be formed. The airflow is deflected to the side by the raised part located at the top of the refrigerant pipe, making it possible to collide with the side of the refrigerant pipe where a large amount of water droplets are flowing, improving heat exchange performance due to the deflection. In addition, the amount of condensed water that flies to the leeward side from the downstream end of the heat transfer fins is extremely reduced, and water droplets on the fins flow through the refrigerant pipes, so water does not drain from the downstream end of the fins. Sex also improves.

(実施例) 以下、本考案の一実施例を図面につき詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第8図は本考案に係るエバポレータの要部を示
す斜視図、第9図は第8図の要部断面図、第10
図は第8図の要部を示す正面図であり、第1〜7
図に示す部材と同一部材には同一符号を付してあ
る。
FIG. 8 is a perspective view showing the main parts of the evaporator according to the present invention, FIG. 9 is a sectional view of the main parts of FIG. 8, and FIG.
The figure is a front view showing the main parts of FIG.
The same members as those shown in the figures are designated by the same reference numerals.

本実施例のエバポレータ10は、第1図に示す
ものと同様の異形管エバポレータであり、冷媒管
Hにロー付け等により固着した伝熱フイン2は概
述のものと同様に平板部7に多数のルーバRを切
り起している。
The evaporator 10 of this embodiment is a deformed tube evaporator similar to that shown in FIG. The louver R is cut out.

ルーバRは、平板部7に略々均等巾lで切り起
したものであるが、この伝熱フイン2の略々前半
分は空気の流れ方向に対して下り傾斜したルーバ
Rを切り起し、これに続くルーバRは空気の流れ
方向に対して上り傾斜したものである。
The louver R is cut and raised on the flat plate part 7 with a substantially uniform width l, and approximately the front half of the heat transfer fin 2 is cut and raised from the louver R that is inclined downward with respect to the air flow direction. The louver R following this is inclined upward with respect to the air flow direction.

特に本実施例においては、伝熱フイン2の平板
部7の空気の流れを側方へ偏流させる迫上げ部1
1を形成している。この迫上げ部11は平板部7
の下流端より所定長Sだけ形成され、平板部7の
空気の流れ方向下流端部位の略中央より下流側に
向つて次第に拡開する壁部12から構成されてい
る。この壁部12はさらに下流側に向う程次第に
高さhが高くなるように構成することが好ましい
が、必ずしも平板部7の中央より壁部12の形成
を開始することはなく、多少ずれた位置から開始
してもよい。
Particularly in this embodiment, the raised part 1 that deflects the air flow of the flat plate part 7 of the heat transfer fin 2 to the side
1 is formed. This raised part 11 is the flat plate part 7
The wall portion 12 is formed by a predetermined length S from the downstream end of the flat plate portion 7 and gradually expands toward the downstream side from approximately the center of the downstream end portion of the flat plate portion 7 in the air flow direction. It is preferable that the height h of the wall portion 12 gradually increases toward the downstream side, but the formation of the wall portion 12 does not necessarily start from the center of the flat plate portion 7, but rather at a position slightly shifted from the center of the flat plate portion 7. You may start from

このような壁部12を形成すれば、平板部7上
を流下して来た水滴及び空気流が壁部12により
側方へ偏流されることになり、例えば第9図に示
すように中央部分で多量に空気が流れている場合
でも、矢印で示すように空気流を側方へ偏向さ
せ、水滴が多量に付着して流れている冷媒管Hの
側面に向つて空気流を衝突させることになる。こ
れにより一層平板部7の中央部分からの飛水は防
止できるのみでなく、空気流により凝縮水を押し
流し、伝熱フイン2の側部に開設した排水口13
を通つて落水させることもできる。
If such a wall portion 12 is formed, water droplets and airflow flowing down on the flat plate portion 7 will be deflected to the sides by the wall portion 12. For example, as shown in FIG. Even when a large amount of air is flowing, the airflow is deflected to the side as shown by the arrow, and the airflow collides with the side of the refrigerant pipe H, where a large amount of water droplets are flowing. Become. This not only further prevents water from flying away from the central part of the flat plate part 7, but also allows the air flow to wash away condensed water, allowing the drain port 13 provided on the side of the heat transfer fin 2 to
You can also drop water through it.

なお、排水口13は、迫上げ部11により偏流
されたものと、冷媒管Hに沿つて流下して来た凝
縮水とを、落水させるために、迫上げ部11の側
部であつて、冷媒管Hに隣接した位置に開設する
ことが好ましい。
In addition, the drain port 13 is located on the side of the abutment part 11 in order to drain the water diverted by the abutment part 11 and the condensed water that has flowed down along the refrigerant pipe H. It is preferable to open it at a position adjacent to the refrigerant pipe H.

迫上げ部11の形成は、下記の方法により容易
に成形できる。
The abutment raised portion 11 can be easily formed by the following method.

最近の伝熱フインは厚さ0.5〜0.6mm程度の極め
て薄肉で、アルミニウム板等のような軟質材料を
用いているため、通常のカツターナイフにより容
易に切断できる。そこで、エバポレータを成形
し、伝熱フイン2を冷媒管Hに固着した状態で、
前記カツタナイフを下から上方に向けて切り上げ
れば、フイン2はカツターナイフにより押し上げ
られて上方へ迫り上ることになり、風下側へ流れ
ようとする水滴等を側方へ向かわせる形状を簡単
に成形できる。
Recent heat transfer fins are extremely thin, about 0.5 to 0.6 mm thick, and are made of soft materials such as aluminum plates, so they can be easily cut with a regular cutter knife. Therefore, with the evaporator molded and the heat transfer fins 2 fixed to the refrigerant pipes H,
If the cutter knife is cut upward from the bottom, the fins 2 will be pushed up by the cutter knife and will rise upwards, making it easy to form a shape that directs water droplets, etc. that would otherwise flow downwind to the side. .

しかも、このような切断方法を用いたときには
その切口により形成される迫上げ部11が、風上
側では低く、風下側では高いという形状を起し、
排水にとつてはきわめて都合のよい形状となる。
Moreover, when such a cutting method is used, the raised part 11 formed by the cut is low on the windward side and high on the leeward side,
The shape is extremely convenient for drainage.

また伝熱フイン2の下流端部は、空気流を上方
に向ける形状となるので、例えば第11図に示す
ような自動車用空気調和装置のクーラユニツト1
4にように、出口をケーシングの僅か上方位に開
設するものの場合(これは凝縮水が出口15から
風下側に簡単に飛散しないようにするため)には
空気流を伝熱フイン2によつて自然と出口15側
へ向わしめることになり、エバポレータにおける
空気の流通抵抗が上昇する虞れもない。
Further, the downstream end of the heat transfer fin 2 is shaped to direct the airflow upward, so that it can be used, for example, in a cooler unit 1 of an automobile air conditioner as shown in FIG.
4, in the case where the outlet is opened slightly above the casing (this is to prevent condensed water from easily scattering from the outlet 15 to the leeward side), the air flow is controlled by the heat transfer fins 2. Since the air is naturally directed toward the outlet 15 side, there is no risk that the air flow resistance in the evaporator will increase.

上述した実施例は、異形管エバポレータに関す
るものであるが、本考案は、これにのみ限定され
るものではなく、積層型のエバポレータにも適用
することができる。特に積層型のエバポレータで
は、空気流の下流端に樋部を形成し、樋部に沿つ
て凝縮水を落下させると一層飛水防止効果の高い
エバポレータを得ることができる。
Although the embodiments described above relate to a deformed tube evaporator, the present invention is not limited thereto, and can also be applied to a laminated type evaporator. In particular, in a laminated type evaporator, if a gutter is formed at the downstream end of the air flow and the condensed water falls along the gutter, an evaporator with even higher water splash prevention effect can be obtained.

(考案の効果) 以上のように、本考案によれば、エバポレータ
に組み込まれる伝熱フインにおける平板部に、空
気の流れ方向下流端部位に、空気流を側下へ偏流
させる迫上げ部を形成したため、空気流を側方へ
偏流でき、空気と冷媒管との接触が確実に行なわ
れ、熱交換効率が向上し、しかも、伝熱フインの
下流端より風下側へ飛水する凝縮水も、きわめて
少なくなる。特に迫上げ部では凝縮水を側方へ押
しやり、フイン上の水滴が冷媒管を伝わつて流れ
るようになるので、フイン下流端からの水切れ性
が良くなる。
(Effects of the invention) As described above, according to the invention, the flat plate part of the heat transfer fin incorporated in the evaporator is provided with a raised part that deflects the air flow downward to the side at the downstream end portion in the air flow direction. As a result, the airflow can be deflected to the side, ensuring contact between the air and the refrigerant pipes, improving heat exchange efficiency, and condensed water flying to the leeward side from the downstream end of the heat transfer fins. It becomes extremely small. Particularly in the abutment part, condensed water is pushed to the side, and water droplets on the fins flow through the refrigerant pipes, which improves water drainage from the downstream end of the fins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は従来のエバポレータを例示する概
略正面図、第3図は第1図の要部拡大正面図、第
4図は第3図の−線に沿う断面図、第5図は
第4図の−線に沿う断面図、第6図はルーバ
を端部まで切り起した例を示す要部斜視図、第7
図A,Bは従来の他の例を示す概略断面図、第8
図は本考案の一実施例を示す要部斜視図、第9図
は第8図を水平方向で断面した状態を示す断面相
当図、10図は、第8図の正面概略図、第11図
は本考案に係るエバポレータを組み込んだクーラ
ユニツトの断面図である。 2…伝熱フイン、7…平板部、10…エバポレ
ータ、11…迫上げ部、12…壁部、13…排水
口、R…ルーバ。
Figures 1 and 2 are schematic front views illustrating conventional evaporators, Figure 3 is an enlarged front view of the main parts of Figure 1, Figure 4 is a sectional view taken along the - line in Figure 3, and Figure 5 is a front view of a conventional evaporator. 4 is a cross-sectional view taken along the - line in FIG.
Figures A and B are schematic sectional views showing other conventional examples;
The figure is a perspective view of a main part showing an embodiment of the present invention, FIG. 9 is a cross-sectional equivalent view showing a horizontal cross-section of FIG. 8, FIG. 10 is a schematic front view of FIG. 8, and FIG. 1 is a sectional view of a cooler unit incorporating an evaporator according to the present invention. 2... Heat transfer fin, 7... Flat plate part, 10... Evaporator, 11... Raised part, 12... Wall part, 13... Drain port, R... Louver.

Claims (1)

【実用新案登録請求の範囲】 (1) 内部に冷媒を通す冷媒管間に、空気流に対し
相互に並列した複数の平板部を有する伝熱フイ
ンを介装させたエバポレータにおいて、前記平
板部の空気の流れ方向下流端部位に上流側から
下流側に向かつて次第に拡開する壁部からなる
迫上げ部を形成したことを特徴とするエバポレ
ータ。 (2) 前記伝熱フインは、前記平板部から多数のル
ーバを切り起してなる実用新案登録請求の範囲
第1項に記載のエバポレータ。 (3) 前記伝熱フインは、前記迫上げ部の側部であ
つて冷媒管に隣接した位置に排水口を開設した
ことを特徴とする実用新案登録請求の範囲第1
項は第2項に記載のエバポレータ。
[Claims for Utility Model Registration] (1) In an evaporator in which a heat transfer fin having a plurality of flat plate parts parallel to each other with respect to the air flow is interposed between refrigerant pipes through which refrigerant passes, What is claimed is: 1. An evaporator characterized in that an evaporator is formed at a downstream end in an air flow direction with an abutment portion consisting of a wall portion that gradually expands from the upstream side to the downstream side. (2) The evaporator according to claim 1, wherein the heat transfer fins are formed by cutting and raising a large number of louvers from the flat plate portion. (3) Utility model registration claim 1, characterized in that the heat transfer fin has a drainage port at a position adjacent to the refrigerant pipe on the side of the raised part.
Item 2 is the evaporator described in Item 2.
JP17882683U 1983-11-21 1983-11-21 Evaporator Granted JPS6086873U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17882683U JPS6086873U (en) 1983-11-21 1983-11-21 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17882683U JPS6086873U (en) 1983-11-21 1983-11-21 Evaporator

Publications (2)

Publication Number Publication Date
JPS6086873U JPS6086873U (en) 1985-06-14
JPH0328275Y2 true JPH0328275Y2 (en) 1991-06-18

Family

ID=30388150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17882683U Granted JPS6086873U (en) 1983-11-21 1983-11-21 Evaporator

Country Status (1)

Country Link
JP (1) JPS6086873U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994270U (en) * 1982-12-16 1984-06-26 昭和アルミニウム株式会社 Condensation water drainage device in evaporator

Also Published As

Publication number Publication date
JPS6086873U (en) 1985-06-14

Similar Documents

Publication Publication Date Title
JP3459271B2 (en) Heater core of automotive air conditioner
EP2233874B1 (en) Heat exchanger
JP2000179988A (en) Refrigerant evaporator
JP5084707B2 (en) Air conditioner
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
JPH0791873A (en) Fin and tube type heat exchanger
JPS61252495A (en) Laterally laminated type heat exchanger
CN107782194A (en) A kind of hydrophobic heat abstractor of part
JP3790350B2 (en) Heat exchanger
JP2004101074A (en) Heat exchanger
JPH0328275Y2 (en)
JPH04186070A (en) Heat exchanger
JP2002090083A (en) Heat exchanger
JPH0328274Y2 (en)
JPS6127495A (en) Laminated type heat exchanger
JP3074113B2 (en) Refrigerant evaporator
JP2002054840A (en) Air conditioner
JPS61140790A (en) Refrigerant vaporizer
JPH1123179A (en) Heat exchanger with fin
JPS625579Y2 (en)
JPS58178192A (en) Corrugated fin
KR101418860B1 (en) A structure for discharging a condensed Water of evaporator
KR101158225B1 (en) Louver fin and heat exchanger having the same
JP2002090082A (en) Heat exchanger
JPH0228370Y2 (en)