JPS61140790A - Refrigerant vaporizer - Google Patents

Refrigerant vaporizer

Info

Publication number
JPS61140790A
JPS61140790A JP26426184A JP26426184A JPS61140790A JP S61140790 A JPS61140790 A JP S61140790A JP 26426184 A JP26426184 A JP 26426184A JP 26426184 A JP26426184 A JP 26426184A JP S61140790 A JPS61140790 A JP S61140790A
Authority
JP
Japan
Prior art keywords
louvers
refrigerant
airflow
louver
heat conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26426184A
Other languages
Japanese (ja)
Inventor
Ken Yamamoto
憲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP26426184A priority Critical patent/JPS61140790A/en
Publication of JPS61140790A publication Critical patent/JPS61140790A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Abstract

PURPOSE:To improve the heat exchanging performance of heat conducting fins of a refrigerant vaporizer by disposing louvers of the refrigerant vaporizer parallelly to the airflow through the space between flat tubes and heat conducting fins, the end of the louvers pointing downward when the refrigerant vaporizer is set in place. CONSTITUTION:A heat conducting fin 2 has multiple folded-up louvers 20 which are pointing downward in regard to the direction of gravity and are disposed parallelly to the airflow direction A entering into a refrigerant vaporizer. Therefore, the codensate attached to the louvers 20 drops downward by its gravity, and, since they are parallel to the airflow A, the water is easily drained and the louvers 20 have more surface area that is exposed to the ambient air. Further, because of the parallel arrangement with the airflow A, dead water spots are eliminated, and the drafting air is effectively cooled by all of the louvers 20 and heat conducting fins 2. In addition, since the louvers 20 not become the drafting resistance, the airflow rate can be increased, and so, the cooling effect can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷房・冷凍を行なう冷凍サイクル装置の冷媒
蒸発器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a refrigerant evaporator of a refrigeration cycle device that performs cooling and freezing.

〔従来の技術〕[Conventional technology]

第5図は、従来周知の冷媒蒸発器の外観を示し、この形
式の冷媒蒸発器は、その周囲空気を冷却しく1) で車室内の冷房を行なう自動車用冷房装置に多く使用さ
れている。
FIG. 5 shows the appearance of a conventionally known refrigerant evaporator, and this type of refrigerant evaporator is often used in automobile cooling systems that cool the surrounding air and cool the interior of a vehicle.

第5図において、1は蛇行状に成形されたアルミニウム
製の偏平チューブで、この内部には第6図に示す如く多
数の冷媒通路1aが形成されており、冷媒は、この冷媒
通路1aを通過する際蒸発作用を行なう。偏平チューブ
lの一端には、冷媒導入用の入口バイブ3がろ・)付は
接合され、また他醋1には冷媒導出用の出口バイブ4が
ろう付は接合されている。
In Fig. 5, reference numeral 1 denotes a flat tube made of aluminum formed into a meandering shape, and a large number of refrigerant passages 1a are formed inside the tube as shown in Fig. 6, and the refrigerant passes through the refrigerant passages 1a. When doing so, it performs an evaporation action. An inlet vibrator 3 for introducing the refrigerant is connected to one end of the flat tube l, and an outlet vibrator 4 for leading out the refrigerant is connected to the other end by brazing.

また、蛇行状に形成された偏平チューブ1の間には、周
囲空気との熱交換を促進させるため、コルゲート状のア
ルミニウム製の伝熱フィン2が偏平チューブ1にろう付
は固着して設けられている。
In addition, between the flat tubes 1 formed in a meandering shape, corrugated aluminum heat transfer fins 2 are fixedly brazed to the flat tubes 1 in order to promote heat exchange with the surrounding air. ing.

この伝熱フィン2には、さらに熱交換を促進させるため
、第7図に示す如く、切り起こしによって多数のルーバ
2aが設けられている。
In order to further promote heat exchange, the heat transfer fins 2 are provided with a large number of louvers 2a by cutting and bending, as shown in FIG.

上記のように構成された冷媒暴発器において、第5図A
方向から空気が流入すると、この空気は、偏平チューブ
1と伝熱フィン2の間を通過する際、冷媒の蒸発によっ
て熱を奪われ冷却される。しかも、伝熱フィン2には多
数のルーバ2aが設けられ−ζいるため、伝熱フィン2
の表面での熱交換が促進され、より大きな冷却能力が得
られる。
In the refrigerant explosion device configured as described above, FIG.
When air flows in from this direction, when the air passes between the flat tube 1 and the heat transfer fins 2, heat is removed by evaporation of the refrigerant and the air is cooled. Moreover, since the heat transfer fins 2 are provided with a large number of louvers 2a, the heat transfer fins 2
heat exchange on the surface is promoted, resulting in greater cooling capacity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

」1記従来の冷媒蒸発器では、部分的には、熱交換の促
進によって大きな冷却能力が得られるが、本発明等によ
って次のような問題点を有することが判明した。
1. Conventional refrigerant evaporators can achieve a large cooling capacity in part by promoting heat exchange, but the present invention has revealed that they have the following problems.

まず、周知のように偏平チューブ1内で冷媒が蒸発する
と、蒸発潜熱を奪われて偏平チューブ1および伝熱フィ
ン2の表面ば冷却される。よって、この冷却された表面
に周囲空気が接触すると、空気は冷却されると共に空気
中の水分が、偏平チューブ1および伝熱フィン2の表面
に結露し、凝縮水となる。そこで、上記従来の蒸発器で
は、伝熱フィン2にルーバ2aが設けられているため、
第6図vr−v+概略断面図である第7図に示す如く、
伝熱フィン2の表面に結露した水滴は、矢印へで示す方
向にルーバ2aの傾きに沿って流れる。従って一部の水
滴5は重力方向に対し、水平な動向ルーバ2b部に溜る
ために、ルーバ2a間の流れを阻止するために熱伝達率
を低下させ、導通抵抗を増大させる原因となる。
First, as is well known, when the refrigerant evaporates within the flat tube 1, the latent heat of evaporation is taken away and the surfaces of the flat tube 1 and the heat transfer fins 2 are cooled. Therefore, when ambient air comes into contact with this cooled surface, the air is cooled and moisture in the air condenses on the surfaces of the flat tube 1 and the heat transfer fins 2, becoming condensed water. Therefore, in the conventional evaporator described above, since the heat transfer fins 2 are provided with the louvers 2a,
As shown in FIG. 7 which is a schematic sectional view of FIG. 6 vr-v+,
Water droplets condensed on the surface of the heat transfer fins 2 flow along the inclination of the louver 2a in the direction indicated by the arrow. Therefore, some of the water droplets 5 accumulate in the horizontal movement louvers 2b with respect to the direction of gravity, which causes a decrease in heat transfer coefficient and an increase in conduction resistance to prevent flow between the louvers 2a.

また第7図の■@○の斜線で示した箇所は風が流れない
死水域となり、実質的に熱交換を行なう部分が減少して
しまう。
In addition, the hatched area (■@○) in FIG. 7 becomes a dead area where no wind flows, and the area where heat exchange is actually performed is reduced.

そこで、本発明は冷媒蒸発器のルーパ部分を改良するこ
とにより、冷媒蒸発器の伝熱フィンでの熱交換性能を向
」ニさせることを解決すべき技術的課題とする。
Therefore, the technical problem to be solved by the present invention is to improve the heat exchange performance in the heat transfer fins of the refrigerant evaporator by improving the looper portion of the refrigerant evaporator.

〔問題点を解決するための手段〕[Means for solving problems]

」目配技術的課題を達成するために、冷媒蒸発器のルー
バを偏平チューブおよび伝熱フィンの間を流れる風の流
れに対して平行に設け、がっ、ルーバの先端が冷媒蒸発
器を設置した状態で下方に突出するようにルーバを設り
るという技術手段を採用する。
In order to achieve the technical goal, the louver of the refrigerant evaporator is installed parallel to the wind flow between the flat tube and the heat transfer fins, and the tip of the louver is installed in the refrigerant evaporator. A technical measure will be adopted in which a louver will be provided so that it protrudes downward in a closed state.

〔作 用〕[For production]

上記技術手段を採用することにより、伝熱フィン部で生
じ一凝縮水は、ルーバに溜ることなく、下方に落下する
By employing the above technical means, the condensed water generated at the heat transfer fin portions does not accumulate in the louver and falls downward.

また、ルーバが風の流れに対して平行であるため、死水
域がなくなり、全ての伝熱フィンおよびルーバがそれら
周囲を通風される空気の冷却作用を行なう。
Additionally, since the louvers are parallel to the wind flow, there are no dead zones and all heat transfer fins and louvers provide a cooling effect to the air that is passed around them.

〔発明の効果〕〔Effect of the invention〕

したがって本発明によれば、ルーバでの凝縮水の水切り
性が良く、ルーパ上に凝縮水が溜ることがないため、ル
ーバ部分は、その周囲空気に対して露出しているため、
ルーバ部分で有効な熱交換を行なうことができる。
Therefore, according to the present invention, the louver has good draining properties for condensed water and no condensed water accumulates on the louver, and the louver portion is exposed to the surrounding air.
Effective heat exchange can be performed in the louver portion.

また、ルーバは冷媒蒸発器に流入する風の流れに対して
平行となるため、通風抵抗を低減することができる。ま
た死水域がなくなるため、全ての伝熱フィンおよびルー
バ部分で周囲通風空気の冷却作用が行われ、従来に比べ
て冷媒蒸発器全体として周囲空気の冷却能力が向」ニす
る。
Furthermore, since the louvers are parallel to the flow of air flowing into the refrigerant evaporator, ventilation resistance can be reduced. In addition, since there is no dead area, all the heat transfer fins and louvers perform a cooling effect on the surrounding ventilation air, and the cooling ability of the surrounding air as a whole of the refrigerant evaporator is improved compared to the conventional method.

〔実施例〕〔Example〕

以下本発明を図に示す実施例によって詳細に説明する。 The present invention will be explained in detail below with reference to embodiments shown in the drawings.

冷媒蒸発器の全体的な構成は、第5図に示す従来例と同
様であるため、説明を省略し、本実施例ではルーバ部分
についてのみ詳しく説明する。
Since the overall configuration of the refrigerant evaporator is the same as that of the conventional example shown in FIG. 5, the explanation will be omitted, and only the louver portion will be explained in detail in this embodiment.

第1図および第2図は、本発明の第1実施例を示し、伝
熱フィン2には、切起しによって複数のルーバ20が設
けられている。このルーバ20の先端は、第1図かられ
かるように、冷媒蒸発器を設置した状態で真下に向かっ
て、すなわち、重力方向に関して垂直下方に突出してい
る。
1 and 2 show a first embodiment of the present invention, in which a plurality of louvers 20 are provided on a heat transfer fin 2 by cutting and bending. As can be seen from FIG. 1, the tip of the louver 20 projects directly downward with the refrigerant evaporator installed, that is, vertically downward in the direction of gravity.

また、第2図からよくわかるように、ルーバ20は、冷
媒蒸発器に流れ込む風の流入方向Aに対して平行に設け
られている。
Moreover, as can be clearly seen from FIG. 2, the louver 20 is provided parallel to the inflow direction A of the wind flowing into the refrigerant evaporator.

従って、ルーバ20に付着した凝縮水ば、重力によって
下方に落下し、しかも風の流れAに対して平行であるた
め水切性が良好であり、ルーバ20の表面は従来に比べ
てその周囲空気に対して露出する部分が増加する。また
、風の流れAに対して平行であるから、死水域がなくな
り、全てのルーバ20及び伝熱フィン2で通風空気の冷
却が有効に行われる。また、従来のようにルーバ20が
通風抵抗になることがなくなるから、風量が増大し、よ
って冷却効果も向上する。
Therefore, the condensed water adhering to the louver 20 falls downward due to gravity, and since it is parallel to the wind flow A, the water draining property is good, and the surface of the louver 20 is more susceptible to the surrounding air than in the past. The exposed area increases. Moreover, since it is parallel to the wind flow A, there is no dead area, and all the louvers 20 and heat transfer fins 2 effectively cool the ventilation air. Further, since the louver 20 does not act as a ventilation resistance as in the conventional case, the amount of air is increased, and the cooling effect is also improved.

次に、本発明の第2実施例について説明する。Next, a second embodiment of the present invention will be described.

本第2実施例では、第3図に示す如く、切り起こしによ
って設けるルーバ21の形状を三角形にすることにより
、ルーバ21の先01iii部からの水滴の落下を容易
にする。
In the second embodiment, as shown in FIG. 3, the shape of the louver 21 provided by cutting and bending is triangular, so that water droplets can easily fall from the tip 01iii of the louver 21.

次に、本発明の第3実施例について説明する。Next, a third embodiment of the present invention will be described.

本第2実施例では、第4図に示す如く、方形状ルーバ2
2を切起こしによって設けるが、本例では、ルーバ22
の切起し角度θば、必ずしも水平方向に対して90°下
方に向いておらず、ある角度、傾いていれば、凝縮水ば
ルーバ22を伝わって下刃に流れ落ちる。
In the second embodiment, as shown in FIG.
In this example, the louver 22 is provided by cutting and raising the louver 22.
The cut-and-raise angle θ is not necessarily 90° downward with respect to the horizontal direction, but if it is tilted at a certain angle, condensed water will flow down to the lower blade through the louver 22.

また、本第3実施例では、上記第1および第2実施例に
比ベルーバ22の表面積を大きくできるため、ルーバ2
2の先端効果を増加させ、熱伝達効率を向上させること
ができる。
In addition, in the third embodiment, the surface area of the louver 22 can be increased compared to the first and second embodiments.
The tip effect of 2 can be increased and the heat transfer efficiency can be improved.

なお、」−記実施例によれば、ルーバ20,21゜22
は切起しによっ′(設けるようにしているが、この他、
伝Pフィン2とは別体のルーバを熱伝導可能に、ろう付
は等により接合してもよいことばBうまでもない。
In addition, according to the embodiment mentioned above, the louvers 20, 21° 22
are set up by cutting and raising, but in addition to this,
It goes without saying that a louver separate from the fins 2 may be joined by brazing, etc. to enable heat conduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す冷媒蒸発器の要部拡
大斜視図、第2図は第1図の概略断面図、第3図は本発
明の第2実施例を示す冷媒蒸発器の要部拡大斜視図、第
4図は本発明の第3実施例を示す冷媒蒸発器の要部拡大
斜視図、第5図は従来および本発明にかかる冷媒蒸発器
の斜視図、第6図は従来の冷媒蒸発器の要部拡大図、第
7図は第6図のVl−Vl概略断面図である。 ■・・・偏平チューブ、2・・・伝熱フィン、20,2
1.22・・・ルーバ。
FIG. 1 is an enlarged perspective view of essential parts of a refrigerant evaporator showing a first embodiment of the present invention, FIG. 2 is a schematic sectional view of FIG. 1, and FIG. 3 is a refrigerant evaporator showing a second embodiment of the present invention. 4 is an enlarged perspective view of a main part of a refrigerant evaporator showing a third embodiment of the present invention; FIG. 5 is a perspective view of a conventional refrigerant evaporator and a refrigerant evaporator according to the present invention; FIG. The figure is an enlarged view of essential parts of a conventional refrigerant evaporator, and FIG. 7 is a schematic sectional view taken along the line Vl--Vl in FIG. 6. ■...Flat tube, 2...Heat transfer fin, 20,2
1.22...Luba.

Claims (1)

【特許請求の範囲】 複数の冷媒通路を有する偏平チューブと、この偏平チュ
ーブに熱伝導可能に接合された伝熱フィンと、この伝熱
フィンに熱伝導可能に設けられたルーバとを具備する冷
媒蒸発器において、 前記ルーバは、前記偏平チューブおよび前記伝熱フィン
の間を流れる風の流れに対して平行に設けられ、かつ前
記ルーバの先端が、前記冷媒蒸発器を設置した状態で下
方に突出するように設けられることを特徴とする冷媒蒸
発器。
[Claims] A refrigerant comprising a flat tube having a plurality of refrigerant passages, a heat transfer fin connected to the flat tube in a heat conductive manner, and a louver provided on the heat transfer fin in a heat conductive manner. In the evaporator, the louver is provided parallel to the flow of air flowing between the flat tube and the heat transfer fin, and a tip of the louver projects downward when the refrigerant evaporator is installed. A refrigerant evaporator characterized in that it is provided to do so.
JP26426184A 1984-12-13 1984-12-13 Refrigerant vaporizer Pending JPS61140790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26426184A JPS61140790A (en) 1984-12-13 1984-12-13 Refrigerant vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26426184A JPS61140790A (en) 1984-12-13 1984-12-13 Refrigerant vaporizer

Publications (1)

Publication Number Publication Date
JPS61140790A true JPS61140790A (en) 1986-06-27

Family

ID=17400715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26426184A Pending JPS61140790A (en) 1984-12-13 1984-12-13 Refrigerant vaporizer

Country Status (1)

Country Link
JP (1) JPS61140790A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770289A1 (en) * 1997-10-28 1999-04-30 Valeo Climatisation Condensate-shedding, heat-dissipating spacers for air-conditioner evaporator
WO2010019401A3 (en) * 2008-08-15 2010-05-06 Carrier Corporation Heat exchanger fin including louvers
JP2012072955A (en) * 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger
CN102809317A (en) * 2012-08-03 2012-12-05 安徽振华光电科技有限公司 Finned radiator
JP2013036625A (en) * 2011-08-03 2013-02-21 Univ Of Tokyo Corrugated fin type heat exchanger
WO2017154175A1 (en) * 2016-03-10 2017-09-14 三菱電機株式会社 Heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770289A1 (en) * 1997-10-28 1999-04-30 Valeo Climatisation Condensate-shedding, heat-dissipating spacers for air-conditioner evaporator
WO2010019401A3 (en) * 2008-08-15 2010-05-06 Carrier Corporation Heat exchanger fin including louvers
EP2315997A2 (en) * 2008-08-15 2011-05-04 Carrier Corporation Heat exchanger fin including louvers
EP2315997A4 (en) * 2008-08-15 2013-01-23 Carrier Corp Heat exchanger fin including louvers
US8627881B2 (en) 2008-08-15 2014-01-14 Carrier Corporation Heat exchanger fin including louvers
JP2012072955A (en) * 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2013036625A (en) * 2011-08-03 2013-02-21 Univ Of Tokyo Corrugated fin type heat exchanger
CN102809317A (en) * 2012-08-03 2012-12-05 安徽振华光电科技有限公司 Finned radiator
WO2017154175A1 (en) * 2016-03-10 2017-09-14 三菱電機株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
EP3279598B1 (en) Heat exchanger and air conditioner
US7882708B2 (en) Flat pipe-shaped heat exchanger
KR900006245B1 (en) Heat exchanger
JP3855346B2 (en) Heat exchanger
JPS58217195A (en) Heat exchanger
JP2000193389A (en) Outdoor unit of air-conditioner
JP3790350B2 (en) Heat exchanger
JP2010025479A (en) Heat exchanger
JPH09189493A (en) Heat exchanger with fins
JPS61140790A (en) Refrigerant vaporizer
JP2004101074A (en) Heat exchanger
JPH11337104A (en) Air conditioner
JPS61153498A (en) Finned heat exchanger
US20040035563A1 (en) Heat exchanger
EP3822570B1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2010139115A (en) Heat exchanger and heat exchanger unit
JPH0410530Y2 (en)
JPH0330718Y2 (en)
JP2004036938A (en) Heat exchanger and air conditioner comprising the same
US8196646B2 (en) Heat exchanger assembly
JPH11201679A (en) Heat exchanger with fin
JPH1123179A (en) Heat exchanger with fin
JPS58214783A (en) Heat exchanger
JPS61159094A (en) Finned heat exchanger
JPH07103609A (en) Heat exchanger for freezing cycle