JPH03282400A - Window material for optical purpose - Google Patents

Window material for optical purpose

Info

Publication number
JPH03282400A
JPH03282400A JP8596090A JP8596090A JPH03282400A JP H03282400 A JPH03282400 A JP H03282400A JP 8596090 A JP8596090 A JP 8596090A JP 8596090 A JP8596090 A JP 8596090A JP H03282400 A JPH03282400 A JP H03282400A
Authority
JP
Japan
Prior art keywords
diamond
window material
mesh
film
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8596090A
Other languages
Japanese (ja)
Inventor
Akira Nishikawa
明 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP8596090A priority Critical patent/JPH03282400A/en
Priority to EP90110382A priority patent/EP0400655A1/en
Publication of JPH03282400A publication Critical patent/JPH03282400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To contrive the increase in the area of a window material, the reduc tion of a cost and the improvement in durable strength by reinforcing filmlike diamond with grid or net like carbon fibers from both front and rear surfaces. CONSTITUTION:The filmlike diamond of about 2mum thickness is deposited by a microwave plasma CVD method on one surface of an Si substrate material 1 and a mesh 3a of about 7mum carbon fibers is mounted thereon; further, a metallic window frame 4a is fixed by metallic solder 5a, etc., thereon to fix the mesh 3a to one surface of the diamond 2. The base plate material 1 is removed by etching. This material is then turned over and the mesh 3b is fixed to the rear side by the similar method. The optical window material formed by reinforcing the front and rear of the diamond 2 with the meshes 3a, 3b in such a manner can be formed to the larger area and the reduction of its cost is possible as well. In addition, the generation of warpage and waving is prevented and the durable strength is improved to prevent the failure.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、紫外線、可視光線、赤外線あるいはX線等の
光学系に使用される窓材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a window material used in optical systems for ultraviolet rays, visible rays, infrared rays, or X-rays.

[発明の概要] 本発明の光学用窓材は、その窓部が、格子状または網状
の炭素繊維で表・裏の両側から補強されたフィルム状ダ
イヤモンドから成るものである。
[Summary of the Invention] The optical window material of the present invention has a window portion made of a film-like diamond reinforced from both the front and back sides with lattice-like or net-like carbon fibers.

極めて細く、X線透過性も良好で、さらに引張り強度も
高い炭素繊維を用いて、薄く脆いフィルム状ダイヤモン
ドの表・裏画面を補強することにより、フィルム状ダイ
ヤモンド本来の光やX線に対する透過性を損なうことな
く、窓材の大面積化と低コスト化、耐圧強度の向上を図
ることができる。
By reinforcing the front and back surfaces of a thin, brittle film-shaped diamond using extremely thin carbon fibers that have good X-ray transparency and high tensile strength, we can improve the inherent transparency of film-shaped diamonds to light and X-rays. It is possible to increase the area of the window material, reduce the cost, and improve the pressure resistance without damaging the window material.

[従来の技術] 公知の如くダイヤモンドは、波長約03μmの紫外線領
域から波長約25μmの遠赤外線領域に到る広い範囲に
おいて光の透過性に優れており、また、原子番号の小さ
い炭素原子から成るため、X線の透過性も極めて良好で
ある。しかも、耐熱性も、真空中で約1200℃、大気
中で約600℃と高いため、光学用窓材としての普及が
期待されでいる。
[Prior Art] As is well known, diamond has excellent light transmittance in a wide range from the ultraviolet region with a wavelength of approximately 0.3 μm to the far infrared region with a wavelength of approximately 25 μm, and is composed of carbon atoms with a small atomic number. Therefore, the X-ray transparency is also extremely good. Furthermore, it has high heat resistance of about 1200°C in vacuum and about 600°C in air, so it is expected to be widely used as an optical window material.

従来の技術では、ダイヤモンドから成る光学用窓材を製
造しようとする場合、直径数mm程度の天然あるいは人
工合成ダイヤモンド結晶を原料として、研磨、研削等の
機械加工により薄く仕上げる等の方法が考えられる。
With conventional technology, when trying to manufacture an optical window material made of diamond, methods such as using natural or artificially synthesized diamond crystals with a diameter of several millimeters as raw materials and finishing them thinly through mechanical processing such as polishing and grinding can be considered. .

[発明が解決しようとする課題] しかしこの場合、大粒のダイヤモンド結晶は存在自体が
稀であり、しかも極めて高価なため、大面積(例えば直
径1cm以上)の窓材の製造は非常に困難であり、また
、ダイヤモンドが物質中最高の硬度をもつため、機械加
工に要するコストも極めて高いという欠点があった。
[Problem to be solved by the invention] However, in this case, large diamond crystals are rare and extremely expensive, so it is extremely difficult to manufacture a window material with a large area (for example, 1 cm or more in diameter). Furthermore, because diamond has the highest hardness of all materials, the cost of machining is extremely high.

本発明は、これらの問題点を解決し、安価で大面積化が
可能な、光透過性の良いダイヤモンドから成る光学用窓
材を製造する方法を提供することを目的としたものであ
る。
The object of the present invention is to solve these problems and provide a method for manufacturing an optical window material made of diamond with good light transmittance, which is inexpensive and can be made into a large area.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明では、光学用窓材に
おいて気相法で合成したフィルム状ダイヤモンドを窓材
として使用し、その窓部を該フィルム状ダイヤモンドと
それを表・裏両側から補強する格子状または網状の炭素
繊維から成る3層構造とする。
In order to solve the above problems, in the present invention, a film-like diamond synthesized by a vapor phase method is used as a window material in an optical window material, and the window part is reinforced with the film-like diamond from both the front and back sides. It has a three-layer structure made of lattice-like or net-like carbon fibers.

[作用] この様に本発明による光学用窓材は、第1図及び第2図
に示す様にフィルム状ダイヤモンドが弓張り強度の高い
炭素繊維の格子または網で補強されているため、フィル
ム状ダイヤモンドの反りやうねりの発生を防ぎ、かつ、
耐圧強度を著しく向上させて破損を防止することができ
る(注:例えば市販の炭素繊維は、直径7μm前後で引
張り強度300〜500 k g/mm”もの値を有す
る)。
[Function] As shown in FIGS. 1 and 2, the optical window material according to the present invention has a film-like diamond reinforced with a carbon fiber lattice or mesh having high bowing strength. Prevents diamond warping and waviness, and
The compressive strength can be significantly improved and breakage can be prevented (Note: For example, commercially available carbon fibers have a tensile strength of 300 to 500 kg/mm'' at a diameter of around 7 μm).

特に、本来、薄くて脆い性質のフィルム状ダイヤモンド
を、その表・裏の両側から炭素繊維の格子あるいは網で
はさみ込んで補強した構造から成るため、表側・裏側の
いずれの方向からの圧力に対しても高い強度を有すると
いう点は、本発明の特筆すべき点である。
In particular, it is made of a structure in which film-like diamond, which is originally thin and brittle, is reinforced by sandwiching carbon fiber lattice or netting from both the front and back sides, so it can withstand pressure from either the front or back side. A noteworthy feature of the present invention is that it has particularly high strength.

また、直径数μm程度の極めて細い炭素繊維を用いてい
るため、この炭素繊維の格子または網が窓部を透過する
光またはX線を遮断する量は極めて少なく無視し得る程
度である。さらに、炭素繊維はX線透過性の良いC原子
から成るため、X線の透過用としては特に有利である。
Furthermore, since extremely thin carbon fibers with a diameter of several μm are used, the amount of light or X-rays transmitted through the window portion blocked by the carbon fiber lattice or net is extremely small and can be ignored. Furthermore, since carbon fibers are composed of C atoms that have good X-ray transparency, they are particularly advantageous for transmitting X-rays.

又、フィルム状ダイヤモンドの成膜方法は、熱CVD法
、ブラズ?CVD法、光CVD法、イオン化蒸着法、イ
オンビーム法、プラズマジェット法等があり、いづれを
用いても、本発明に何ら支障がなく、成膜可能面積が従
来のダイヤモンド結晶より機械加工で窓材に加工する方
法に比べ、大幅に大面積化が達成され、大幅な製造コス
トの低減が図られるものである。
In addition, the method of forming a film-like diamond is thermal CVD method, Blaz? There are CVD methods, photo-CVD methods, ionized vapor deposition methods, ion beam methods, plasma jet methods, etc., and there is no problem with the present invention using any of them, and the area where the film can be formed is larger than that of conventional diamond crystals by machining. Compared to the method of processing into materials, a significantly larger area can be achieved and manufacturing costs can be significantly reduced.

〔実施例] 以下、本発明の実施例を図面に基づいて説明する。第3
図(A)〜(D)は、本発明の光学用窓材の製造工程の
一例の説明図であり、以下、これらを(A)図〜(D)
図と称する。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. Third
Figures (A) to (D) are explanatory diagrams of an example of the manufacturing process of the optical window material of the present invention.
It is called a figure.

まず(A)図に示す様に、直径30mm、厚さ200L
Lmの81基板材lを用意し、この片面に、マイクロ波
プラズマCVD法(特開昭58−110494)を用い
て表1に示す合成条件により、厚さ2μmのフィルム状
ダイヤモンド■を析出させた。
First, as shown in figure (A), the diameter is 30 mm and the thickness is 200 L.
A 81 substrate material l of Lm was prepared, and a 2 μm thick film diamond ■ was deposited on one side of the substrate using the microwave plasma CVD method (Japanese Unexamined Patent Publication No. 58-110494) under the synthesis conditions shown in Table 1. .

表  1 次に、(B)図に示す様に、前記フィルム状ダイヤモン
ド■の上に直径的7μ工程度の炭素繊維のメツシュ3a
を載せ、さらにその上に金属の窓枠4a(外径30mm
、内径20mm、厚さ2mm)を金属ロウ5a等で固着
することにより、フィルム状ダイヤモンド2の片面に炭
素繊維メツシュ3aを固定した。
Table 1 Next, as shown in Figure (B), a carbon fiber mesh 3a with a diameter of 7 μm is placed on the film diamond
, and then a metal window frame 4a (outer diameter 30 mm)
, an inner diameter of 20 mm, and a thickness of 2 mm) with metal solder 5a or the like, thereby fixing a carbon fiber mesh 3a to one side of the film-like diamond 2.

次に、0図に示すように、前記Si基板材1の部分を除
く全面にマスキング剤6を塗布し、さらに、D図に示す
ようにこれをHFとHNO,の混酸溶液中に浸漬して8
1基板材1をエツチング除去し、その後、マスキング剤
も剥離洗浄した。
Next, as shown in Figure 0, a masking agent 6 is applied to the entire surface of the Si substrate material 1 except for the part, and then, as shown in Figure D, it is immersed in a mixed acid solution of HF and HNO. 8
1 The substrate material 1 was removed by etching, and then the masking agent was also removed and cleaned.

さらに、これを上下反転させて、第2図に示す様に、フ
ィルム状ダイヤモンド2のまだ炭素繊維メツシュで補強
されていない側に新たな炭素繊維メツシュ3bを載せた
後、その上に金属の窓枠4bを金属ロウ5b等で固着し
た。これによって第1図に示す様な、フィルム状ダイヤ
モンドの表・裏画面を炭素繊維メツシュで補強した構造
から成る光学用窓材を得た。
Furthermore, after turning this upside down and placing a new carbon fiber mesh 3b on the side of the film diamond 2 that has not yet been reinforced with the carbon fiber mesh, as shown in FIG. 2, a metal window is placed on top of it. The frame 4b was fixed with metal solder 5b or the like. As a result, an optical window material having a structure in which the front and back screens of film-like diamond were reinforced with carbon fiber mesh as shown in FIG. 1 was obtained.

第4図は、本発明により得られた窓材の耐圧強度をテス
トした装置の説明図である。真空チャンバー7と他の真
空チャンバ8との連結部には、本発明による窓材9が隔
壁として取付けられている。また、各チャンバーはそれ
ぞれ、ストップバルブ10.11を介してガスボンベ1
2と接続され、また、ストップバルブ13.14を介し
て真空ポンプ15と接続されており、さらに、リークバ
ルブ16.17により大気環境と接続された構造となっ
ている。
FIG. 4 is an explanatory diagram of an apparatus used to test the compressive strength of the window material obtained according to the present invention. A window material 9 according to the present invention is attached as a partition at the connecting portion between the vacuum chamber 7 and another vacuum chamber 8. In addition, each chamber is connected to a gas cylinder 1 via a stop valve 10.11.
2, and also connected to the vacuum pump 15 via stop valves 13 and 14, and further connected to the atmospheric environment via leak valves 16 and 17.

このテスト装置を用いて、真空チャンバー7.8の内部
を交互に加圧・減圧する方法により、本窓材が、表側・
裏側のいずれの方向からの圧力に対しても充分な強度を
持つか否かのテストを行つた結果、圧力差2気圧におい
て、フィルム状ダイヤモンドの破損やリークは全く発生
せず、本窓材が表・裏いずれの方向からの圧力に対して
も高い強度を有することが確認できた。
Using this test device, the inside of the vacuum chamber 7.8 was alternately pressurized and depressurized, and this window material
As a result of tests to see if it had sufficient strength against pressure from any direction on the back side, the film diamond did not break or leak at all under a pressure difference of 2 atmospheres, and this window material proved to be strong enough to withstand pressure from any direction. It was confirmed that it has high strength against pressure from both the front and back sides.

[発明の効果] 上述の如く、本発明によればダイヤモンドから成る光学
用窓材の大面積化が可能で、原料費、製造コストともに
低減できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to increase the area of an optical window material made of diamond, and it is possible to reduce both raw material costs and manufacturing costs.

しかも、窓部のフィルム状ダイヤモンドを炭素繊維が補
強するため、反りやうねりの発生を防ぎ、耐圧強度を著
しく向上させて破損を防止することができる。
Furthermore, since the carbon fibers reinforce the film-like diamond in the window, it is possible to prevent warping and waviness, significantly improve pressure resistance, and prevent breakage.

また、広範囲の光の透過性を有し、かつ、低エネルギー
のX線透過率も良好である。
Furthermore, it has a wide range of light transmittance and also has good low energy X-ray transmittance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明によるフィルム状ダイヤモ
ンドから成る光学用窓材の実施例を示す斜視図及び断面
図である。 また、第3図(A)から(D)は本発明の光学用窓材の
製造工程の一例の説明図である。 また、第4図は、窓材の耐圧強度試験装置の説明図であ
る。 l ・ ・ ・ ・ 2 ・ ・ 3 a、 4a。 5 a、 6 ・ 7. 9 ・ 10. 12 ・ 13. 15 ・ 16、  b  b  b 8 ・ ・ l 1 ・ 14 ・ 17 ・ ・基板材 ・フィルム状ダイヤモンド ・炭素繊維製メツシュ ・窓枠 ・金属ロウ ・マスキング剤 ・真空チャンバー ・窓材 ・ストップバルブ ・ガスボンベ ・ストップバルブ ・真空ポンプ ・リークバルブ 躬 1 図 第 2 図 rA) (巳) 以 上 ′83 図
1 and 2 are a perspective view and a sectional view showing an example of an optical window material made of film-like diamond according to the present invention. Moreover, FIGS. 3(A) to 3(D) are explanatory diagrams of an example of the manufacturing process of the optical window material of the present invention. Moreover, FIG. 4 is an explanatory diagram of a pressure-resistant strength testing apparatus for window materials. l ・ ・ ・ 2 ・ ・ 3 a, 4a. 5 a, 6 ・7. 9 ・10. 12 ・13. 15 ・ 16, b b b 8 ・ ・ l 1 ・ 14 ・ 17 ・ ・Substrate material, film diamond, carbon fiber mesh, window frame, metal solder, masking agent, vacuum chamber, window material, stop valve, gas cylinder, Stop valve/vacuum pump/leak valve 1 Figure 2 Figure rA) (Snake) Above '83 Figure

Claims (1)

【特許請求の範囲】[Claims]  気相法により合成したフィルム状ダイヤモンドから成
る光学用窓材において、その窓部が、フィルム状ダイヤ
モンドと、それを表・裏両側より補強する格子状または
網状の炭素繊維との3層構造から成ることを特徴とする
光学用窓材。
In an optical window material made of film-like diamond synthesized by a vapor phase method, the window part has a three-layer structure of film-like diamond and lattice-like or net-like carbon fibers reinforcing it from both the front and back sides. An optical window material characterized by:
JP8596090A 1989-06-01 1990-03-30 Window material for optical purpose Pending JPH03282400A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8596090A JPH03282400A (en) 1990-03-30 1990-03-30 Window material for optical purpose
EP90110382A EP0400655A1 (en) 1989-06-01 1990-05-31 Optical window piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8596090A JPH03282400A (en) 1990-03-30 1990-03-30 Window material for optical purpose

Publications (1)

Publication Number Publication Date
JPH03282400A true JPH03282400A (en) 1991-12-12

Family

ID=13873313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8596090A Pending JPH03282400A (en) 1989-06-01 1990-03-30 Window material for optical purpose

Country Status (1)

Country Link
JP (1) JPH03282400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185665A (en) * 2009-02-10 2010-08-26 Kobe Steel Ltd Material for x-ray transmission window, and x-ray transmission window with the material
JP2012242381A (en) * 2011-05-16 2012-12-10 Brigham Young Univ Carbon composite material support structure
JP2013182869A (en) * 2012-03-05 2013-09-12 Futaba Corp X-ray tube
JP2016156831A (en) * 2016-03-29 2016-09-01 Jfeエンジニアリング株式会社 Particle beam transmission window
JP2018509635A (en) * 2015-01-22 2018-04-05 ラクセル コーポレーション Improved materials and structures for large area X-ray detector windows

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185665A (en) * 2009-02-10 2010-08-26 Kobe Steel Ltd Material for x-ray transmission window, and x-ray transmission window with the material
JP2012242381A (en) * 2011-05-16 2012-12-10 Brigham Young Univ Carbon composite material support structure
JP2013182869A (en) * 2012-03-05 2013-09-12 Futaba Corp X-ray tube
CN103311079A (en) * 2012-03-05 2013-09-18 双叶电子工业株式会社 X-ray tube
KR101469915B1 (en) * 2012-03-05 2014-12-05 후타바 코포레이션 X-ray tube
US9008276B2 (en) 2012-03-05 2015-04-14 Futaba Corporation X-ray tube
TWI486990B (en) * 2012-03-05 2015-06-01 雙葉電子工業股份有限公司 X ray tube
CN103311079B (en) * 2012-03-05 2016-01-13 双叶电子工业株式会社 X-ray tube
JP2018509635A (en) * 2015-01-22 2018-04-05 ラクセル コーポレーション Improved materials and structures for large area X-ray detector windows
JP2016156831A (en) * 2016-03-29 2016-09-01 Jfeエンジニアリング株式会社 Particle beam transmission window

Similar Documents

Publication Publication Date Title
EP0400655A1 (en) Optical window piece
JPH02208601A (en) Optical window member and its manufacture
JPH04127100A (en) X-ray window material and its production
US20070025511A1 (en) Curved X-ray reflector
Koidl et al. Optical applications of polycrystalline diamond
KR960002530A (en) Wafer and its manufacturing method
JPH03282400A (en) Window material for optical purpose
JPH0499277A (en) Production of inorganic thin film
JPH07102368A (en) Formation of thin film
CN100540727C (en) Diamond film manufacturing method
JPH1149596A (en) Diamond
US5486263A (en) Etching a diamond body with a molten or partially molten metal
EP4148812A1 (en) Piezoelectric composite substrate and method for manufacturing same
JPH0992616A (en) Membrane, mask and aligner or device fabrication system employing them
JP3127037B2 (en) X-ray mask support, X-ray mask structure, and X-ray exposure method
JP2768595B2 (en) Method of manufacturing X-ray mask structure
CN109830458A (en) Wafer support structure and forming method thereof
JPS61245160A (en) Manufacture of x-ray mask
JP2000045072A (en) Film forming device, film forming method, and product with formed film
JPS5935428A (en) Mask for x-ray
JPS5969928A (en) Mask for x-ray exposure
JPS6384114A (en) X-ray mask
JP4797252B2 (en) X-ray optical element and manufacturing method thereof
JPH03273611A (en) Mask for x-ray lithography and manufacture thereof
EP3731287B1 (en) Micron-scale single-crystal thin film