JPS61245160A - Manufacture of x-ray mask - Google Patents

Manufacture of x-ray mask

Info

Publication number
JPS61245160A
JPS61245160A JP60086803A JP8680385A JPS61245160A JP S61245160 A JPS61245160 A JP S61245160A JP 60086803 A JP60086803 A JP 60086803A JP 8680385 A JP8680385 A JP 8680385A JP S61245160 A JPS61245160 A JP S61245160A
Authority
JP
Japan
Prior art keywords
mask
wafer
film
carbon
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086803A
Other languages
Japanese (ja)
Inventor
Masao Yamada
雅雄 山田
Toru Takeuchi
竹内 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60086803A priority Critical patent/JPS61245160A/en
Publication of JPS61245160A publication Critical patent/JPS61245160A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Abstract

PURPOSE:To enable the carbon membrane of a mask support hardly warping after film formation to be formed and to obtain an optically superior mask support by forming the carbon membrane on a water warping upward concavely. CONSTITUTION:The wafer 11 is warped upward concavely and the carbon membrane 22 is formed on it, and when the central part of the wafer 11 is removed to leave the surrounding border part, the carbon membrane 22 is made flat by tensile stress, and wrinkling found so far is prevented. To prepare the mask, an X-ray absorbing pattern mask made of tantalum Ta is formed on the membrane 22 by the process same as the conventional one, and the central part of the wafer 11 is etched off to complete the X-ray mask, thus permitting a membrane made of carbon optically superior to the conventional one to be obtained.

Description

【発明の詳細な説明】 (Jll要〕 引張り応力をもった光学的に透明な炭素膜を成膜し、そ
れをX線マスクのマスク支持体またはメンブレンとして
使用する。
DETAILED DESCRIPTION OF THE INVENTION (Required by Jll) An optically transparent carbon film with tensile stress is formed and used as a mask support or membrane of an X-ray mask.

〔産業上の利用分野〕[Industrial application field]

本発明はX線マスクに関するもので、さらに詳しく言え
ば、シリコンウェハ上に成膜したマスク支持体となる炭
素膜は圧縮応力をもつために凸に反るのであるが、成膜
した後において反ることのない炭素膜を成膜する方法に
関する。
The present invention relates to an X-ray mask, and more specifically, a carbon film formed on a silicon wafer to serve as a mask support warps in a convex manner due to compressive stress. The present invention relates to a method of forming a carbon film without causing any damage.

〔従来の技術〕[Conventional technology]

例えばシリコンウェハ(以下ウェハという)の上に塗布
されたホトレジスト膜の露光に従来はガラスマスクを用
い、紫外線露光によってホトレジストの露光を行ってき
た。
For example, a glass mask has conventionally been used to expose a photoresist film coated on a silicon wafer (hereinafter referred to as a wafer), and the photoresist has been exposed to ultraviolet light.

ところが、最近は集積回路を高集積化するために形成さ
れるべきパターン幅やパターン間隔が微細化される傾向
にあり、そのためには、波長の短い光が回折が起り難い
ので、電子ビーム(HB)やX線が用いられるようにな
ってきた。
However, recently, in order to increase the integration density of integrated circuits, the pattern width and pattern spacing to be formed have become smaller. ) and X-rays have come into use.

X線露光を第4図の断面図を参照して説明すると、ウェ
ハ11の上にホトレジスト膜12が塗布されていて、X
線吸収体で作ったパターン13が設けられたX線マスク
14をウェハ11の上方に配置し、X線を矢印に示す方
向に照射して露光をなす。
To explain X-ray exposure with reference to the cross-sectional view in FIG. 4, a photoresist film 12 is coated on a wafer 11, and
An X-ray mask 14 provided with a pattern 13 made of a radiation absorber is placed above the wafer 11, and X-rays are irradiated in the direction shown by the arrow for exposure.

X線マスク14は第5図の断面図に示され、それを作る
には、ウェハ15(図に見て幅100flのもの)の上
にポリイミドを塗布して第1ポリイミド膜16を形成し
、全面にTaを堆積(deposition) シ、そ
れをバターニングしてTaパターン17を形成し、次い
で全面にポリイミドを塗布して第2ポリイミド膜18を
形成し、最後にシリコンを斜線で示す部分を残す如くに
エツチングしてマスクを完成する。
The X-ray mask 14 is shown in the cross-sectional view of FIG. 5, and is made by coating a wafer 15 (100 fl wide in the figure) with polyimide to form a first polyimide film 16; Depositing Ta on the entire surface, buttering it to form a Ta pattern 17, then coating the entire surface with polyimide to form a second polyimide film 18, and finally leaving silicon in the shaded area. Complete the mask by etching.

第1.第2ポリイミド膜はメンブレンと呼称され、それ
はX線を通す材料、すなわち、ポリイミドの他に窒化は
う素(BN)、窒化シリコン(SiN)などで5μmの
膜厚に形成され、パターンはX線吸収体と呼称され、T
a、 Au、 Wの如きX線を通さない重金属で1.0
μ蒙の厚さに堆積された膜をエツチングして形成される
1st. The second polyimide film is called a membrane, and is made of a material that transmits X-rays, such as polyimide, boron nitride (BN), silicon nitride (SiN), etc., to a thickness of 5 μm, and the pattern is It is called an absorber and T
1.0 for heavy metals that do not transmit X-rays such as a, Au, and W.
It is formed by etching a film deposited to a thickness of μm.

X線吸収体ではTaが応力が小さいので多用されている
ものであり、それの薄膜はスパッタリング法で堆積され
る。スパッタリングは10−2〜1O−3Torrの真
空度のアルゴン(Ar)雰囲気のチャンバ内でなされ、
Taのマグネトロンスパッター法(通常の口Cあるいは
Rfスパッター法も含む)によりポリイミド層の上にT
aを堆積させる。
Ta is often used in X-ray absorbers because of its low stress, and its thin film is deposited by sputtering. Sputtering is performed in a chamber with an argon (Ar) atmosphere at a vacuum level of 10-2 to 10-3 Torr,
T is deposited on the polyimide layer by Ta magnetron sputtering (including ordinary C or Rf sputtering).
Deposit a.

最近、前記したメンブレンをBN:HやSiNに代えて
炭素膜で作ることが試みられているが、その理由は、炭
素の結晶体にグラファイトからダイヤモンドまでがある
が、ダイヤモンドに近い結晶体は硬く、伸び縮みするこ
となく、またX線に対して透明で、マスク支持体として
優れた性質をもつからである。
Recently, attempts have been made to make the above-mentioned membrane with a carbon film instead of BN:H or SiN.The reason for this is that carbon crystals range from graphite to diamond, but crystals close to diamond are hard. This is because it does not expand or contract, is transparent to X-rays, and has excellent properties as a mask support.

X線マスクに炭素膜を用いる技術については広く研究が
なされていて、特開昭57−128031号公報には、
「ダイヤモンド状炭素膜を基板材料として」用い、また
「窒化シリコン、酸化シリコン、硼素添加シリコン、窒
化硼素の内鍔れか1種の薄膜にダイヤモンド状炭素を積
層した複合膜を基板材料として」用いる露光用マスクが
、特開昭58−204534号公報には、「ダイヤモン
ドまたはダイヤモンドと無定形炭素の混合物からなる薄
膜をX線透過体として有するJX線リソグラフィー用マ
スクが、さらに特開昭59−9921号公報には、「水
素添加アモルファス化炭素から成るjX線マスク用フィ
ルムとそれの製造方法が開示されている。
The technology of using carbon films in X-ray masks has been extensively researched, and Japanese Patent Application Laid-open No. 128031/1983 describes
"A diamond-like carbon film is used as a substrate material," and "a composite film in which diamond-like carbon is layered on a thin film of one of silicon nitride, silicon oxide, boron-doped silicon, or boron nitride is used as a substrate material." The exposure mask is described in Japanese Patent Application Laid-Open No. 58-204534 as follows: ``A mask for J The publication discloses a film for an X-ray mask made of hydrogenated amorphized carbon and a method for producing the same.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図に炭素膜22をウェハ11上に成膜した場合の構
造が模式的に示されるが、炭素膜22は圧縮応力をもっ
ているために、図示の如く上方に凸に反り、それに追随
してウェハ11も同様に反っている。
FIG. 3 schematically shows the structure when the carbon film 22 is formed on the wafer 11. Since the carbon film 22 has compressive stress, it warps upward in a convex manner as shown in the figure, and follows it. The wafer 11 is also warped in the same way.

このウェハの中心部分をエツチングで除去して図示の如
く周辺部分11aのみを残すと、それまで炭素膜22を
支えていたウェハ部分がなくなったため炭素膜はのびて
しまい、その表面に波うったようなしわが発生すること
が確認された。
When the central part of the wafer is removed by etching and only the peripheral part 11a is left as shown in the figure, the wafer part that had previously supported the carbon film 22 is no longer present, and the carbon film stretches out, creating a wave-like appearance on its surface. It was confirmed that wrinkles were generated.

本発明はこのような点に鑑みて創作されたもので、成膜
後において反ることのない炭素膜を作る方法を提供する
ことを目的とする。
The present invention was created in view of these points, and an object of the present invention is to provide a method for producing a carbon film that does not warp after film formation.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の断面図である。 FIG. 1 is a sectional view of an embodiment of the present invention.

第1図において、ウェハ11を上方に凹に反らせて配置
し、しかる後に炭素膜22を成膜し、以後は従来法に従
ってX線マスクを完成する。
In FIG. 1, a wafer 11 is placed so as to be concavely curved upward, and then a carbon film 22 is formed, and thereafter an X-ray mask is completed according to a conventional method.

〔作用〕[Effect]

第1図に示したウェハの中心部分を除去し、第3図に示
される如く周辺部分のみを残すと、引張り応力によって
炭素膜は平らになろうとし、従来例に見られたしわの発
生が防止されるのである。
When the central part of the wafer shown in Figure 1 is removed and only the peripheral part is left as shown in Figure 3, the carbon film tends to flatten due to tensile stress, eliminating the wrinkles seen in the conventional example. It is prevented.

〔実施例〕〔Example〕

再び第1図を参照して本発明実施例を詳細に説明する。 Referring again to FIG. 1, an embodiment of the present invention will be described in detail.

本発明の方法においては、第1図に示す如くシリコンウ
ェハ11を凹に反らせてから炭素膜22を成膜し、しか
る後にウェハ11を凹に反らせていた外力をはずすもの
である。その結果、炭素膜22内に引張り応力が発生し
て炭素膜固有の圧縮応力が相殺され、低い引張り応力を
もった炭素膜が成膜される。ここで、炭素膜22の圧縮
応力(τC)は、ウェハ11を凹に反らせるための仮想
引張り応力(τt)よりも十分に小であることが必要で
ある。
In the method of the present invention, the silicon wafer 11 is warped in a concave manner as shown in FIG. 1, and then the carbon film 22 is formed, and then the external force that caused the wafer 11 to be warped in the concave manner is removed. As a result, tensile stress is generated within the carbon film 22, canceling out the compressive stress inherent in the carbon film, and a carbon film having low tensile stress is formed. Here, the compressive stress (τC) of the carbon film 22 needs to be sufficiently smaller than the virtual tensile stress (τt) for warping the wafer 11 concavely.

炭素膜の成膜方法には、■陰極結合型低温プラズマ化学
気相成長(CVD ”)法があり、この場合、供給ガス
としては炭化水素を単独に、またはそれとアルゴン(A
r)との希釈ガスを用いる方法と、■炭素ターゲットの
バイアススパッタ法があり、後のバイアススパッタ法に
おける供給ガスは、Ar/炭化水素混合ガスかH2/A
r混合ガスとする。
Carbon film formation methods include the cathode-coupled low-temperature plasma chemical vapor deposition (CVD) method, in which hydrocarbons are used alone or together with argon (A
(r) using a diluent gas, and (2) bias sputtering using a carbon target.
r mixed gas.

凹形のウェハを用意するには、凹型静電チャックを成膜
装置のホルダーとするか、または両面を研磨したウェハ
を用い、その裏面に圧縮応力をもった膜を成膜する。
To prepare a concave wafer, a concave electrostatic chuck is used as a holder for a film forming apparatus, or a wafer with both sides polished is used, and a film with compressive stress is deposited on the back surface of the wafer.

このように用意したウェハに炭素膜を2.0μ票の厚さ
に成膜するには、■の方法においては、Ar/(10%
)CH11ガスを用い、成膜装置をQ、l Torrの
真空に保ち、パワーは500−に設定する。■の方法に
よるときは、Ar/ (10%) CHgガスを用い、
装置は10mTorrの真空、パワーは0.5〜1.0
 k−に設定する。しかる後に裏面の圧縮応力膜を除去
し、炭素膜22の上に、金(Au)、タングステン(W
)またはタンタル(Ta)を用いて従来例の場合と同様
に膜厚0.8μIのX線吸収パターンを形成し、引続き
1μmの膜厚の保護膜をかけ、ウェハの中心部分をHF
/ HNO3/CH3C0OH(1: 2 : 1.5
 )でバックエツチングし周辺部分11aを残してX線
マスクを完成する。バックエツチングは、炭素膜22の
上にX線吸収パターンを形成する直前に行ってもよい。
In order to form a carbon film with a thickness of 2.0 μm on the wafer prepared in this way, in method (2), Ar/(10%
) Using CH11 gas, the film forming apparatus is kept in a vacuum of Q, l Torr, and the power is set to 500-. When using method (2), use Ar/(10%) CHg gas,
The device has a vacuum of 10 mTorr, and the power is 0.5 to 1.0.
Set to k-. After that, the compressive stress film on the back surface is removed, and gold (Au) and tungsten (W) are deposited on the carbon film 22.
) or tantalum (Ta) to form an X-ray absorption pattern with a film thickness of 0.8 μI as in the conventional example, followed by a protective film with a film thickness of 1 μm, and the central part of the wafer was heated with HF.
/ HNO3/CH3C0OH (1: 2: 1.5
) to complete the X-ray mask leaving the peripheral portion 11a. Back etching may be performed immediately before forming the X-ray absorption pattern on the carbon film 22.

メンブレン(マスク支持体となる膜)は、炭素111/
、!リイミドlit (膜厚比は1:1)の二重構造に
することも可能である。
The membrane (film that serves as a mask support) is made of carbon 111/
,! It is also possible to have a double structure of Liimide (film thickness ratio: 1:1).

本発明に従って作られた炭素膜は、光学的に透明で、H
e−Neレーザに対し50%以上の透過率を示し、Pd
レーザの透過率は2μ鋼で93%以上で、高い寸法安定
性をもち、従来のBNで作ったメンブレンと比べはるか
に優れたものであることが確認された。
Carbon films made according to the present invention are optically transparent and H
It shows transmittance of 50% or more for e-Ne laser, and Pd
It was confirmed that the laser transmittance was 93% or more for the 2μ steel, and that it had high dimensional stability and was far superior to membranes made from conventional BN.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、反りのない光
学的に透明なマスク支持体となるメンブレンが得られ、
それは光学的に従来のBN膜よりもはるかに良好なメン
ブレンである。
As described above, according to the present invention, a membrane that serves as an optically transparent mask support without warping can be obtained,
It is an optically much better membrane than conventional BN films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の断面図、 第2図はX線露光を説明する断面図、 第3図は従来のX線マスクの断面図、 第4図は炭素膜の反りを説明する断面図である。 第1図と第2図において、 11はシリコンウェハ、 11aはシリコンウェハの周辺部分、 13は吸収体パターン、 14はX線マスク、 17はAu+ TaまたはW層、 18は第2ポリイミド膜、 22は炭素膜である。 、!JJ22 袂日月ぐ恍例#r勾囚 第1図 11↓1ll X舖11尤を説明する前面図 第2図 FIG. 1 is a sectional view of an embodiment of the present invention. Figure 2 is a cross-sectional view explaining X-ray exposure; Figure 3 is a cross-sectional view of a conventional X-ray mask. FIG. 4 is a cross-sectional view illustrating warping of the carbon film. In Figures 1 and 2, 11 is a silicon wafer, 11a is the peripheral part of the silicon wafer; 13 is an absorbent pattern, 14 is an X-ray mask, 17 is Au + Ta or W layer, 18 is a second polyimide film, 22 is a carbon film. ,! JJ22 Case of #r detention Figure 1 11↓1ll Front view to explain the X-11 Figure 2

Claims (1)

【特許請求の範囲】  中心部分が除去されたシリコンウェハ上にマスク支持
体となる膜を成膜し、該膜上にX線吸収パターンおよび
保護膜を形成することを含むX線マスクを製造するにお
いて、 前記マスク支持体となる膜を、凹形に反らしたシリコン
ウェハ(11)上に炭素膜(22)を成膜して形成する
ことを特徴とするX線マスクの製造方法。
[Claims] An X-ray mask is manufactured by forming a film to serve as a mask support on a silicon wafer from which a central portion has been removed, and forming an X-ray absorption pattern and a protective film on the film. A method for manufacturing an X-ray mask, characterized in that the film serving as the mask support is formed by depositing a carbon film (22) on a silicon wafer (11) warped into a concave shape.
JP60086803A 1985-04-23 1985-04-23 Manufacture of x-ray mask Pending JPS61245160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086803A JPS61245160A (en) 1985-04-23 1985-04-23 Manufacture of x-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086803A JPS61245160A (en) 1985-04-23 1985-04-23 Manufacture of x-ray mask

Publications (1)

Publication Number Publication Date
JPS61245160A true JPS61245160A (en) 1986-10-31

Family

ID=13896955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086803A Pending JPS61245160A (en) 1985-04-23 1985-04-23 Manufacture of x-ray mask

Country Status (1)

Country Link
JP (1) JPS61245160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998267A (en) * 1988-07-28 1991-03-05 Korea Electronics & Telecommunications Research Inst. X-ray lithography carbon mask and method of manufacturing the same
US5003567A (en) * 1989-02-09 1991-03-26 Hawryluk Andrew M Soft x-ray reduction camera for submicron lithography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998267A (en) * 1988-07-28 1991-03-05 Korea Electronics & Telecommunications Research Inst. X-ray lithography carbon mask and method of manufacturing the same
US5003567A (en) * 1989-02-09 1991-03-26 Hawryluk Andrew M Soft x-ray reduction camera for submicron lithography

Similar Documents

Publication Publication Date Title
US4941942A (en) Method of manufacturing a mask support of sic for x-ray lithography masks
JPH07294700A (en) X-ray window
JPH0864524A (en) Preparation of x-ray absorption mask
JPH02208601A (en) Optical window member and its manufacture
JPH0319690B2 (en)
Haghiri‐Gosnet et al. A 100‐nm patterned x‐ray mask technology based on amorphous SiC membranes
JPH02213118A (en) Manafacture of sicmask supporting member for radiation lithography mask
JPH10275773A (en) Film mask for lithography by short-wavelength radiation
JPS61245160A (en) Manufacture of x-ray mask
TW414957B (en) X-ray mask and method of fabricating the same
EP0424375B1 (en) Monolithic channeling mask having amorphous/single crystal construction
EP0689686B1 (en) A thin film mask for use in an x-ray lithographic process and its method of manufacture
JP3127037B2 (en) X-ray mask support, X-ray mask structure, and X-ray exposure method
Oda et al. Materials and fabrication processes for highly accurate X-Ray Masks
JPS63136521A (en) X-ray lithography mask
JP3195328B2 (en) X-ray mask and method of manufacturing X-ray mask
JPS61245162A (en) X-ray mask
JPS63115332A (en) Mask for x-ray exposure
JPH035701A (en) Optical window material
JPS61159654A (en) Lithography method and mask holder for lithography
JPH01173716A (en) Manufacture of x-ray mask
JPS63136518A (en) Manufacture of x-ray mask
JPH01183119A (en) Preparation of x-ray mask
JPH04335515A (en) X-ray exposure mask
JPH0715879B2 (en) X-ray mask manufacturing method