JPH0328187A - Method for liquid-phase epitaxial growth - Google Patents

Method for liquid-phase epitaxial growth

Info

Publication number
JPH0328187A
JPH0328187A JP15841289A JP15841289A JPH0328187A JP H0328187 A JPH0328187 A JP H0328187A JP 15841289 A JP15841289 A JP 15841289A JP 15841289 A JP15841289 A JP 15841289A JP H0328187 A JPH0328187 A JP H0328187A
Authority
JP
Japan
Prior art keywords
raw material
material melt
thickness
semiconductor substrate
saucer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15841289A
Other languages
Japanese (ja)
Inventor
Masashi Yamashita
正史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15841289A priority Critical patent/JPH0328187A/en
Publication of JPH0328187A publication Critical patent/JPH0328187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To ensure nearly homogeneous growth over the whole surface of a semiconductor substrate by regulating the thickness of a raw material melt in the vertical directions of the semiconductor substrate and, as necessary, in the radial direction. CONSTITUTION:The bottom of each pan 2 having a cylindrical sidewall 5 with a cutout 6 for admitting and discharging a raw material melt 4 is slightly tilted so as to facilitate separation of the raw material melt 4. A semiconductor substrate 1 in a tilted state is superposed on the pan 2 and housed in a cassette 3, which is then dipped in the raw material melt 4 to carry out liquid-phase epitaxial growth while thinly keeping the thickness of the raw material melt 4 specified with the undersurface of the pan 2 just on the substrate 1 to the upper part of the tilted pan 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体基板」二にGaAs, A]GaAs
,InCaAsP等の半導体エピタキシャル層を液相成
長させる方法に関し、特に、発光ダイオード素子等を製
造するのに適したものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a semiconductor substrate "2" GaAs, A]GaAs
, InCaAsP, etc., and is particularly suitable for manufacturing light emitting diode elements and the like.

〈従来の技術) 従来、半導体基板を溶媒、溶質、ドーバントからなる原
料融故に接触させ、降泥することにより、液相エピタキ
シャル成長させる装訴には、半導体基板を水平に移動す
ることにより、原料融液との接触及び分離を行うスライ
ドボート装置と、半導体lλ板を受皿で支持し、該受冊
をカセットに多数積層して収納し、原料融液を収容する
縦型容器に該カセッ1・を浸漬してエピタキシャル層を
形成し、原料融液から分離する縦型ディッピング装1d
とがある。
(Prior art) Conventionally, in order to perform liquid phase epitaxial growth by bringing a semiconductor substrate into contact with a melting material consisting of a solvent, a solute, and a dopant, and depositing sludge, it is necessary to move the semiconductor substrate horizontally to melt the material. A slide boat device that contacts and separates the liquid and a semiconductor lλ plate are supported by a receiving tray, a large number of the receiving books are stacked and stored in a cassette, and the cassette 1 is placed in a vertical container that accommodates the raw material melt. Vertical dipping device 1d that forms an epitaxial layer by dipping and separates it from the raw material melt
There is.

第6図は、縦型ディッピング装置の操作手順を示した説
明図である。四図(a)は、縦型容器5内に原料融液4
を収容し、半導体7^板1を装着した受皿2をカセット
3内に積層した状態を示し、同図(b)は、カセット3
を原料融液内に浸漬させ、半導体基板l上に原料融液4
を接触させた状態を示し、また、同図(c)は、液相エ
ピタキシャル成長終了後、カセット3を原料融液4から
引き上げた状態を示したものである。
FIG. 6 is an explanatory diagram showing the operating procedure of the vertical dipping device. Figure 4 (a) shows a raw material melt 4 in a vertical container 5.
The tray 2 containing the semiconductor 7^ board 1 is stacked inside the cassette 3, and FIG.
is immersed in the raw material melt, and the raw material melt 4 is placed on the semiconductor substrate l.
FIG. 3(c) shows the state in which the cassette 3 is pulled up from the raw material melt 4 after the liquid phase epitaxial growth is completed.

特開昭61− 261291号公報には、」二記カセ・
,トを縦型容器内に置いた状態で、異なる原料融液を順
次導入、排出することにより、多層エピタキシャル層を
形成する装置が記載されている。
In Japanese Patent Application Laid-open No. 61-261291, there is
, an apparatus is described in which a multilayer epitaxial layer is formed by sequentially introducing and discharging different raw material melts while the materials are placed in a vertical container.

(発明が解決しようとする課題) 従来の縦型ディッピング装置は、多数の半導体基板に対
して同時に液相エピタキシャル成長を行うことができる
ので、量産性に優れているが、エピタキシャル層の厚さ
に大きな分布が伴う。この装置は、エピタキシャル成長
後に原料融液を半導体基板から短時間で分離するために
、該基板を傾斜させている。即ち、傾斜した半導体基板
」二の原料融液の厚さを均一に保持して液相成長させる
と、エピタキシャル層厚さは、この傾斜に対して下方に
向かって薄くなる。そこで、結晶成長時には半導体基板
を水平に保持し、原料融液から分離するときに成長炉全
体を傾けることも考えられるが、装置が複雑になる。
(Problems to be Solved by the Invention) Conventional vertical dipping equipment can perform liquid phase epitaxial growth on a large number of semiconductor substrates at the same time, so it has excellent mass productivity. Accompanied by distribution. In this apparatus, the substrate is tilted in order to separate the raw material melt from the semiconductor substrate in a short time after epitaxial growth. That is, if the thickness of the raw material melt on a sloped semiconductor substrate is kept uniform and liquid phase growth is performed, the epitaxial layer thickness becomes thinner downward with respect to the slope. Therefore, it is conceivable to hold the semiconductor substrate horizontally during crystal growth and tilt the entire growth furnace when separating it from the raw material melt, but this would complicate the apparatus.

そこで、本発明は、従来の液相エピタキシャル成長方法
の欠点を解消し、原料融液の厚さを半導体基板の上下方
向、必要に応じて半径方向に調節することにより、半導
体基板全面に渡りほぼ均一な成長速度を確保し、均一な
厚さのエピタキシャル層を形成する液相エピタキシャル
或長方法を提供しようとするものである。
Therefore, the present invention eliminates the drawbacks of the conventional liquid phase epitaxial growth method, and by adjusting the thickness of the raw material melt in the vertical direction of the semiconductor substrate and in the radial direction as necessary, the thickness is almost uniform over the entire surface of the semiconductor substrate. The present invention aims to provide a liquid phase epitaxial growth method that ensures a high growth rate and forms an epitaxial layer of uniform thickness.

(課題を解決するための手段) 本発明は、(1)半導体基板を受皿に載せ、該受皿を傾
斜した状態で積層してカセット内に収納し、該カセット
を原料融液に浸漬して該基板上に液相エピタキシャル成
長させる方法において、該基板直上の受皿の下面により
規定される原料融液の厚さを傾斜した受皿の上方に向か
って薄く保持しながら結晶成長を行うこと.を特徴とす
る液相エピタキシャル成長・方法、及び、(2)原料融
液の厚さを傾斜した受皿の1二方に向かって薄くし、か
つ、周囲より中央を薄く保持しなから桔晶成長を行うこ
とを特徴とする上記0)に記載の液相エピタキシャル成
長方法である。
(Means for Solving the Problems) The present invention provides (1) placing semiconductor substrates on saucers, stacking the saucers in an inclined state and storing them in a cassette, and immersing the cassette in a raw material melt. In a method of liquid phase epitaxial growth on a substrate, crystal growth is performed while keeping the thickness of the raw material melt defined by the lower surface of the saucer directly above the substrate thinner toward the top of the inclined saucer. (2) A liquid phase epitaxial growth method characterized by: (2) thinning the thickness of the raw material melt toward one or two sides of the inclined saucer, and maintaining the center thinner than the periphery to grow crystals; The liquid phase epitaxial growth method described in item 0) above is characterized in that:

(作用) 第1図は、本発明を実施するための縦聖液相或長装置の
カセット内部の拡大図であり、第2図は、第1図の装置
に用いる受皿の斜視図である。受■2は円筒状の側壁5
を有し、半導体基板を支持する底面は原料融液の分離を
容躬にするために僅かに傾斜し、かつ、原料融液の流入
出のための切り欠き6をイイする。
(Function) FIG. 1 is an enlarged view of the inside of a cassette of a vertical sanitary liquid phase lengthening device for carrying out the present invention, and FIG. 2 is a perspective view of a saucer used in the device of FIG. 1. The receiver 2 is a cylindrical side wall 5
The bottom surface supporting the semiconductor substrate is slightly inclined to allow separation of the raw material melt, and has a notch 6 for inflow and outflow of the raw material melt.

該側壁5はカセット3の内壁に沿って収納される。側壁
5の高さは同一として受■の底面に装着する半導体基板
Iを一定の間隔で傾斜して保持するようにしたもので、
本発明の第1の特徴である半導体基板」―の原料融液4
の厚さを上方に向かって薄くするために、受nttの底
部の厚さを上方に向かって厚くしている。
The side wall 5 is housed along the inner wall of the cassette 3. The height of the side wall 5 is the same, and the semiconductor substrate I mounted on the bottom surface of the receiver is held tilted at a constant interval.
Raw material melt 4 for "semiconductor substrate, which is the first feature of the present invention"
In order to make the thickness of the receptacle thinner upward, the thickness of the bottom of the receptacle is made thicker upward.

第3図は該受皿の1具体例の断面図である。FIG. 3 is a sectional view of one specific example of the saucer.

なお、同図は、理解を容易にするために、切り欠きを省
略して描いたものである。
Note that the figure is drawn with cutouts omitted for ease of understanding.

このように、受皿の上方に位置する半導体基板の部分は
、本来、液相エピタキシャル成長において下方に比べて
成長速度が速いので、原料融液の厚さを薄くすることに
より、成長速度を抑制し、下方に拉置する半導体基板の
部分は、本来、成長速度が遅いので、原料融液厚さを厚
くすることにより、成長速度を速くして、半導体基板全
面でほぼ均一の成長速度とし、均一な膜厚のエピタキシ
ャル層を形成するようにしたものである。
In this way, the portion of the semiconductor substrate located above the saucer originally grows faster than the portion below in liquid phase epitaxial growth, so by reducing the thickness of the raw material melt, the growth rate is suppressed. The growth rate of the part of the semiconductor substrate that is placed downward is originally slow, so by increasing the thickness of the raw material melt, the growth rate is increased and the growth rate is almost uniform over the entire surface of the semiconductor substrate. A thick epitaxial layer is formed.

第4図は、第3図の受皿を変形させたものであり、本発
明の別の具体例である。この受面ば、半導体基板の半径
方向についても、周囲より中央の方が成長速度が速く、
エピタキシャル層の中央が厚ぐなるこ゜とを見いだした
ので、第3図の受皿の下面に中央が僅かに盛り」二げた
凸面となし、周囲より中央の原料融液の厚さを薄くする
ことにより、成長速度を抑制し、半径方向の成長速度を
均一にしてエピタキシャル層厚さの均一化を図ったもの
である。
FIG. 4 shows a modification of the saucer shown in FIG. 3, and is another specific example of the present invention. In this case, in the radial direction of the semiconductor substrate, the growth rate is faster at the center than at the periphery.
We discovered that the center of the epitaxial layer is thicker, so we created a convex surface with a slightly raised center on the lower surface of the saucer shown in Figure 3, and made the thickness of the raw material melt in the center thinner than in the surroundings. , the epitaxial layer thickness is made uniform by suppressing the growth rate and making the growth rate uniform in the radial direction.

(実施例) 第3図、第4図及び第5図に示した受皿を用い、直径5
0問で厚さ300μ園の亜鉛ドーブ、面方位(100)
のGaAs基板の上に亜鉛ドーブの^1(iaAsエピ
タキシャル層を形成した。第3図及び第4図は本発明に
係る受■であり、第5図は従来の受血である。
(Example) Using the saucer shown in Fig. 3, Fig. 4, and Fig. 5,
Zinc dove with a thickness of 300μ, surface orientation (100) with 0 questions
A zinc-doped ^1 (iaAs epitaxial layer) was formed on a GaAs substrate. FIGS. 3 and 4 show a receiver according to the present invention, and FIG. 5 shows a conventional receiver.

第3図の受冊は、その下面が水平からlO″傾斜し、底
面の直径が51amの円形であり、側壁の高さは4.4
■で、底部の厚さは上端で1.8■、下端で1.0se
sである。」一記の受皿を7つ用意し、下方の6つには
半導体基板を装着し、これらの受皿を積層してカセット
に収納し.た。
The booklet shown in Figure 3 has a circular shape with a lower surface inclined 10" from the horizontal, a diameter of 51 am, and a side wall height of 4.4 mm.
■The thickness of the bottom is 1.8■ at the top and 1.0se at the bottom.
It is s. '' Prepare seven saucers, attach semiconductor substrates to the bottom six, stack these saucers, and store them in a cassette. Ta.

縦型容器には、Gaを200g%AIをlollmg,
GaAs多結昂を8g,  ドーパントとして亜鉛を2
QQw+g投入し、高純度水素雰囲気中で900℃まで
加熱溶融した。次に、」二記カセットを該原料融液に浸
漬させ、冷却速度0.3℃/sinで600℃まで降温
し、その間に半導体基板上にエピタキシャル成長させた
。その際の原料融液埠さは」一端で2. 6am、下端
で3.4m一であった。
In the vertical container, 200g of Ga, rollmg of AI,
8g of GaAs multilayer, 2g of zinc as a dopant
QQw+g was charged and melted by heating to 900° C. in a high-purity hydrogen atmosphere. Next, the cassette described in "2" was immersed in the raw material melt, and the temperature was lowered to 600° C. at a cooling rate of 0.3° C./sin, during which epitaxial growth was performed on the semiconductor substrate. At that time, the raw material melt port size is 2. 6am and 3.4m at the bottom.

第4図の受皿は、第3図の受皿の下面に中央で0.4■
の〜.さをイfする凸面を付加したものであり、中央は
周囲より原料融液の厚さが0.4■薄くなっている。そ
の他の条件は、上記と同様であった。
The saucer in Figure 4 has a 0.4mm center on the bottom surface of the saucer in Figure 3.
of~. A convex surface is added to increase the thickness, and the thickness of the raw material melt at the center is 0.4 mm thinner than at the surroundings. Other conditions were the same as above.

第5図の受皿は、底部の厚さがl. h+sであり、原
料融液厚さも3.0問で全面均一で、その他の条件は」
二記と同様であった。
The saucer shown in Figure 5 has a bottom thickness of l. h + s, the thickness of the raw material melt is 3.0 questions and is uniform over the entire surface, and the other conditions are
It was the same as the second book.

得られたエピタキシャルウエハは、第7図に示した21
箇所におけるエピタキシャル層の厚さを測定してその分
布を調べ゛た。
The obtained epitaxial wafer is 21 shown in FIG.
The thickness of the epitaxial layer at certain points was measured and its distribution investigated.

まず、第9図は、第5図の従来の受皿を用いて形成した
エピタキシャル層について、半導体基板の傾斜に沿って
、第7図の黒丸の15箇所における厚さを同じ高さの3
箇所の平均値として示したグラフであり、上下位置にお
けるエピタキシャル層厚さの最大最小差が14μmであ
るのに対して、第3図の受皿を用いて形成したエピタキ
シャル層は、第8図に示したように、エピタキシャル層
厚さの最大最小差は僅か4μ一と大幅に抑えることがで
きた。
First, FIG. 9 shows the thickness of the epitaxial layer formed using the conventional saucer shown in FIG.
This is a graph showing the average value of the epitaxial layer thickness at the top and bottom positions, and the maximum and minimum difference in epitaxial layer thickness at the top and bottom positions is 14 μm, whereas the epitaxial layer formed using the saucer in FIG. As described above, the maximum and minimum difference in epitaxial layer thickness could be significantly suppressed to only 4 μm.

また、第11図は、第5図の受皿で得た」―記のエピタ
キシャル層の中心からの半径方向の1vさ分布の平均植
を示したグラフであり、中央と周囲との最大最小差は7
μ亀であるのに対して、第4図の受皿を用いて得たエピ
タキシャル層は、第10図に示したように、最大最小差
は3μ勢であり、均一性はさらに向」ニした。
Furthermore, Fig. 11 is a graph showing the average plot of the 1v distribution in the radial direction from the center of the epitaxial layer obtained with the saucer shown in Fig. 5, and the maximum and minimum differences between the center and the periphery are 7
In contrast, the epitaxial layer obtained using the saucer shown in FIG. 4 had a maximum and minimum difference of 3 μ, as shown in FIG. 10, and the uniformity was even better.

(発明の効果〉 本発明は、」二記の構成を採用することにより、縦型デ
ィッピング装置で傾斜する半導体Jk板の上に液相エビ
タ牛シャル成長させる場合に、半導体基板上の原料融液
厚さを調節することにより、該半導体基板上の成長速度
を全面均一に調整することができ、均一な厚さをTTす
る液相エピタキシャル層を形成することが極めて容呂に
なった。
(Effects of the Invention) The present invention employs the configuration described in section 2 to provide a method for applying a raw material melt on a semiconductor substrate when performing liquid phase growth on an inclined semiconductor Jk plate using a vertical dipping device. By adjusting the thickness, the growth rate on the semiconductor substrate can be adjusted uniformly over the entire surface, and it has become extremely easy to form a liquid phase epitaxial layer with a uniform thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための液相エビタキシャル成
長装置のカセット内部の構造を示した断面図、第2図は
第1図で用いる受■の斜視図、第3図及び第4図は実施
例で用いる具体的な受皿の拡大断面図、第5図は従来の
受皿の拡大断面図、第6図(a)〜(c)は液相エピタ
キシャル成長方法の捏作手順を示した説明図であり、第
7図は実施例及び比較例で得たエピタキシャル層の測定
点を示した説明図、第8図並びに第9図は第3図並びに
第5図の受皿を用いて得たエピタキシャル層の上下方向
の平均厚さ分布を示したグラフ、第10図並びに第11
図は第4図並びに第5図の受皿を用いて得たエピタキシ
ャル層の中心から半径方向の平均厚さ分布を示したグラ
フである。 第8図 ■ T[  [IV  V ス111 定イ立置 エ nm  ■ v 淵]定位置 第6図 (α) (b) 第7図 第11図 中心力゛らの距甜(in)
FIG. 1 is a sectional view showing the internal structure of a cassette of a liquid phase epitaxial growth apparatus for carrying out the present invention, FIG. 2 is a perspective view of the receiver used in FIG. 1, and FIGS. 3 and 4. 5 is an enlarged sectional view of a specific saucer used in the examples, FIG. 5 is an enlarged sectional view of a conventional saucer, and FIGS. 6(a) to (c) are explanatory diagrams showing the fabrication procedure of the liquid phase epitaxial growth method. FIG. 7 is an explanatory diagram showing measurement points of epitaxial layers obtained in Examples and Comparative Examples, and FIGS. 8 and 9 are epitaxial layers obtained using the saucers of FIGS. 3 and 5. Graphs showing the average thickness distribution in the vertical direction, Figures 10 and 11
The figure is a graph showing the average thickness distribution in the radial direction from the center of the epitaxial layer obtained using the saucers of FIGS. 4 and 5. Fig. 8 ■ T[ [IV

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板を受皿に載せ、該受皿を傾斜した状態
で積層してカセット内に収納し、該カセットを原料融液
に浸漬して該基板上に液相エピタキシャル成長させる方
法において、該基板直上の受皿の下面により規定される
原料融液の厚さを傾斜した受皿の上方に向かって薄く保
持しながら結晶成長を行うことを特徴とする液相エピタ
キシャル成長方法。
(1) In a method in which semiconductor substrates are placed on a saucer, the saucers are stacked in an inclined state and stored in a cassette, and the cassette is immersed in a raw material melt to perform liquid phase epitaxial growth on the substrate, the semiconductor substrate is directly placed on the substrate. A liquid phase epitaxial growth method characterized in that crystal growth is performed while the thickness of the raw material melt defined by the lower surface of the saucer is kept thinner toward the top of the inclined saucer.
(2)原料融液の厚さを傾斜した受皿の上方に向かゥて
薄くし、かつ、周囲より中央を薄く保持しながら結晶成
長を行うことを特徴とする請求項(1)記載の液相エピ
タキシャル成長方法。
(2) The liquid according to claim (1), wherein the thickness of the raw material melt is made thinner toward the top of the inclined saucer, and crystal growth is performed while keeping the center thinner than the periphery. Phase epitaxial growth method.
JP15841289A 1989-06-22 1989-06-22 Method for liquid-phase epitaxial growth Pending JPH0328187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15841289A JPH0328187A (en) 1989-06-22 1989-06-22 Method for liquid-phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15841289A JPH0328187A (en) 1989-06-22 1989-06-22 Method for liquid-phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPH0328187A true JPH0328187A (en) 1991-02-06

Family

ID=15671193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15841289A Pending JPH0328187A (en) 1989-06-22 1989-06-22 Method for liquid-phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPH0328187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176369A (en) * 2004-12-24 2006-07-06 Kobe Steel Ltd High pressure liquid-phase epitaxial growth apparatus
US9250785B2 (en) 2004-06-28 2016-02-02 Nokia Technologies Oy Electronic device and method for providing extended user interface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9250785B2 (en) 2004-06-28 2016-02-02 Nokia Technologies Oy Electronic device and method for providing extended user interface
JP2006176369A (en) * 2004-12-24 2006-07-06 Kobe Steel Ltd High pressure liquid-phase epitaxial growth apparatus

Similar Documents

Publication Publication Date Title
US3809584A (en) Method for continuously growing epitaxial layers of semiconductors from liquid phase
JPH0328187A (en) Method for liquid-phase epitaxial growth
US3940296A (en) Method for growing epitaxial layers from the liquid phase
JP2000203981A (en) Multiple single crystal producing device
JPS63244613A (en) Susceptor for vapor growth
JPH02302391A (en) Liquid-phase epitaxial growth and apparatus therefor
JPH043101B2 (en)
EP0026325A1 (en) A wafer holder for use in growing liquid phase epitaxial films on wafers
SU1599448A1 (en) Method of growing epitaxial layers
JPH03208883A (en) Method and device for liquid phase epitaxial growth
JPH03112887A (en) Apparatus for liquid-phase epitaxial growth
JP2975740B2 (en) Liquid phase epitaxial growth method
JPH023620Y2 (en)
JPH03183691A (en) Growing method for single crystal
JPH0784359B2 (en) Liquid phase epitaxial growth system
JPH07161650A (en) Semiconductor liquid phase epitaxial device
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
JPS62128522A (en) Liquid growth method
JPH02296789A (en) Liquid phase epitaxial growth device
JPS62292693A (en) Liquid epitaxy device
JPH02102191A (en) Growth of semiconductor crystal
JPH02192487A (en) Method for liquid-phase epitaxial growth
JPS59104121A (en) Iii-v group compound semiconductor liquid phase epitaxial growth and semiconductor substrates supporter to be used therefor
JPS63159290A (en) Liquid phase epitaxial growth and device therefor
JPH0483792A (en) Apparatus for liquid phase epitaxial growth