JPH03281749A - Free cutting copper alloy - Google Patents

Free cutting copper alloy

Info

Publication number
JPH03281749A
JPH03281749A JP7893290A JP7893290A JPH03281749A JP H03281749 A JPH03281749 A JP H03281749A JP 7893290 A JP7893290 A JP 7893290A JP 7893290 A JP7893290 A JP 7893290A JP H03281749 A JPH03281749 A JP H03281749A
Authority
JP
Japan
Prior art keywords
alloy
case
phase
copper alloy
beta phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7893290A
Other languages
Japanese (ja)
Other versions
JP2505611B2 (en
Inventor
Toshiyuki Osako
敏行 大迫
Koichi Yokozawa
公一 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2078932A priority Critical patent/JP2505611B2/en
Publication of JPH03281749A publication Critical patent/JPH03281749A/en
Application granted granted Critical
Publication of JP2505611B2 publication Critical patent/JP2505611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Drilling Tools (AREA)

Abstract

PURPOSE:To improve the workability, particularly piercing properties of a free cutting copper alloy and to improve its working accuracy, particularly in the prolongation of the service life of a tool by specifying the compsn. of a Cu-Zn-Pb series alloy and the amt. of a beta phase in the alloy. CONSTITUTION:This free cutting copper alloy contains, by weight, 59 to 64% Cu, 0.5 to 4% Pb and the balance Zn, and the amt. of a beta phase in the alloy is regulated to 1 to 20vol.%. In this alloy, Pb is present in alpha brass as a dispersed phase, has a lubricating effect and reduces its cutting force; in the case of <0.5%, the sufficient lubricating effect can not be obtd., and in the case of >4%, its hot working is made hard. As for Cu, in the case of >64f%, the betaphase does not appear, and in the case of <59%, the amt. of the beta phase exceeds 20% and its cold workability is reduced. As for the beta phase, in the case of <1%, the increase of its cutting force particularly at the time of deep hole drilling is remarkable, which becomes the cause of the reduction of the service life of a tool; and its dimensional accuracy, and in the case of >20%, its cutting force increases and the face to be cut is roughened to reduce the working accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、機械部品、バルブなど切削加工部品用材料と
して用いられる快削銅合金に関する。
The present invention relates to a free-cutting copper alloy used as a material for machined parts such as machine parts and valves.

【従来の技術】[Conventional technology]

0.6〜3.7重1%のPbを含有するCu−Z rr
金合金快削黄銅)は、Pbの添加によって切削抵抗を低
下させた銅合金であり、被剛性に優れるので機械部品な
どの切削加工用材料として従来より広く用いられてきた
。しかし、近年ではa械部品の微小化、加工精度の向上
など、加工技術に対する要求か厳しくなる一方で、自動
工作機械の背反により、特に工具の長寿命化か重要な課
題となってきている。 切削加工方法としては、平削り、フライス削り、原則、
穴あけなどかあるが、このうちドリルによる穴あけ加工
は他の加工方法に比べて工具の損耗か激しい。 ドリル加工においても近年は、細穴加工、深穴加工など
加工条件がより厳しくなっており、従来の快削黄銅を用
いた場合には、ドリルの損耗や破損か起こりやすく、ま
た十分な加工精度が得られない場合があるなどの問題か
あった。 そのため、工具の改良ばかりでなく被剛材に対しても、
従来よりさらに高い被剛性か要求されるようになってい
る。
Cu-Z rr containing 0.6-3.7wt 1% Pb
Gold alloy (free-cutting brass) is a copper alloy whose cutting resistance has been lowered by the addition of Pb, and has been widely used as a cutting material for machine parts because of its excellent rigidity. However, in recent years, demands on machining technology have become stricter, such as miniaturization of machine parts and improvement of machining accuracy, and due to the trade-offs of automatic machine tools, extending the life of tools has become a particularly important issue. Cutting methods include planing, milling,
There are things like drilling, but drilling with a drill causes more wear and tear on the tool than other processing methods. In recent years, drilling conditions have become more severe, such as small hole drilling and deep hole drilling, and when conventional free-cutting brass is used, the drill is prone to wear and tear, and sufficient processing precision is not enough. There were some problems, such as not being able to obtain the desired results. Therefore, we not only improve the tools, but also the rigid materials.
Even higher rigidity than before is now required.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明はこのような従来材料の欠点を解決し、Cu−Z
 n−P b系合金の被剛性を改善して、ドリルなどの
加工工具の長寿命化および加工精度の向上を達成しよう
とするものである。
The present invention solves the drawbacks of such conventional materials and makes Cu-Z
The objective is to improve the rigidity of n-Pb alloys to extend the life of machining tools such as drills and improve machining accuracy.

【課題を解決するための手段】[Means to solve the problem]

本発明者らは、上記課題の解決のなめにCuZn−Pb
系合金に種々の検討を加えた結果、合金中のβ相量を1
〜20体積%とすることにより、ドリルによる穴開は加
工時の被剛性、特に穿孔性が著しく改善され、加工精度
か向」二すると共に、工具寿命も大きく改善されること
を見出し、本発明の第1に至った。すなわち本発明の第
1は、59〜64重量%のCuと、0.5〜4重量%の
Pbどを含み、残部か実質的にZnからなり、合金中の
β相址が体積にして1〜20体積%である、ことを特徴
とする快削銅合金である6 また、銅合金中の不純物SL及びPをそれぞれo、oo
i重量%以下とすることによって、’IIJI。 寿命かさらに改善されることを見出し、本発明の第2に
至った。すなわち、本発明の第2は、59へ一64重量
%のCuと、0.5〜4重量%のPbとを含み、かつP
及びSi含有量がそれぞれ0001重量%以下であって
、残部が実質的にZnからなり、合金中のβ相量か体積
にして1〜20体積%であることを特徴とする快削銅合
金である。
The present inventors have developed CuZn-Pb to solve the above problems.
As a result of various studies on the system alloy, the amount of β phase in the alloy was reduced to 1.
It has been found that by setting the amount to ~20% by volume, the rigidity during machining, especially the perforation performance, is significantly improved, and the machining accuracy is improved, as well as the tool life is greatly improved. We have reached the first point. That is, the first aspect of the present invention contains 59 to 64% by weight of Cu, 0.5 to 4% by weight of Pb, etc., and the remainder consists essentially of Zn, and the β phase in the alloy is 1% by volume. It is a free-cutting copper alloy characterized in that the content of impurities SL and P in the copper alloy is o and oo, respectively.
'IIJI by setting it to less than i% by weight. It was discovered that the life span could be further improved, leading to the second invention. That is, the second aspect of the present invention contains 59 to 64% by weight of Cu and 0.5 to 4% by weight of Pb, and
and a free-cutting copper alloy having a Si content of 0001% by weight or less, the remainder substantially consisting of Zn, and the amount of β phase in the alloy being 1 to 20% by volume. be.

【作用】[Effect]

Pbはα黄銅中に固溶せず、分散相として存在する。こ
のPb相は潤滑作用を有し、切削抵抗を低下させるので
、015〜4重量%含有される。 ここでPb含有蓋が0.5重量%未満では充分な潤滑作
用が得られず、一方4重量%を超えて含有すると熱間加
工が困雛となるので、Pb含有量は0.5〜4重量%と
する。 Cuについては、641Ji%を超えると工程の如何に
かかノ)らす、β相か出現しなくなるので、64111
%未満とする必要かある。またC IJが59重量%未
満ではβ相量が20体積%を超えて切削抵抗か上昇する
と共に、冷間加工性か低下するので、CI」含有量は5
9重蓋%以上とする必要かある。 上記のC1」成分範囲においては、焼鈍条件によってβ
相の量及び分布が変化する。ここでβ相量を1〜20体
積%とするのは、1体積%未満のβ相量では特に深穴加
工の場合の切削抵抗増加か著しく、工具寿命の低下や寸
法精度の低下の原因となるためである。一方、β相量か
20体積%を超えると、切削抵抗が上昇すると共に切削
面が粗くなって加工精度が低下する。したがって、β相
量は1〜20体積%とする必要がある。 さらに、SiとPの含有量をそれぞれ0.00101重
蓋下とするのは、これらの元素は、0001重量%含ま
れると、銅合金中に普通に含まれるFeなとの不純物と
化合して、硬い分散相を形成し7、これか工具の磨り減
り摩耗を引き起こして、工具寿命を著しく低下さぜるか
らである。 本発明合金のIi!造にあたっては、通常の大気溶解、
雰囲気溶解などによって処理され、得られた鋳塊は、熱
間圧延や熱間押出し加工の後、冷間汗延や冷間伸線と焼
鈍を繰り返すことにより、所望の形状に加圧される。尚
、本発明合金におけるβ相の蓋及び分布は、工程途中に
おいて素材の焼鈍条件によって変化させ得るものであり
、その最適条件は、材料に供与される切削加工条件によ
って決められる。
Pb does not form a solid solution in α-brass, but exists as a dispersed phase. This Pb phase has a lubricating effect and reduces cutting resistance, so it is contained in an amount of 0.15 to 4% by weight. Here, if the Pb-containing lid is less than 0.5% by weight, a sufficient lubricating effect cannot be obtained, while if it is contained in more than 4% by weight, hot working becomes difficult, so the Pb content is 0.5-4%. Weight%. Regarding Cu, if it exceeds 641Ji%, the β phase will not appear regardless of the process, so 64111
Does it need to be less than %? Furthermore, if CIJ is less than 59% by weight, the amount of β phase exceeds 20% by volume, which increases cutting resistance and reduces cold workability.
Is it necessary to make it 9% or more? In the above C1 component range, depending on the annealing conditions, β
The amount and distribution of phases changes. The reason why the β phase content is set to 1 to 20 volume % is that a β phase content of less than 1 volume % will significantly increase the cutting force, especially in deep hole machining, and cause a reduction in tool life and dimensional accuracy. This is to become. On the other hand, if the amount of β phase exceeds 20% by volume, the cutting resistance increases and the cut surface becomes rough, resulting in a decrease in machining accuracy. Therefore, the amount of β phase needs to be 1 to 20% by volume. Furthermore, the reason why the content of Si and P is set at 0.00101% by weight is that when these elements are contained at 0.001% by weight, they combine with impurities such as Fe that are normally contained in copper alloys. This is because a hard dispersed phase is formed7, which causes abrasion and wear of the tool and significantly shortens the tool life. Ii of the alloy of the present invention! During construction, normal atmospheric dissolution,
The ingot obtained by processing by atmospheric melting or the like is hot rolled or hot extruded and then pressed into a desired shape by repeating cold sweat rolling, cold wire drawing, and annealing. Note that the lid and distribution of the β phase in the alloy of the present invention can be changed during the process depending on the annealing conditions of the material, and the optimum conditions are determined by the cutting conditions applied to the material.

【実施例】【Example】

銅スクラツプ(1故IFI)及び快削黄銅スクラップを
所定の組成となるように配合し、高周波溶解炉を用いて
、5種の合金を大気中で洛解・鋳造した。また市販の電
気銅、電気亜鉛、粒状鉛を原料として用いた4種の合金
も作製した。第1表に各合金の化学分析値を示す。 各鋳塊を750℃で熱間押出し5.0rnrn径の棒材
とした。その際、Pbを本発明の成分範囲より多く含む
鋳塊No、9は熱間割れを生じ、以後の加工かできなか
った。 本発明の成分範囲にあって、熱間割れを生じなかったN
011〜8の棒材を冷間伸線と450℃、1時間の焼鈍
を繰返すことにより2.5mm径としな、この線材を3
50〜700℃の各温度で1時間の焼鈍を行ってβ相量
を種々に変化させた。 その後、再び冷間伸線を行って2.0mm径線材とした
。 これらの線材を本発明のβ用量範囲に従い分類して、本
発明合金61、比較合金7種を被剛性試験に供しな、各
合金中のβ相量については、X線回折法により、α、β
各相の回折ピーク強度の比から求めた。 尚、Xls!回折法による測定値をもってβ相量を同定
することを裏付ける為に、粗大なβ相組織を有する一部
の試料については、光学顕微fi観察における各相の面
積比からもβ相量を求めたが、両名の値はほぼ一致した
。 本発明合金及び比較合金の焼鈍条件及びβ相量測定結果
を第2表に示す。 (この頁以下余白) 各合金の被剛性は、以下の試験をおこなって評価した。 まず1mm径の高速度鋼ツイストドリルを用いて深さ7
 m mの穴開は加工を1000回行い、穴径を測定し
、1mm±10μm以内のものを良品、それ以外を不良
品とした。各合金について、不良発生率を第2表に示す
、また穴開ct加工を1000回を鰯えて続けた結果、
工具が破損するか、不良発生率か1%になるまでの穴開
は回数をもって工具寿命を表したものを第2表に併せて
示す。 本発明合金は1000回までの加工で不良は全く発生せ
ず、工具寿命はいずれも10000回以してある。それ
に対し比較合金では、不良発生が多く、工具の寿命がい
ずれもi oooo回未満であって被剛性に劣ることが
分かる。
Copper scrap (1st IFI) and free-cutting brass scrap were mixed to have a predetermined composition, and five types of alloys were melted and cast in the atmosphere using a high-frequency melting furnace. Four types of alloys were also produced using commercially available electrolytic copper, electrolytic zinc, and granular lead as raw materials. Table 1 shows the chemical analysis values for each alloy. Each ingot was hot extruded at 750°C to form a bar with a diameter of 5.0rnrn. At that time, ingot No. 9 containing Pb in an amount higher than the component range of the present invention developed hot cracking and could not be further processed. N that was within the composition range of the present invention and did not cause hot cracking
011~8 was made into a diameter of 2.5 mm by repeating cold wire drawing and annealing at 450°C for 1 hour.
Annealing was performed for 1 hour at each temperature of 50 to 700°C to vary the amount of β phase. Thereafter, cold wire drawing was performed again to obtain a wire rod with a diameter of 2.0 mm. These wire rods were classified according to the β dosage range of the present invention, and 61 alloys of the present invention and 7 comparative alloys were subjected to a stiffness test.The amount of β phase in each alloy was determined by X-ray diffraction method. β
It was determined from the ratio of the diffraction peak intensities of each phase. In addition, Xls! In order to support the identification of the amount of β phase using the measured value by diffraction method, for some samples with a coarse β phase structure, the amount of β phase was also determined from the area ratio of each phase in optical microscope FI observation. However, the values for both people were almost the same. Table 2 shows the annealing conditions and β phase content measurement results for the alloys of the present invention and comparative alloys. (Margins below this page) The rigidity of each alloy was evaluated by conducting the following tests. First, use a high-speed steel twist drill with a diameter of 1 mm to a depth of 7 mm.
The hole diameter of mm was drilled 1000 times, the hole diameter was measured, and those within 1 mm ± 10 μm were considered good, and the others were judged defective. The failure rate for each alloy is shown in Table 2, and as a result of continuous hole-cutting CT processing 1000 times,
Table 2 also shows the tool life expressed in terms of the number of holes drilled until the tool breaks or the defect rate decreases to 1%. The alloy of the present invention does not produce any defects even after being processed up to 1,000 times, and the tool life has exceeded 10,000 times in all cases. On the other hand, the comparative alloys had many defects, the tool life was less than ioooo times, and it was found that the rigidity was poor.

【発明の効果】【Effect of the invention】

上記のように、本発明合金は被剛性に優れる銅合金であ
り、これを切削加工用材料として用いることにより、機
械部品などの加工精度を高めると共に、工具寿命を向上
させることができる。
As mentioned above, the alloy of the present invention is a copper alloy with excellent rigidity, and by using it as a material for cutting, it is possible to improve the machining accuracy of machine parts and the like, as well as the tool life.

Claims (2)

【特許請求の範囲】[Claims] (1)59〜64重量%のCuと、0.5〜4重量%の
Pbとを含み、残部が実質的にZnからなり、合金中の
β相量が体積にして1〜20体積%であることを特徴と
する快削銅合金。
(1) Contains 59 to 64% by weight of Cu and 0.5 to 4% by weight of Pb, with the remainder essentially consisting of Zn, and the amount of β phase in the alloy is 1 to 20% by volume. A free-cutting copper alloy characterized by:
(2)59〜64重量%のCuと、0.5〜4重量%の
Pbとを含み、かつP及びSiの含有量がそれぞれ0.
001重量%以下であって、残部が実質的にZnからな
り、合金中のβ相量が体積にして1〜20体積%である
ことを特徴とする快削銅合金。
(2) Contains 59 to 64% by weight of Cu and 0.5 to 4% by weight of Pb, and has a P and Si content of 0.5% to 0.5% by weight, respectively.
A free-cutting copper alloy characterized in that the amount of β phase in the alloy is 1 to 20% by volume, with the balance being substantially Zn.
JP2078932A 1990-03-29 1990-03-29 Free cutting copper alloy Expired - Lifetime JP2505611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078932A JP2505611B2 (en) 1990-03-29 1990-03-29 Free cutting copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078932A JP2505611B2 (en) 1990-03-29 1990-03-29 Free cutting copper alloy

Publications (2)

Publication Number Publication Date
JPH03281749A true JPH03281749A (en) 1991-12-12
JP2505611B2 JP2505611B2 (en) 1996-06-12

Family

ID=13675646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078932A Expired - Lifetime JP2505611B2 (en) 1990-03-29 1990-03-29 Free cutting copper alloy

Country Status (1)

Country Link
JP (1) JP2505611B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925938A (en) * 1982-08-03 1984-02-10 Nitto Kinzoku Kogyo Kk Free-cutting brass having resistance to dezincification corrosion and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925938A (en) * 1982-08-03 1984-02-10 Nitto Kinzoku Kogyo Kk Free-cutting brass having resistance to dezincification corrosion and its production

Also Published As

Publication number Publication date
JP2505611B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
EP1929057B1 (en) Free-cutting copper alloy containing very low lead
US5167726A (en) Machinable lead-free wrought copper-containing alloys
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
WO2020261636A1 (en) Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
JP6850985B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US20150071813A1 (en) Brass alloy for tap water supply member
Zedan et al. Effects of free-cutting elements addition on the microstructure, hardness, and machinability of Al-11% Si–Cu–Mg casting alloys
JP2726444B2 (en) Manufacturing method of aluminum alloy with excellent transverse feed machining
US3253910A (en) Copper base alloys and the method of treating the same to improve their machinability
JPH03281749A (en) Free cutting copper alloy
WO2020261666A1 (en) Free-cutting copper alloy and method for producing free-cutting copper alloy
US3158470A (en) Copper base alloys and the method of treating the same to improve their machinability
US2102869A (en) Zinc alloys
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JP2002069551A (en) Free cutting copper alloy
JP2000234135A (en) High strength aluminum alloy excellent in machinability
JPH0339442A (en) Aluminum free cutting alloy for hot forging
US20130183194A1 (en) Copper Alloy
EP1214456A1 (en) A free machining aluminum alloy containing bismuth or bismuth-tin for free machining and a method of use
JPH09279285A (en) Aluminum alloy for machining
JPH04147934A (en) Copper alloy composition
Davies Machinability and microstructure of some common non-ferrous metals and alloys
JPH09302435A (en) Aluminum alloy for machining and its production
JP2004143476A (en) Aluminum alloy cast rod having excellent machinability and hot-workability
Zedan et al. Effects of Trace Elements on the Microstructural and Machinability Characteristics of Al–Si–Cu–Mg Castings. Materials 2022, 15, 377