JP2002069551A - Free cutting copper alloy - Google Patents
Free cutting copper alloyInfo
- Publication number
- JP2002069551A JP2002069551A JP2000266598A JP2000266598A JP2002069551A JP 2002069551 A JP2002069551 A JP 2002069551A JP 2000266598 A JP2000266598 A JP 2000266598A JP 2000266598 A JP2000266598 A JP 2000266598A JP 2002069551 A JP2002069551 A JP 2002069551A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- cutting
- machinability
- low
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、銅合金特有の性能
を有するとともに、機械加工性すなわち切削加工性(被
削性)に優れた快削性銅合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-cutting copper alloy which has a performance peculiar to a copper alloy and is excellent in machinability, ie, machinability (machinability).
【0002】[0002]
【従来の技術】マトリックス中に固溶しない低融点金属
を含有する銅合金、例えば、Pbを含有するCu−Zn
合金は、鋳造性、熱間および冷間加工性、機械加工性に
優れているため、水栓金具、バルブ部品、軸受け、歯車
などとして使用されている。2. Description of the Related Art A copper alloy containing a low melting point metal which does not form a solid solution in a matrix, for example, Cu-Zn containing Pb
Alloys are used as faucet fittings, valve parts, bearings, gears, etc. because of their excellent castability, hot and cold workability, and machinability.
【0003】このような部品の機械加工は、一般に自動
旋盤を使用して行われるため、材料特性として、被削抵
抗が低く且つ被削屑が分断される良好が被削性が要求さ
れている。生産効率の向上のために、粗削り工具とし
て、仕上げ面が滑らかとなる工具を使用する場合、一般
に仕上げ面が滑らかとなる工具は、被削屑が分断され難
く、被削抵抗が高いと工具の破損頻度が増加するから、
低い被削抵抗をそなえ、機械加工の条件によらず被削屑
が分断されることが重要であり、被削抵抗が低いことは
切削工具の高寿命化につながり、また、被削屑が分断さ
れることは省人化につながることからも被削性の向上が
望まれている。[0003] Since machining of such components is generally performed using an automatic lathe, as a material characteristic, low machinability and good machinability are required, as long as the machinability is cut. . In order to improve production efficiency, when using a tool with a smooth finished surface as a roughing tool, a tool with a smooth finished surface is generally difficult to cut off the debris, and if the cutting resistance is high, Because the frequency of damage increases,
It is important to provide a low cutting resistance and to cut off the chips regardless of the machining conditions. Low cutting resistance leads to a longer life of the cutting tool, and cutting of the chips Therefore, improvement of machinability is desired because it leads to labor saving.
【0004】前記のPb入りCu−Zn合金は、JIS
C3600、C3700に快削黄銅として登録され、
良好な被削性を与えるためのPbは含有濃度により規定
されているが、濃度が同じ場合であっても、機械加工条
件によっては十分な被削性が得られないことがある。ま
た、近年、Pbは人体や環境に悪影響を及ぼす有害物質
ととされ使用が制限される傾向にあることから、Pbに
代えてBiを添加した切削用黄銅もあるが、このBi入
り黄銅においても、機械加工条件によっては被削屑が連
続し十分な被削性が得られない場合がある。[0004] The Cu—Zn alloy containing Pb is manufactured according to JIS.
Registered as free cutting brass in C3600, C3700,
Although Pb for providing good machinability is defined by the concentration, even if the concentration is the same, sufficient machinability may not be obtained depending on the machining conditions. In recent years, Pb has been regarded as a harmful substance that has a bad effect on the human body and the environment, and its use tends to be restricted. Therefore, there is also a brass for cutting added with Bi in place of Pb. Further, depending on the machining conditions, there is a case where the swarf continues and sufficient machinability cannot be obtained.
【0005】材料を冷間加工により加工硬化させ、硬度
を増加させることによって被削屑を分断化し、十分な被
削性を与えることも可能であるが、反面、材料の硬度が
増大すると被削抵抗が上昇するという問題点が生じる。[0005] It is possible to work harden the material by cold working and increase the hardness to divide the swarf to provide sufficient machinability, but on the other hand, when the hardness of the material increases, the material becomes harder. There is a problem that the resistance increases.
【0006】発明者らは、Pb入り黄銅あるいはBi入
り黄銅において、PbあるいはBiの含有濃度が同じ場
合であっても、機械加工条件によっては十分な被削性が
得られない原因を解明するために、種々の実験、検討を
行った結果、被削性の相違は、材料の熱間加工温度、熱
間加工度や冷却速度など、製造条件により、マトリック
ス中におけるPbあるいはBi粒子の分布形態が異なる
ことに起因することを見出した。In order to clarify the reason why sufficient machinability cannot be obtained depending on machining conditions, even when the content of Pb or Bi is the same in Pb-containing brass or Bi-containing brass. In addition, as a result of various experiments and investigations, the difference in machinability is that the distribution form of Pb or Bi particles in the matrix depends on the manufacturing conditions such as the hot working temperature of the material, the degree of hot working and the cooling rate. It was found that it was caused by different things.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記の知見
に基づいて、さらに広範囲な実験、検討を重ねた結果と
してなされたのものであり、熱間押出性、冷間抽伸加工
性など、展伸加工性が良好で、機械加工において加工条
件に関係なく被削抵抗が低く且つ被削屑が細かく分断さ
れる優れた被削性をそなえた快削性銅合金を提供するこ
とにある。SUMMARY OF THE INVENTION The present invention has been made as a result of further extensive experiments and studies based on the above findings, and has been developed in terms of hot extrudability, cold drawability and the like. An object of the present invention is to provide a free-cutting copper alloy having excellent machinability, excellent machinability, and low machinability regardless of machining conditions in machining, and in which machining chips are finely divided.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による快削性銅合金は、マトリッ
クス中に固溶しない低融点金属を含有する銅合金であっ
て、マトリックス中に前記低融点金属の粒子が1mm3
当たり105 個以上分散していることを特徴とする。According to the first aspect of the present invention, there is provided a free-cutting copper alloy containing a low-melting-point metal which does not form a solid solution in a matrix. 1 mm 3 of the low melting point metal particles
It is characterized in that at least 10 5 particles are dispersed.
【0009】請求項2による快削性銅合金は、請求項1
において、前記低融点金属がPb、Biのうちの1種ま
たは2種であることを特徴とする。[0009] The free-cutting copper alloy according to the second aspect is the first aspect.
Wherein the low melting point metal is one or two of Pb and Bi.
【0010】請求項3による快削性銅合金は、請求項1
または2において、前記銅合金がCu−Zn合金である
ことを特徴とする。[0010] The free-cutting copper alloy according to the third aspect is the first aspect.
Or 2) wherein the copper alloy is a Cu—Zn alloy.
【0011】請求項4による快削性銅合金は、請求項1
〜3において、前記銅合金がP:0.01〜0.1%を
含有することを特徴とする。[0011] The free-cutting copper alloy according to the fourth aspect is the first aspect.
(3) to (3), wherein the copper alloy contains P: 0.01 to 0.1%.
【0012】請求項5による快削性銅合金は、請求項1
〜4において、前記銅合金がSi:0.5〜4.0%、
Fe:0.1〜0.5%のうちの1種または2種を含有
することを特徴とする。[0012] The free-cutting copper alloy according to claim 5 is provided by claim 1.
The copper alloy is 0.5 to 4.0%,
Fe: characterized in that it contains one or two of 0.1 to 0.5%.
【0013】[0013]
【発明の実施の形態】本発明の快削性銅合金は、マトリ
ックス中に固溶しない低融点金属、例えば、Pb、B
i、Sbなどを含有する銅合金を前提とする。これらの
低融点金属は、熱間加工直後においては溶融している
が、その後の冷却によって凝固し、マトリックス中に独
立粒子としてマトリックスと非整合に分散し、機械加工
時にはチップブレーカーとして作用して被削屑を分断化
する。BEST MODE FOR CARRYING OUT THE INVENTION The free-cutting copper alloy of the present invention is a low-melting metal that does not form a solid solution in a matrix, for example, Pb, B
A copper alloy containing i, Sb, etc. is assumed. These low-melting metals are molten immediately after hot working, but are solidified by subsequent cooling, disperse in the matrix as independent particles in an inconsistent manner with the matrix, and act as chip breakers during machining to protect them. Shreds chips.
【0014】すなわち、工具から伝播された剪断歪み
は、低融金属の分散粒子と衝突すると、非整合のためマ
トリックス材料へ亀裂となって伝播する。この亀裂の伝
播距離は、材料強度や材料に付与された歪量により異な
るが、低融点金属粒子間距離が亀裂の最大伝播距離より
短い場合には、亀裂が連続的となり被削屑が剪断型とな
って分断される。また、低融点金属粒子は、機械加工時
に加工熱により溶融し、機械加工工具と材料間の潤滑剤
として被削抵抗を低減するよう機能する。That is, when the shear strain transmitted from the tool collides with the dispersed particles of the low-melting metal, the shear strain propagates as a crack in the matrix material due to mismatch. The propagation distance of this crack depends on the strength of the material and the amount of strain imparted to the material.However, if the distance between the low melting point metal particles is shorter than the maximum propagation distance of the crack, the crack will be continuous and the chips will be shear-type. It is divided. The low-melting metal particles are melted by machining heat during machining, and function as a lubricant between the machining tool and the material to reduce cutting resistance.
【0015】被削屑を分断させ、被削抵抗を低減して、
優れた被削性を与えるための低融点金属粒子の分布形態
を得るためには、マトリックス中に、低融点金属の粒子
を1mm3 当たり105 個以上分散させることが必要で
ある。この分布形態によって、材料強度や材料に付与さ
れた歪量に関係なく、また機械加工条件にかかわらず、
被削屑が分断される。マトリックス中に前記粒子径を有
する低融点金属の粒子を1mm3 当たり106 個以上分
散させるのがさらに好ましく、連続する切り屑数を確実
に3以下とすることができる。[0015] By cutting the cutting waste, reducing the cutting resistance,
In order to obtain a distribution form of low melting point metal particles for providing excellent machinability, it is necessary to disperse at least 10 5 particles of low melting point metal per 1 mm 3 in a matrix. Due to this distribution form, regardless of the material strength and the amount of strain applied to the material, and regardless of the machining conditions
The shavings are separated. It is more preferable to disperse at least 10 6 particles of the low melting point metal having the above particle diameter per 1 mm 3 in the matrix, and it is possible to surely reduce the number of continuous chips to 3 or less.
【0016】本発明において、合金マトリックスに分散
する低融点金属のうちでは、Pb、Biがとくに好まし
い。PbおよびBiの融点はそれぞれ327℃および2
71℃と低く、銅のマトリックス中にはほとんど固溶し
ない。また、本発明に適用される銅合金としては、Cu
−Zn合金、Cu−Zn−Ni合金、Cu−Sn合金、
Cu−Sn−P合金などが挙げられる。このうち、Cu
−Zn合金が最も好ましく、Cu量が50.0〜76.
0%のCu−Zn合金を使用することができる。In the present invention, among the low melting point metals dispersed in the alloy matrix, Pb and Bi are particularly preferred. The melting points of Pb and Bi are 327 ° C. and 2
It is as low as 71 ° C. and hardly forms a solid solution in a copper matrix. Further, as the copper alloy applied to the present invention, Cu
-Zn alloy, Cu-Zn-Ni alloy, Cu-Sn alloy,
Cu-Sn-P alloy and the like can be mentioned. Among them, Cu
-Zn alloy is most preferred, and the Cu content is 50.0 to 76.
0% Cu-Zn alloy can be used.
【0017】また、本発明の快削性銅合金においては、
とくに銅合金がCu−Zn合金の場合、特定量のP、S
i、Feを含有させることによりその特性を改善するこ
とができる。すなわち、0.01〜0.1%のPを含有
させることにより、脱亜鉛腐食を抑制する効果がある。
また、Pは結晶粒の粗大化を抑制するよう機能するか
ら、結晶粒の粗大化に伴う低融点金属粒子の粗大化も抑
制でき、製造条件によらず、前記低融点金属粒子の分布
形態を得ることが可能となる。0.1%を越えてPを添
加すると、硬くて脆いCu3 Pが生成し易くなって冷間
加工性が阻害される。さらに好ましいPの含有範囲は
0.02〜0.08%である。Further, in the free-cutting copper alloy of the present invention,
In particular, when the copper alloy is a Cu-Zn alloy, a specific amount of P, S
The properties can be improved by adding i and Fe. That is, by containing 0.01 to 0.1% of P, there is an effect of suppressing dezincification corrosion.
Further, since P functions to suppress the coarsening of the crystal grains, the coarsening of the low-melting metal particles accompanying the coarsening of the crystal grains can also be suppressed, and the distribution form of the low-melting metal particles can be controlled regardless of the manufacturing conditions. It is possible to obtain. If P is added in excess of 0.1%, hard and brittle Cu 3 P is likely to be generated, which impairs cold workability. A more preferable P content range is 0.02 to 0.08%.
【0018】Siは、結晶粒の粗大化を抑制するよう機
能するから、結晶粒の粗大化に伴う低融点金属粒子の粗
大化も抑制でき、製造条件によらず、前記低融点金属粒
子の分布形態を得ることが可能となる。また、Siの添
加は材料強度を向上させるから、前記亀裂の伝播距離を
大きくすることができる。一方、Siは見掛け上のZn
含有量を増加させる、いわゆるZn等量が大きいため、
多量の添加は合金中のZn含有量を低減する必要が生じ
コストを上昇させる。これらを考慮したSiの好ましい
含有量は0.5〜4.0%の範囲であり、さらに好まし
い含有範囲は1.0〜3.0%である。Since Si functions to suppress the coarsening of the crystal grains, it is also possible to suppress the coarsening of the low melting point metal particles accompanying the coarsening of the crystal grains, and the distribution of the low melting point metal particles is independent of the manufacturing conditions. It becomes possible to obtain a form. Further, since the addition of Si improves the material strength, the propagation distance of the crack can be increased. On the other hand, Si is apparent Zn
Increase the content, so-called Zn equivalent amount is large,
The addition of a large amount necessitates a reduction in the Zn content in the alloy, and raises the cost. Taking these into consideration, the preferred content of Si is in the range of 0.5 to 4.0%, and the more preferred content range is 1.0 to 3.0%.
【0019】Feは、Siと同様、結晶粒の粗大化を抑
制するよう機能するから、結晶粒の粗大化に伴う低融点
金属粒子の粗大化も抑制でき、製造条件によらず、前記
低融点金属粒子の分布形態を得ることが可能となる。反
面、Feを多量に添加すると、Feは銅合金の熱間加工
温度では完全に固溶しないため、残留したFeが冷間加
工性を阻害する。これらを考慮したFeの好ましい含有
量は0.1〜0.5%の範囲であり、さらに好ましい含
有範囲は0.15〜0.4%である。Fe, like Si, functions to suppress the coarsening of the crystal grains. Therefore, it is also possible to suppress the coarsening of the low melting point metal particles accompanying the coarsening of the crystal grains. It is possible to obtain a distribution form of the metal particles. On the other hand, if a large amount of Fe is added, Fe does not completely form a solid solution at the hot working temperature of the copper alloy, so that the remaining Fe impairs cold workability. Taking these into consideration, the preferable content of Fe is in the range of 0.1 to 0.5%, and the more preferable content is 0.15 to 0.4%.
【0020】本発明の銅合金は、通常は棒材として供給
され、その製造は、上記の組成を有する合金を造塊し、
得られた鋳塊を熱間押出加工し、さらに通常は冷間抽伸
加工を行い、必要に応じて矯正、仕上げ加工することに
より行われる。応力腐食割れ防止のために、熱間押出後
に後熱処理を施す場合もある。本発明における前記低融
点金属粒子の分布形態は、とくに熱間加工温度を比較的
低温にする、高押出比で押出加工を行う、押出後の冷却
速度を大きくするなどの手法により得ることができる。The copper alloy of the present invention is usually supplied as a rod, and its production is performed by ingoting an alloy having the above composition,
The obtained ingot is hot-extruded, and further usually cold-drawn, and if necessary, straightened and finished. Post-heat treatment may be performed after hot extrusion in order to prevent stress corrosion cracking. The distribution form of the low-melting metal particles in the present invention can be obtained by a technique such as making the hot working temperature relatively low, performing extrusion at a high extrusion ratio, or increasing the cooling rate after extrusion. .
【0021】[0021]
【実施例】以下、本発明の実施例を比較例と対比して説
明するとともに、それに基づいてその効果を実証する。
なお、これらの実施例は、本発明の好ましい一実施態様
を説明するためのものであって、これにより本発明が制
限されるものではない。EXAMPLES Examples of the present invention will be described below in comparison with comparative examples, and the effects thereof will be demonstrated based on them.
It should be noted that these examples are for describing a preferred embodiment of the present invention, and the present invention is not limited thereto.
【0022】実施例1 Cu、Zn、Bi、Pb、Si、Feの新地金およびC
u−15%P母合金を混合して成分元素の濃度を調整し
た表1に示す組成の合金(合金A〜J)を溶解、鋳造
し、直径294mmのビレットに造塊した。Example 1 New ingots of Cu, Zn, Bi, Pb, Si, Fe and C
Alloys (alloys A to J) having the composition shown in Table 1 in which the concentrations of the component elements were adjusted by mixing a u-15% P master alloy were melted and cast, and formed into a billet having a diameter of 294 mm.
【0023】得られたビレットを、合金A〜Bについて
は約600℃の温度、合金C〜Jについては約650〜
680℃の温度で直径17.5mmの棒材に熱間押出加
工した後、断面減少率15%で冷間抽伸加工し、さらに
矯正仕上げ加工した。The resulting billet was subjected to a temperature of about 600 ° C. for alloys AB and about 650 ° C. for alloys CJ.
After hot extrusion into a bar having a diameter of 17.5 mm at a temperature of 680 ° C., cold drawing was performed with a reduction rate of cross section of 15%, followed by straightening.
【0024】矯正仕上げ加工後の棒材(試験材)につい
て、下記の方法により、Pbおよび/またはBi粒子の
分布形態を測定し、加工性、被削性、耐脱亜鉛腐食性を
評価した。With respect to the bar (test material) after the corrective finishing, the distribution form of Pb and / or Bi particles was measured by the following method, and the workability, machinability and dezincification corrosion resistance were evaluated.
【0025】低融点金属粒子の分布形態:走査型電子顕
微鏡によりマトリックスの反射電子像を撮影し、画像解
析により分布形態を特定する。 加工性:熱間押出加工および冷間抽伸加工において、破
断、割れが生じなかったものを合格(○)、破断または
割れが生じたものを不合格(×)とした。Distribution form of low-melting metal particles: A reflection electron image of the matrix is taken by a scanning electron microscope, and the distribution form is specified by image analysis. Workability: In hot extrusion and cold drawing, those that did not break or crack were accepted (o), and those that broke or cracked were rejected (x).
【0026】被削性:周速10〜300m/分、切り込
み量0.01〜2.5mm、送り量0〜0.25mm/
rev.とし、各種形状のバイトを使用して切削加工を
行い、いずれの切削条件においても切粉が剪断型の形態
となり細かく分断して被削性が優れていたものは合格
(○):いずれか1つでも切屑が連続したものは不合格
(×)とした。Machinability: peripheral speed 10 to 300 m / min, cutting depth 0.01 to 2.5 mm, feed amount 0 to 0.25 mm /
rev. The cutting process was performed using cutting tools of various shapes, and under any of the cutting conditions, the chips were in the form of a shear, and were finely divided and the machinability was excellent. At least one piece with continuous chips was rejected (x).
【0027】耐脱亜鉛腐食性:ISO法に準拠して、試
験材を75±3℃のCuCl2 ・2H2 Oの12.7g
/l溶液に24時間浸漬し、脱亜鉛腐食深さを測定し、
以下の基準により評価した。脱亜鉛腐食深さ100μm
以下(実用上脱亜鉛腐食の問題が生じない深さ)のもの
は合格(○)、脱亜鉛腐食深さが100μmを越えるも
のは不合格(×)Dezincification corrosion resistance: 12.7 g of CuCl 2 .2H 2 O at 75 ± 3 ° C. according to the ISO method
/ L solution for 24 hours, measure the dezincification corrosion depth,
Evaluation was made according to the following criteria. Dezincification corrosion depth 100μm
The following (depth that does not cause a problem of dezincification corrosion in practical use) are acceptable ((), and those with a dezincification corrosion depth exceeding 100 μm are unacceptable (x).
【0028】Pb、Bi粒子の分布形態を表1に、その
他の評価結果を表2に示す。表2にみられるように、本
発明に従う試験材はいずれも加工性に問題がなく、機械
加工条件によらず優れた被削性を示し、Pを含有した試
験材No.5〜8は、良好な耐脱亜鉛腐食性をそなえて
いる。Table 1 shows the distribution of Pb and Bi particles, and Table 2 shows other evaluation results. As can be seen from Table 2, the test materials according to the present invention all have no problem in workability, show excellent machinability irrespective of the machining conditions, and have a test material No. P containing P. Nos. 5 to 8 have good dezincification corrosion resistance.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】比較例1 Cu、Zn、Bi、Pbの新地金およびCu−15%P
母合金を混合して成分元素の濃度を調整した表3に示す
組成の合金(合金K〜L)を溶解、鋳造し、直径294
mmのビレットに造塊した。Comparative Example 1 New ingot of Cu, Zn, Bi, Pb and Cu-15% P
Alloys (alloys KL) having the composition shown in Table 3 in which the concentration of the component elements was adjusted by mixing the mother alloy were melted and cast, and the diameter was 294.
Ingots were formed into billets of mm.
【0032】得られたビレットを、約650℃の温度で
直径17.5mmの棒材に熱間押出加工した後、断面減
少率15%で冷間抽伸加工し、さらに矯正仕上げ加工し
て、矯正仕上げ加工後の棒材(試験材)について、実施
例1と同様に、Pbおよび/またはBi粒子の分布形態
を測定し、加工性、被削性を評価した。結果を表4に示
す。After the obtained billet is hot-extruded into a bar having a diameter of 17.5 mm at a temperature of about 650 ° C., it is subjected to cold drawing at a cross-sectional reduction rate of 15%, and is further subjected to a straightening finish to straighten it. With respect to the rod (test material) after finishing, the distribution form of Pb and / or Bi particles was measured in the same manner as in Example 1, and the workability and machinability were evaluated. Table 4 shows the results.
【0033】表4に示すように、試験材No.11〜1
2は、PbまたはBi粒子の分布量が少ないため、切削
加工試験において、切屑が微細に分断されず螺旋状とな
り、被削性が劣っていた。As shown in Table 4, the test material No. 11-1
In No. 2, since the amount of distribution of Pb or Bi particles was small, in a cutting test, the chips were not finely divided but formed into a spiral shape, resulting in poor machinability.
【0034】[0034]
【表3】 [Table 3]
【0035】[0035]
【表4】 [Table 4]
【0036】比較例2 Cu、Zn、Bi、Pb、Fe、Siの新地金およびC
u−15%P母合金を混合して成分元素の濃度を調整し
た表5に示す組成の合金(合金M〜Q)を溶解、鋳造
し、直径294mmのビレットに造塊した。Comparative Example 2 New ingots of Cu, Zn, Bi, Pb, Fe, Si and C
Alloys (alloys M to Q) having the composition shown in Table 5 in which the concentration of the component elements was adjusted by mixing a u-15% P master alloy were melted, cast, and formed into a billet having a diameter of 294 mm.
【0037】得られたビレットを、約650〜680℃
の温度で直径17.5mmの棒材に熱間押出加工した
後、断面減少率15%で冷間抽伸加工し、さらに矯正仕
上げ加工して、矯正仕上げ加工後の棒材(試験材)につ
いて、実施例1と同様に、Pbおよび/またはBi粒子
の分布形態を測定し、加工性、被削性を評価した。結果
を表6に示す。The obtained billet is heated at about 650-680 ° C.
After hot extrusion into a 17.5 mm diameter bar at a temperature of, cold drawing at a cross-section reduction rate of 15%, straightening and finishing, and a bar (test material) after straightening finishing, As in Example 1, the distribution form of Pb and / or Bi particles was measured, and workability and machinability were evaluated. Table 6 shows the results.
【0038】表6に示すように、試験材No.13はP
の含有量が多いため、熱間押出および抽伸加工時に割れ
が生じた。試験材No.14およびNo.16は、Pb
粒子、Bi粒子の分布量が少ないため、切削加工試験に
おいて切屑が微細に分断されず螺旋状となり被削性が劣
っていた。試験材No.15およびNo.17は、それ
ぞれSi含有量およびFe含有量が多いため、抽伸加工
時に割れが発生した。As shown in Table 6, the test material No. 13 is P
, Cracks occurred during hot extrusion and drawing. Test material No. 14 and No. 16 is Pb
Since the amount of distribution of particles and Bi particles was small, chips were not finely divided in a cutting test, but were spiraled, resulting in poor machinability. Test material No. 15 and No. In No. 17, since the Si content and the Fe content were large, cracks occurred during drawing.
【0039】[0039]
【表5】 [Table 5]
【0040】[0040]
【表6】 [Table 6]
【0041】比較例3 Cu、Zn、Bi、Pb、Fe、Siの新地金およびC
u−15%P母合金を混合して成分元素の濃度を調整し
た表7に示す組成の合金(合金R〜U)を溶解、鋳造
し、直径294mmのビレットに造塊した。Comparative Example 3 New ingots of Cu, Zn, Bi, Pb, Fe, Si and C
Alloys having a composition shown in Table 7 (alloys RU) in which the concentrations of the component elements were adjusted by mixing a u-15% P master alloy were melted and cast, and formed into a billet having a diameter of 294 mm.
【0042】得られたビレットを、約650〜680℃
の温度で直径17.5mmの棒材に熱間押出加工した
後、断面減少率15%で冷間抽伸加工し、さらに矯正仕
上げ加工して、矯正仕上げ加工後の棒材(試験材)につ
いて、実施例1と同様に、Pbおよび/またはBi粒子
の分布形態を測定し、加工性、被削性、耐脱亜鉛腐食性
を評価した。結果を表8に示す。The obtained billet is heated at about 650 to 680 ° C.
After hot extrusion into a 17.5 mm diameter bar at a temperature of, cold drawing at a cross-section reduction rate of 15%, straightening and finishing, and a bar (test material) after straightening finishing, As in Example 1, the distribution form of the Pb and / or Bi particles was measured, and the workability, machinability, and dezincification corrosion resistance were evaluated. Table 8 shows the results.
【0043】表8に示すように、試験材No.18はB
i粒子の分布量が少ないため、切削加工試験において切
屑が微細に分断されず螺旋状となり被削性が劣ってい
た。また、試験材No.18〜21はいずれも、Pを含
有しないものであるため、脱亜鉛腐食試験において腐食
深さが100μmを越える脱亜鉛腐食が生じた。As shown in Table 8, the test material No. 18 is B
Since the distribution amount of the i-particles was small, the chips were not finely divided in the cutting test but became spiral and the machinability was poor. The test material No. Since all of Nos. 18 to 21 do not contain P, dezincification corrosion having a corrosion depth exceeding 100 μm occurred in a dezincification corrosion test.
【0044】[0044]
【表7】 [Table 7]
【0045】[0045]
【表8】 [Table 8]
【0046】[0046]
【発明の効果】本発明によれば、熱間押出性、冷間抽伸
加工性など、展伸加工性が良好で、機械加工において加
工条件に関係なく被削抵抗が低く且つ被削屑が細かく分
断される優れた被削性をそなえた快削性銅合金が提供さ
れる。According to the present invention, the extensibility, such as hot extrudability and cold drawability, is excellent, and the machining resistance is low irrespective of the machining conditions in machining, and the swarf is fine. A free-cutting copper alloy having excellent machinability to be divided is provided.
Claims (5)
を含有する銅合金であって、マトリックス中に前記低融
点金属の粒子が1mm3 当たり105 個以上分散してい
ることを特徴とする快削性銅合金。1. A copper alloy containing a low-melting metal that does not form a solid solution in a matrix, wherein at least 10 5 particles of the low-melting metal are dispersed in the matrix per 1 mm 3. Machinable copper alloy.
種または2種であることを特徴とする請求項1記載の快
削性銅合金。2. The low melting point metal is one of Pb and Bi.
The free-cutting copper alloy according to claim 1, wherein the alloy is a kind or two kinds.
を特徴とする請求項1または2記載の快削性銅合金。3. The free-cutting copper alloy according to claim 1, wherein the copper alloy is a Cu—Zn alloy.
(質量%、以下同じ)を含有することを特徴とする請求
項1〜3のいずれかに記載の快削性銅合金。4. The copper alloy has a P content of 0.01 to 0.1%.
The free-cutting copper alloy according to any one of claims 1 to 3, further comprising (mass%, the same applies hereinafter).
Fe:0.1〜0.5%のうちの1種または2種を含有
することを特徴とする請求項1〜4のいずれかに記載の
快削性銅合金。5. The method according to claim 1, wherein the copper alloy contains 0.5 to 4.0% of Si.
The free-cutting copper alloy according to any one of claims 1 to 4, comprising one or two of Fe: 0.1 to 0.5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000266598A JP2002069551A (en) | 2000-09-04 | 2000-09-04 | Free cutting copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000266598A JP2002069551A (en) | 2000-09-04 | 2000-09-04 | Free cutting copper alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002069551A true JP2002069551A (en) | 2002-03-08 |
Family
ID=18753653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000266598A Pending JP2002069551A (en) | 2000-09-04 | 2000-09-04 | Free cutting copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002069551A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003277855A (en) * | 2002-03-22 | 2003-10-02 | San-Etsu Metals Co Ltd | Lead-free, free-cutting brass alloy material and production method thereof |
JP2009007657A (en) * | 2007-06-29 | 2009-01-15 | Joetsu Bronz1 Corp | Lead-free free-cutting copper alloy, and lead-free free-cutting copper alloy for continuous casting |
KR20150020718A (en) * | 2008-09-10 | 2015-02-26 | 다이호 고교 가부시키가이샤 | SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL |
US11028464B2 (en) * | 2013-02-01 | 2021-06-08 | Xiamen Lota International Co., Ltd. | Lead-free easy-to-cut corrosion-resistant brass alloy with good thermoforming performance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58185738A (en) * | 1982-04-20 | 1983-10-29 | Yamamoto Sangyo Kk | Brass |
JPS5925938A (en) * | 1982-08-03 | 1984-02-10 | Nitto Kinzoku Kogyo Kk | Free-cutting brass having resistance to dezincification corrosion and its production |
JPS6056036A (en) * | 1983-09-07 | 1985-04-01 | Dowa Mining Co Ltd | Copper-base alloy having excellent corrosion resistance and machineability |
JPH03153833A (en) * | 1989-11-13 | 1991-07-01 | Toyo Shindoushiyo:Kk | Free-cutting copper alloy |
JPH05255778A (en) * | 1992-03-10 | 1993-10-05 | Hitachi Alloy Kk | Free cutting brass alloy |
JP2000119774A (en) * | 1998-10-09 | 2000-04-25 | Sanbo Copper Alloy Co Ltd | Free cutting copper alloy |
JP2000169919A (en) * | 1998-12-04 | 2000-06-20 | Sanbo Copper Alloy Co Ltd | Lead-free copper base alloy material |
-
2000
- 2000-09-04 JP JP2000266598A patent/JP2002069551A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58185738A (en) * | 1982-04-20 | 1983-10-29 | Yamamoto Sangyo Kk | Brass |
JPS5925938A (en) * | 1982-08-03 | 1984-02-10 | Nitto Kinzoku Kogyo Kk | Free-cutting brass having resistance to dezincification corrosion and its production |
JPS6056036A (en) * | 1983-09-07 | 1985-04-01 | Dowa Mining Co Ltd | Copper-base alloy having excellent corrosion resistance and machineability |
JPH03153833A (en) * | 1989-11-13 | 1991-07-01 | Toyo Shindoushiyo:Kk | Free-cutting copper alloy |
JPH05255778A (en) * | 1992-03-10 | 1993-10-05 | Hitachi Alloy Kk | Free cutting brass alloy |
JP2000119774A (en) * | 1998-10-09 | 2000-04-25 | Sanbo Copper Alloy Co Ltd | Free cutting copper alloy |
JP2000169919A (en) * | 1998-12-04 | 2000-06-20 | Sanbo Copper Alloy Co Ltd | Lead-free copper base alloy material |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003277855A (en) * | 2002-03-22 | 2003-10-02 | San-Etsu Metals Co Ltd | Lead-free, free-cutting brass alloy material and production method thereof |
JP2009007657A (en) * | 2007-06-29 | 2009-01-15 | Joetsu Bronz1 Corp | Lead-free free-cutting copper alloy, and lead-free free-cutting copper alloy for continuous casting |
KR20150020718A (en) * | 2008-09-10 | 2015-02-26 | 다이호 고교 가부시키가이샤 | SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL |
KR101696562B1 (en) | 2008-09-10 | 2017-01-13 | 다이호 고교 가부시키가이샤 | SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL |
US11028464B2 (en) * | 2013-02-01 | 2021-06-08 | Xiamen Lota International Co., Ltd. | Lead-free easy-to-cut corrosion-resistant brass alloy with good thermoforming performance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2126848C1 (en) | Lead-free aluminum alloy | |
WO2020261636A1 (en) | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting | |
KR101969010B1 (en) | Lead free cutting copper alloy with no lead and bismuth | |
EP1947204B1 (en) | Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature | |
JP6799305B1 (en) | Method for manufacturing free-cutting copper alloy castings and free-cutting copper alloy castings | |
JP2004183056A (en) | Lead-reduced free-cutting copper alloy | |
JP2002069551A (en) | Free cutting copper alloy | |
JPH0285331A (en) | Aluminum alloy having excellent cross feed machinability and its manufacture | |
WO2020261666A1 (en) | Free-cutting copper alloy and method for producing free-cutting copper alloy | |
CN114427050A (en) | Lead-free Cu-Zn base alloy | |
JPH07173573A (en) | Free-cutting steel excellent in machinability by carbide tool and internal quality | |
JP3941352B2 (en) | Electrode wire for wire electric discharge machining and manufacturing method thereof | |
JP2001294956A (en) | Free cutting brass excellent in dezincification resistance and its producing method | |
TWI747777B (en) | Free-cutting steel and its manufacturing method | |
WO2024228355A1 (en) | Free-machining copper alloy and production method for free-machining copper alloy | |
CN115362278B (en) | Free-cutting steel and method for producing same | |
JP2003073789A (en) | Method for manufacturing unleaded free-cutting brass superior in machinability | |
JP2505611B2 (en) | Free cutting copper alloy | |
JP2001181770A (en) | Aluminum-based alloy | |
KR20040062314A (en) | Composition of Unleaded Free Cutting Brass with Advenced Corrosion Resistance | |
JPH07173567A (en) | Aluminum alloy for forming excellent in machinability | |
JPH09302435A (en) | Aluminum alloy for machining and its production | |
JP2006083443A (en) | Brass material superior in hot workability and machinability | |
JPH09279285A (en) | Aluminum alloy for machining | |
JPH0413826A (en) | High strength copper alloy for machining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070831 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20071113 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071221 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100614 |