JP2004183056A - Lead-reduced free-cutting copper alloy - Google Patents

Lead-reduced free-cutting copper alloy Download PDF

Info

Publication number
JP2004183056A
JP2004183056A JP2002352360A JP2002352360A JP2004183056A JP 2004183056 A JP2004183056 A JP 2004183056A JP 2002352360 A JP2002352360 A JP 2002352360A JP 2002352360 A JP2002352360 A JP 2002352360A JP 2004183056 A JP2004183056 A JP 2004183056A
Authority
JP
Japan
Prior art keywords
mass
content
phase
alloy
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002352360A
Other languages
Japanese (ja)
Other versions
JP3693994B2 (en
Inventor
Keiichiro Oishi
恵一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBO COPPER ALLOY CO Ltd
Original Assignee
SANBO COPPER ALLOY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANBO COPPER ALLOY CO Ltd filed Critical SANBO COPPER ALLOY CO Ltd
Priority to JP2002352360A priority Critical patent/JP3693994B2/en
Publication of JP2004183056A publication Critical patent/JP2004183056A/en
Application granted granted Critical
Publication of JP3693994B2 publication Critical patent/JP3693994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To ensure an industrially thoroughly satisfactory machinability, while greatly reducing a Pb content in comparison with that in a conventional free-cutting copper alloy. <P>SOLUTION: The lead-reduced free-cutting copper alloy has an alloy composition which includes 66.0-75.0 mass% Cu, 21.0-32.0 mass% Zn, 1.3-2.4 mass% Si and 0.4-0.8 mass% Pb, and among the contents, has relations of 60.0 mass%≤(Cu-4.5×Si)≤65.0 mass%, 34.5 mass%≤(Zn+5.5×Si)≤40.0 mass%, and 1.5 mass%≤(1.5×Pb+0.6×Si)≤2.4 mass%; has a metal structure containing an α-phase as a matrix, and 3 to 30% of a γ-phase and/or κ-phase; contains 0.05 mass% or less Bi as an impurity; and has a value of Bi/Pb of 0.1 or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被削性改善元素であるPbの含有量を大幅に低減させた鉛低減快削性銅合金に関するものである。
【0002】
【従来の技術】
被削性に優れた銅合金として、一般に、「JIS H5111 CAC406」等の青銅系合金や「JIS H3250 C3604」「JIS H3250C3771」等の黄銅系合金が知られている。これらは1.0〜6.0mass%程度のPbを含有することによって被削性を向上させたものであり、従来からも、切削加工を必要とする各種製品(例えば、上水道用配管の水栓金具,給排水金具,継ぎ手,スラム,給湯器部品,バルブ,ボルト,ナット,ネジ,歯車,スピンドル,機械部品,電気部品等)の構成材として重宝されている。
【0003】
ところで、Pbはマトリックスに固溶せず、粒状をなして分散することによって所謂チップブレーカとして機能し、被削性を向上させるものであるが、Pb含有量が1mass%に満たない場合には、切屑が図1(D)の如く螺旋状に連なった状態で生成してバイトに絡み付く等の種々のトラブルを生じる。一方、Pb含有量が1.0mass%以上であれば、切削抵抗の軽減等を充分に図ることができるが、Pb含有量が2.0mass%に満たない場合には切削表面が粗くなる。したがって、工業的に満足しうる被削性を確保するためには、Pb含有量を2.0mass%以上としておくのが普通である。一般に、高度の切削加工が要求される銅合金展伸材においては約3.0mass%以上のPbが含有されており、青銅系の鋳物においては約5mass%のPbが含有されている。例えば、上記した「JIS H5111 CAC406」ではPb含有量が約5.0mass%である。
【0004】
【発明が解決しようとする課題】
しかし、Pbは人体や環境に悪影響を及ぼす有害物質であるところから、近時においては、その用途が大幅に制限される傾向にある。例えば、Pbを大量に含有する合金を溶解,鋳造する等の高温作業時には、発生する金属蒸気にPb成分が含まれることになり、人体に悪影響を及ぼしたり、環境汚染の原因となる。また、大量のPbを含有する合金で構成された水栓金具や弁等にあっては、飲料水等との接触によりPb成分が溶出する虞れがある。また、大量のPbを含有する合金を構成材とする部品を含む家電製品や自動車等を、埋め立て等により廃棄処分した場合、それらのシュレッダダスト等の廃棄物からPbが溶出して、土壌汚染や地下水汚染の原因となる。そこで、近時、米国等の先進国においては銅合金におけるPb含有量を大幅に制限する傾向にあり、わが国においてもPb含有量を可及的に低減した快削性銅合金の開発が強く要請されている。
【0005】
本発明は、かかる世界的な傾向及び要請に応えるべくなされたもので、Pb含有量を従来の快削性銅合金に比して大幅に低減させつつも、工業的に充分満足しうる被削性を確保しうる鉛低減快削性銅合金を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記の目的を達成すべく、以下に述べる[1]〜[4]又は[5]〜[8]の合金組成をなすものであって[9]の金属組織をなす鉛低減快削性銅合金を提案する。すなわち、本発明は、第1に、Cu、Zn、Si及びPbを必須元素とし且つそれらの含有量を[1]〜[4]及び[9]の条件を満足するように決定した鉛低減快削性銅合金(以下「第1発明合金」という)を提案し、第2に、Cu、Zn、Si、Pb並びにSn及び/又はPを必須元素とし且つそれらの含有量を[5]〜[8]及び[9]の条件を満足するように決定した鉛低減快削性銅合金(以下「第2発明合金」という)を提案する。
【0007】
第1発明合金の合金組成
[1] Cu:66.0〜75.0mass%(より好ましくは、68.5〜74.5mass%)と、Zn:21.0〜32.0mass%(より好ましくは、22.0〜28.5mass%)と、Si:1.3〜2.4mass%(より好ましくは、1.7〜2.4mass%)と、Pb:0.4〜0.8mass%(より好ましくは、0.4〜0.7mass%)とを含有すること。
[2] Cu含有量とSi含有量との間に、60.0mass%≦Cu−4.5・Si≦65.0mass%(より好ましくは、60.5mass%≦Cu−4.5・Si≦64.0mass%)の関係を有すること。
[3] Zn含有量とSi含有量との間に、34.5mass%≦Zn+5.5・Si≦40.0mass%(より好ましくは、35.0mass%≦Zn+5.5・Si≦39.0mass%)の関係を有すること。
[4] Pb含有量とSi含有量との間に、1.5mass%≦1.5・Pb+0.6・Si≦2.4mass%(より好ましくは、1.6mass%≦1.5・Pb+0.6・Si≦2.2mass%)の関係を有すること。
【0008】
第2発明合金の合金組成
[5] Cu:66.0〜75.0mass%(より好ましくは、68.5〜74.5mass%)と、Zn:21.0〜32.0mass%(より好ましくは、22.0〜28.5mass%)と、Si:1.3〜2.4mass%(より好ましくは、1.7〜2.4mass%)と、Pb:0.4〜0.8mass%(より好ましくは、0.4〜0.7mass%)と、Sn:0.05〜1.5mass%及び/又はP:0.02〜0.2mass%とを含有すること。
[6] Cu含有量とSi含有量とSn含有量及び/又はP含有量との間に、60.0mass%≦Cu−4.5・Si−0.7・Sn−2・P≦65.0mass%(より好ましくは、60.5mass%≦Cu−4.5・Si−0.2・Sn−2・P≦64.0mass%)の関係を有すること。
[7] Zn含有量とSi含有量とSn含有量及び/又はP含有量との間に、34.5mass%≦Zn+5.5・Si+1.7・Sn+3・P≦40.0mass%(より好ましくは、35.0mass%≦Zn+5.5・Si+1.7・Sn+3・P≦39.0mass%)の関係を有すること。
[8] Pb含有量とSi含有量とSn含有量及び/又はP含有量との間に、1.5mass%≦1.5・Pb+0.6・Si+0.15・Sn+0.3・P≦2.4mass%(より好ましくは、1.6mass%≦1.5・Pb+0.6・Si+0.15・Sn+0.3・P≦2.2mass%)の関係を有すること。
【0009】
第1及び第2発明合金の金属組織
[9] α相をマトリックス(母相)としてγ相及び/又はκ相(γ相、κ相又はγ+κ相)を3〜30%(より好ましくは、5〜25%)含有すること。なお、ここにいうγ相、κ相又はγ+κ相の含有率(%)は、当該合金の金属組織全体に対する面積比率である。
【0010】
而して、Cuの含有量を多くすると、α相を容易に得ることができ、耐脱亜鉛腐食性、耐応力腐食割れ性及び冷間加工性を向上させることができるが、Cuの過量添加は熱間変形能を低下させることになる。これらの点を考慮して、Cuの含有量は66.0〜75.0mass%とするのが適当であり、68.5〜74.5mass%としておくことがより好ましい。
【0011】
Znはマトリックスに固溶して材料強度の向上に寄与するものであるが、Zn含有量が過小であると、熱間押出性,熱間鍛造性が低下することになり、またSiの添加効果との関係上、被削性改善に必要なγ,κ相の生成が困難となる。逆に、Zn含有量が過大であると、β相が出現し、冷間加工性が悪くなり、耐応力腐食割れ性,耐脱亜鉛腐食性も悪くなる。これらの点を考慮して、Zn含有量は21.0〜32.0mass%としておくのが適当であり、22.0〜28.5mass%としておくことがより好ましい。
【0012】
Pbはマトリックスに固溶せず、粒状をなして分散することによって、被削性を向上させるものである。一方、Siは金属組織中にγ,κ相を出現させることにより、被削性を改善するものである。このように、両者は合金特性における機能を全く異にするものであるが、被削性を改善させる点では共通する。
【0013】
而して、Siの添加量が1.3mass%未満では、工業的に満足しうる被削性を確保するに充分なγ,κ相の形成が行われない。すなわち、Si含有量は、後述する如く3%以上のγ,κ相を確保するためには1.3mass%以上としておく必要があり、5%以上のγ,κ相を確保するためには1.7mass%以上としておくことが好ましい。しかし、Si含有量が2.4mass%を超えると、γ,κ相が過剰となって、合金硬度が必要以上に高くなり、硬度との関係が大きいドリル切削等に必要される被削性を却って低下させる。また、充分な耐脱亜鉛腐食性,耐応力腐食割れ性を確保できない。したがって、Si含有量は1.3〜2.4mass%としておくのが適当であり、1.7〜2.4mass%としておくことがより好ましい。
【0014】
一方、Pbは、Si添加による被削性改善機能によって、その含有量を低減させることができるが、従来の快削性銅合金より優れた被削性を得るためには、Pbを0.4mass%以上添加することが好ましい。しかし、Pb添加量が0.8mass%を超えると、却って切削表面が粗くなると共に、熱間での加工性(例えば、鍛造性)が悪くなり、冷間での延性も低下する。そして、Pb含有量が0.8mass%以下の微量であれば、わが国を含めた先進各国において近い将来制定されるであろうPb含有量規制をクリアできると考えられ、特に、0.7mass%以下としておけば、当該規制が如何に厳格なものであったとしても、その規制を充分にクリアすることができると考えられる。したがって、Pb含有量は0.4〜0.8mass%としておくのが適当であり、0.4〜0.7mass%としておくことがより好ましい。
【0015】
Sn,Pは、何れも、Si添加によるγ,κ相の形成を促進させる機能を有するものであり、Sn及び/又はPを添加させることにより、α相マトリックスの耐蝕性を向上させ、γ,κ相の分散化により耐蝕性、鍛造性及び耐応力腐蝕割れ性の改善を図ることができる。Sn及び/又はPを含有させることによる上記機能,効果は、Sn含有量が0.05mass%以上である場合又はP含有量が0.02mass%以上である場合に発揮される。但し、当該機能は、Sn含有量が1.5mass%に達するか或いはP含有量が0.2mass%に達すると飽和状態となる。そして、Sn含有量が1.5mass%を超えるか或いはP含有量が0.2mass%を超えると、γ,κ相の形成促進効果が飽和状態となるばかりでなく、却って延性が低下する。したがって、Sn含有量は、0.05〜1.5mass%とすることが適当であり、P含有量は0.02〜0.2mass%とすることが適当である。
【0016】
而して、γ,κ相は硬く且つ脆い相であり、被削性を得るための適度な硬さであって且つ切削工具(バイト,ドリル等)を摩耗させない適度の硬さを有する相であることから、γ,κ相の少なくとも一方を含む金属組織となしておくことにより、Pbがチップブレーカとして充分に機能しうる程度にまで含有されていないときにも、被削性を向上させることができる。すなわち、Pbはマトリックスに固溶せず粒状に分散することから、Pb含有量がチップブレーカとして機能し得ない程度の微量であっても、母相としてのα相の存在下におけるPbとγ相、κ相又はγ+κ相との相互作用により、大量のPbを含有した場合と同等の被削性改善効果が奏せられる。一方、α相は冷間加工性を向上させるために必要な相であり、かかる機能はα相以外の相では発揮されない。α相以外の相、例えばβ相を含有していると、冷間加工性を却って悪化させることになる。γ相,κ相も冷間加工性を低下させる原因となるが、含有量が一定以下であれば冷間加工性を低下させるようなことがない。α相は延性のある柔らかい相であるから、α相をマトリックスとして、そのマトリックス中にγ相,κ相が分散して存在することにより、Pb含有量が微量であっても、被削性を飛躍的に向上させることができる。しかし、かかるPbとの相互作用による被削性改善効果は、αをマトリックスとする金属組織全体におけるγ相,κ相,γ+κ相の含有率(γ相,κ相の合計含有率)が3%未満である場合は充分に発揮されず、工業的に満足できる被削性を確保するためには3%以上であることが必要であり、5%以上であることが好ましい。逆に当該含有率が30%を超えると、材料強度が必要以上に大きくなって冷間加工性が悪くなる。また、γ相,κ相は工具を摩耗させない硬さであるといってもそれには限度があり、当該含有率(特に、より硬いγ相の含有率)が30%を超えると、工具寿命に悪影響を及ぼすことになり、またPbとの共添下でのチップブレーカとしての機能も飽和することになる(当該含有率が30%を大幅に超えることにより、却ってチップブレーカとしての機能が低下することもある)。したがって、γ相,κ相,γ+κ相の含有率は30%以下に抑えておくことが必要であり、広範な用途に好適に供しうるためには25%以下としておくことが好ましい。このような点から、金属組織は、α相をマトリックスとすることを条件として、γ相,κ相,γ+κ相の何れかを3〜30%含有するものであることが必要であり、5〜25%含有するものであることがより好ましい。
【0017】
また、このような金属組織(前記[9]の金属組織)をなすことにより工業的に満足しうる被削性を確保するためには、Cu,Zn,Pb,Si,Sn,Pの各含有量が上記した範囲にあることが必要であることは勿論であるが、熱間,冷間での加工性や耐食性(耐脱亜鉛腐食性,耐応力腐食割れ性)の点からは、これらの含有量相互の関係を考慮する必要があり、Sn,Pを含有しない場合においては前記[2]〜[4]の関係が満足され、Sn及び/又はPを含有する場合においては前記[6]〜[8]の関係が満足される必要がある。
【0018】
すなわち、前記[2][6]の含有量式(以下「第1含有量式」と総称し、Sn,Pを何れも含有させた場合の式「Cu−4.5・Si−0.7・Sn−2・P」で表すこととする。すなわち、Sn,Pを何れも含有させない場合における[2]の含有量式は、第1含有量式にSn=P=0を代入して得られる「Cu−4.5・Si」となり、Sn,Pの一方を含有させる場合における[6]の含有量式は、第1含有量式にP=0を代入して得られる「Cu−4.5・Si−2・P」又はSn=0を代入して得られる「Cu−4.5・Si−2・P」となる。)の値が60.0mass%未満である場合、前記[3][7]の含有量式(以下「第2含有量式」と総称し、Sn,Pを何れも含有させた場合の式「Zn+5.5・Si+1.7・Sn+3・P」で表すこととする。すなわち、Sn,Pを何れも含有させない場合における[3]の含有量式は、第2含有量式にSn=P=0を代入して得られる「Zn+5.5・Si」となり、Sn,Pの一方を含有させる場合における[7]の含有量式は、第1含有量式にP=0を代入して得られる「Zn+5.5・Si+1.7・Sn」又はSn=0を代入して得られる「Zn+5.5・Si+3・P」となる。)の値が34.5mass%未満である場合、または前記[4][8]の含有量式(以下「第3含有量式」と総称し、Sn,Pを何れも含有させた場合の式「1.5・Pb+0.6・Si−0.15・Sn+0.3・P」で表すこととする。すなわち、Sn,Pを何れも含有させない場合における[4]の含有量式は、第3含有量式にSn=P=0を代入して得られる「1.5・Pb+0.6・Si」となり、Sn,Pの一方を含有させる場合における[8]の含有量式は、第3含有量式にP=0を代入して得られる「1.5・Pb+0.6・Si−0.15・Sn」又はSn=0を代入して得られる「1.5・Pb+0.6・Si+0.3・P」となる。)の値が1.5mass%未満である場合には、冷間加工性が低下すると共に、脱亜鉛腐食,応力腐食割れを生じる虞れがある。特に、第3含有量式の値が1.5mass%未満であると、被削性にも悪影響を及ぼし、充分な被削性を得ることができなくなる。したがって、このような問題が生じないためには、第1含有量式の値が60.0mass%以上、第2含有量式の値が34.5mass%以上及び第3含有量式の値が1.5mass%以上であることが必要であり、冷間加工性,耐脱亜鉛腐食性,耐応力腐食割れ性,被削性を充分に確保するためには、第1含有量式の値が60.5mass%以上、第2含有量式の値が35.0mass%以上及び第3含有量式の値が1.6mass%以上であることがより好ましい。一方、第1含有量式の値が65.0mass%を超える場合、第2含有量式の値が40.0mass%を超える場合、又は第3含有量式の値が2.4mass%を超える場合には、熱間加工性,成形性が低下して、熱間押出が困難となったり熱間鍛造時に割れを生じる等の問題がある。したがって、このような問題が生じないためには、第1含有量式の値が65.0mass%以下、第2含有量式の値が40.0mass%以下及び第3含有量式の値が2.4mass%以下であることが必要であり、熱間加工性,成形性を充分に確保するためには、第1含有量式の値が64.0mass%以下、第2含有量式の値が39.0mass%以下及び第3含有量式の値が2.2mass%以下であることがより好ましい。
【0019】
このように、銅合金本来の特性を損なうことなく、Pb含有量を大幅に低減させつつ工業的に満足しうる被削性(チップブレーカとして機能させるに十分な量のPbを含有させたものと同等又はそれ以上の被削性)を確保するためには、第1又は第2発明合金におけるCu,Zn,Pb,Si,Sn,Pの含有量を、[1]〜[4]又は[5]〜[8]の条件を満たす範囲において[9]の金属組織が得られるように設定しておく必要がある。すなわち、[1]〜[4]又は[5]〜[8]の合金組成は[9]の金属組織を得るための必要条件ではあるが、十分条件ではない。逆に、[9]の金属組織は上記した被削性を確保するための必要条件であるが、十分条件でない。当該被削性を確保するためには、[1]〜[4]又は[5]〜[8]の合金組成をなし且つ[9]の金属組織をなすことが必要十分条件となるのである。
【0020】
また、本発明は、第3に、用途に応じて必要とされる合金特性の確保及び向上を図るために、第1又は第2発明合金の構成元素に加えて、Sb,As,Mn,Ni,Al,Fe,Coから選択した1種以上の元素を含有させた鉛低減快削性銅合金(以下「第3発明合金」という)を提案する。すなわち、第3発明合金は、以下に述べる[10]の合金組成(Cu,Zn,Si,Pbについてはそれらの含有量間に前記[2]〜[4]の関係を有する)又は[11]の合金組成(Cu,Zn,Si,Pb,Sn,Pについてはそれらの含有量間に前記[6]〜[8]の関係を有する)をなし且つ前記[9]の金属組織をなすものである。
【0021】
[10] Cu:66.0〜75.0mass%(より好ましくは、68.5〜74.5mass%)と、Zn:21.0〜32.0mass%(より好ましくは、22.0〜28.5mass%)と、Si:1.3〜2.4mass%(より好ましくは、1.7〜2.4mass%)と、Pb:0.4〜0.8mass%(より好ましくは、0.4〜0.7mass%)と、Sb:0.02〜0.20mass%,As:0.02〜0.20mass%、Mn:0.05〜2.0mass%,Ni:0.05〜2.0mass%,Al:0.05〜2.0mass%,Fe:0.05〜0.5mass%,Co:0.05〜0.5mass%から選択された1種以上の元素とを含有すること。
[11] Cu:66.0〜75.0mass%(より好ましくは、68.5〜74.5mass%)と、Zn:21.0〜32.0mass%(より好ましくは、22.0〜28.5mass%)と、Si:1.3〜2.4mass%(より好ましくは、1.7〜2.4mass%)と、Pb:0.4〜0.8mass%(より好ましくは、0.4〜0.7mass%)と、Sn:0.05〜1.5mass%及び/又はP:0.02〜0.2mass%と、Sb:0.02〜0.20mass%,As:0.02〜0.20mass%、Mn:0.05〜2.0mass%,Ni:0.05〜2.0mass%,Al:0.05〜2.0mass%,Fe:0.05〜0.5mass%,Co:0.05〜0.5mass%から選択された1種以上の元素とを含有すること。
【0022】
Sb,Asは、Pと同様に、耐脱亜鉛腐食性等を向上させる機能を有するものであり、Pの代替元素としても使用することができるものである。Sb及び/又はAsを添加することによる当該機能は、Sb,As含有量を0.02mass%以上とすることで発揮される。しかし、Sb,Asを0.2mass%を超えて添加しても、添加量に見合う効果が得られないばかりか、Pの過剰添加と同様に、熱間鍛造性,押出性が却って低下する。
【0023】
Mn,Niは、Siと結合してMnSi又はNiSiの微細金属間化合物を形成して、マトリックスに均一に析出し、それにより耐摩耗性,強度を向上させる。したがって、Mn及び/又はNiを添加することにより、高力性,耐摩耗性が改善される。かかる効果は、Mn,Niを夫々0.05mass%以上添加することにより発揮される。しかし、2.0mass%を超えて添加しても、効果が飽和状態となり、添加量に見合う効果は得られない。
【0024】
Alは、Snと同様に、γ相形成を促進させる機能を有するものであり、Snと共に或いはこれに代えて添加することにより、Cu−Si−Zn系合金の被削性を更に向上させることができる。Alには、被削性の他、強度,耐摩耗性,耐高温酸化性を改善させる機能や合金比重を低下させる機能もあるが、被削性改善機能が発揮されるためには、少なくとも0.05mass%添加させる必要がある。しかし、2.0mass%を超えて添加しても、添加量に見合った被削性改善効果はみられないし、Snと同様に延性の低下を招来する。
【0025】
Feは、合金の結晶粒を微細化させ、これによって強度を高める機能があり、被削性を向上させる効果も奏しうる。かかる機能,効果は、Fe含有量を0.05mass%以上とすることで発揮される。しかし、Feを0.5mass%を超えて添加しても、添加量に見合う効果が認められず、却ってSiとの化合物を生成して被削性に悪影響を与える。また、耐食性に悪影響を与える虞れもある。
【0026】
Coは、熱間押出,鍛造等の高温加熱条件下での結晶粒の粗大化を抑制するための必須元素である。すなわち、Coの添加により、高温(600〜700℃以上)に加熱されたときにおける結晶粒の成長を良好に抑制して、金属組成を微細に保持させることができ、微細化により被削性の向上に寄与すると共に、高温加熱後の合金の耐疲労性も向上する。而して、このようなCo添加による効果は、その添加量が0.05mass%未満であるときは、充分に発揮されない。一方、Co添加による効果には限度があり、0.5mass%を超えて添加しても、添加量に見合う効果を得ることができないし、却って、Siとの化合物を生成して被削性に悪影響を及ぼす虞れがある。
【0027】
ところで、銅合金の製造においては、製造条件等により不純物が混入する虞れがあるが、上記した第1〜第3発明合金を製造するに当っては、不純物としてBiの混入に最大の注意を払うべきであり、本発明は、第4に、第1〜第3発明合金において、不純物としてのBiの含有量が0.05mass%以下(より好ましくは0.03mass%以下)であり且つ当該含有量をPb含有量で除した値Bi/Pbが0.1を超えない(より好ましくは値Bi/Pb≦0.05以下)ことを提案する。
【0028】
すなわち、第1〜第3発明合金にあって、Biが混入すると、300℃での衝撃強さが著しく低下することから、切削加工時において、加工の種類にもよるが、被加工材の温度が300℃近くまで上昇するようなことがあり且つ何らかの衝撃が加わるようなことがあると、割れが発生する虞れがある。したがって、Biの混入は極力回避すべきであり、不可避的にBiが混入する場合にあっても、その混入量(不純物としてのBiの含有量)が0.05mass%以下であり且つ当該含有量をPb含有量で除した値Bi/Pbが0.1を超えないことが必要である。すなわち、不純物としてBiを含有しない場合は勿論であるが、含有する場合においても、その含有量が0.05mass%以下であり且つPb含有量に対する割合(Bi/Pb)が0.1以下であれば上記した問題は殆ど生じないし、Bi含有量が0.03mass%以下であり且つPb含有量に対する割合(Bi/Pb)が0.05以下であれば、かかる問題は全く生じない。なお、重金属であるBiを含有することにより冒頭で述べたPb含有による問題と同様の問題が生じるとしても、Bi含有量が0.05mass%以下であれば、格別の問題を生じる虞れもないと考えられ、0.03mass%以下であれば問題は全く生じない。
【0029】
【実施例】
実施例として、表1〜表3に示す組成の鋳塊(外径100mm,長さ150mmの円柱形状のもの)を熱間(750℃)で外径15mmの丸棒状に押出加工して、第1発明合金No.101〜No.118、第2発明合金No.201〜No.225及び第3発明合金No.301〜No.320を得た。これらの発明合金No.101〜No.118,No.201〜No.225,No.301〜No.320は、表1〜表3に示す如く、前記[1]〜[4]又は[5]〜[8]の組成条件及び前記[9]の金属組織条件を満足するものである。
【0030】
また、比較例として、表4に示す組成の鋳塊(外径100mm,長さ150mmの円柱形状のもの)を、実施例と同様に、熱間(750℃)で押出加工して、外径15mmの丸棒状押出材(以下「比較例合金」という)No.401〜No.420を得た。これらの比較例合金No.401〜No.420は、表4に示す如く、少なくとも前記[1]〜[4]又は[5]〜[8]の組成条件及び前記[9]の金属組織条件の何れかを満足しないものである。なお、合金No.409及びNo.415については、熱間押出ができず、比較例合金を得ることができなかった。ところで、合金No.401は「JIS C3604」に相当するものであり、合金No.402は「JIS C3602」に相当するものであり、合金No.403は「JIS C3771」に相当するものであり、合金No.404は「JIS C3712」に相当するものであり、合金No.405は「JIS C4622」に相当するものである。
【0031】
なお、表1〜表4における「γ+κ(%)」は、κ相を含有しない場合におけるγ相の含有率、γ相を含有しない場合におけるκ相の含有率及びγ,κ相を含有する場合における両相の合計含有率の値(%)を示す。
【0032】
而して、第1〜第3発明合金No.101〜No.118,No.201〜225,No.301〜No.320及び比較例合金No.401〜No.420(No.409及びNo.415を除く)について、被削性を確認すべく、次のような切削試験を行ない、切削主分力、切屑状態及び切削表面形態を判定した。
【0033】
すなわち、上記の如くして得られた各合金材(押出材)の外周面を、真剣バイト(すくい角:−8°)を取り付けた旋盤により、切削速度:50m/分,切込み深さ(切削代):1.5mm,送り量:0.11mm/rev.の条件で切削し、バイトに取り付けた3分力動力計からの信号を重歪測定器により電圧信号に変換してレコーダで記録し、これを切削抵抗に換算した。ところで、切削抵抗の大小は3分力つまり主分力、送り分力及び背分力によって判断されるが、ここでは、3分力のうち最も大きな値を示す主分力(N)をもって切削抵抗の大小を判断することとした。その結果は、表5〜表8に示す通りであった。
【0034】
また、切削により生成した切屑の状態を観察し、その形状によって図1(A)〜(D)に示す如く4つに分類して、表5〜表8に示した。ところで、切屑が、(D)図に示す如く、3巻以上の螺旋形状をなしている場合には、切屑の処理(切屑の回収や再利用等)が困難となる上、切屑がバイトに絡み付いたり、切削表面を損傷させる等のトラブルが発生して、良好な切削加工を行なうことができない。また、切屑が、(C)図に示す如く、半巻程度の円弧形状から2巻程度の螺旋形状をなしている場合には、3巻以上の螺旋形状をなす場合のような大きなトラブルは生じないものの、やはり切屑の処理が容易ではなく、連続切削加工を行う場合等にあってはバイトへの絡み付きや切削表面の損傷等を生じる虞れがある。しかし、切屑が、(A)図に示す如き微細な針形状片や(B)図に示す如き小さな扇形状片又は円弧形状片に剪断される場合には、上記のようなトラブルが生じることがなく、(C)図や(D)図に示すもののように嵩張らないことから、切屑の処理も容易である。但し、切屑が(A)図のような微細形状に剪断される場合には、旋盤等の工作機械の摺動面に潜り込んで機械的障害を発生したり、作業者の手指,目に刺さる等の危険を伴うことがある。したがって、被削性を判断する上では、(B)図に示すものが最良であり、(A)図に示すものがこれに続き、(C)図や(D)図に示すものは不適当とするのが相当である。表5〜表8においては、(B)図に示す最良の切屑状態が観察されたものを「◎」で、(A)図に示すやや良好な切屑状態が観察されたものを「○」で、(C)図に示す不良な切屑状態が観察されたものを「△」で、(D)図に示す最悪の切屑状態が観察されたものを「×」で示した。
【0035】
また、切削後において、切削表面の良否を表面粗さにより判定した。その結果は、表5〜表8に示す通りであった。ところで、表面粗さの基準としては最大高さ(Rmax)が使用されることが多く、黄銅製品の用途にもよるが、一般に、Rmax<10μmであれば極めて被削性に優れると判断することができ、10μm≦Rmax<15μmであれば工業的に満足しうる被削性を得ることができたものと判断でき、Rmax≧15μmの場合には被削性に劣るものと判断できる。表5〜表8においては、Rmax<10μmの場合を「○」で、10μm≦Rmax<15μmの場合を「△」で、Rmax≧15μmの場合を「×」で示した。
【0036】
表5〜表8に示す切削試験の結果から明らかなように、第1〜第3発明合金No.101〜No.118,No.201〜No.225,No.301〜No.320は、その何れにおいても、Pbを大量に含有する比較例合金No.401〜No.403と同等以上の被削性を有するものである。
【0037】
さらに、熱間加工性及び機械的性質を確認すべく、次のような熱間圧縮試験及び引張試験を行った。
【0038】
すなわち、上記の如くして得られた各押出材から同一形状(外径15mm,長さ25mm)の第1及び第2試験片を切り出した。そして、熱間圧縮試験においては、各第1試験片を700℃に加熱して30分間保持した上、軸線方向に70%の圧縮率で圧縮(第1試験片の高さ(長さ)が25mmから7.5mmになるまで圧縮)して、圧縮後の表面形態(700℃変形能)を目視判定した。その結果は、表5〜表8に示す通りであった。変形能の判定は試験片側面におけるクラックの状態から目視により行い、表5〜表8においては、クラックが全く生じなかったものを「○」で、小さなクラックが生じたものを「△」で、大きなクラックが生じたものを「×」で示した。また、各第2試験片を使用して、常法による引張試験を行ない、引張強さ(N/mm)及び伸び(%)を測定した。
【0039】
また、耐蝕性及び耐応力腐蝕割れ性を確認すべく、「ISO 6509」に定める方法による脱亜鉛腐蝕試験及び「JIS H3250」に規定される応力腐蝕割れ試験を行った。
【0040】
すなわち、「ISO 6509」の脱亜鉛腐蝕試験においては、各押出材から採取した試料を、暴露試料表面が当該押出材の押出し方向に対して直角となるようにしてフェノール樹脂材に埋込み、試料表面をエメリー紙により1200番まで研磨した後、これを純水中で超音波洗浄して乾燥した。かくして得られた被腐蝕試験試料を、1.0%の塩化第2銅2水和塩(CuCl・2HO)の水溶液(12.7g/L)中に浸漬し、75℃の温度条件下で24時間保持した後、水溶液中から取出して、その脱亜鉛腐蝕深さの最大値(最大脱亜鉛腐蝕深さ)を測定した。その結果は、表5〜表8に示す通りであった。
【0041】
また、「JIS H3250」の応力腐蝕割れ試験においては、各押出材から長さ150mmの試料を切り出し、各試料を、その中央部を半径40mmの円弧状治具に当てた状態で、その一端部が他端部に対して45°となるように折曲させて、試験片とした。このようにして引張残留応力を付加された各試験片を脱脂,乾燥処理した上、12.5%のアンモニア水(アンモニアを等量の純水で薄めたもの)を入れたデシケータ内のアンモニア雰囲気(25℃)中に保持させた。すなわち、各試験片をデシケータ内におけるアンモニア水面から約80mm上方の位置に保持する。そして、試験片のアンモニア雰囲気中における保持時間が、2時間,8時間,24時間を経過した時点で、試験片をデシケータから取り出して、10%の硫酸で洗浄した上、当該試験片の割れの有無を拡大鏡(倍率:10倍)で視認した。その結果は、表5〜表8に示す通りであった。これらの表においては、アンモニア雰囲気中での保持時間が2時間である場合に明瞭な割れが認められたものについては「××」で、2時間経過時においては割れが認められなかったが、8時間経過時においては明瞭な割れが認められたものについては「×」で、8時間経過時においては割れが認められなかったが、24時間経過時においては明瞭な割れが認められたものについては「△」で、24時間経過時においても割れが全く認められなかったものについては「○」で示した。
【0042】
表5〜表8に示す熱間圧縮試験,引張試験,脱亜鉛腐蝕試験,応力腐蝕割れ試験の結果から、[1]〜[4]又は[5]〜[8]の組成条件及び[9]の金属組織条件の少なくとも何れかを欠く比較例合金は、被削性,熱間加工性,冷間加工性、機械的性質,耐脱亜鉛腐蝕性,耐応力腐蝕割れ性の少なくとも何れか特性に劣るものであるが、第1〜第3発明合金No.101〜No.118,No.201〜No.225,No.301〜No.320はこれらの全ての特性に優れるものであり、工業的に好適に使用できる極めて実用性に富むものであることが理解される。
【0043】
また、第1発明合金No.110,No.111、第2発明合金No.218及び比較例合金No.401〜No.403,No.417〜No.419について、300℃の温度条件下で衝撃試験を行い、シャルピー衝撃試験値を測定した。衝撃試験は、JIS Z 2242に規定する金属材料衝撃試験方法によって、JIS Z 2202に規定するUノッチ試験片及びJIS B 7722に規定するシャルピー衝撃試験機を使用して行った。その結果は、表5,表6及び表8に示す通りであった。なお、シャルピー衝撃値は吸収エネルギーを切り欠き部の断面積で割ったものであり、この値が低いものは、打撃に対する吸収緩和力が小さい材料、つまり脆い材料ということになる。
【0044】
表5,表6及び表8に示す如く、Biを含有しない合金No.110,No.111、No.218及びNo.401〜No.403に比して、Bi含有量が0.05mass%を超え且つその含有量をPb含有量で除した値Bi/Pbが0.1を超える合金No.417の衝撃値は極めて低くなっている。一方、Biを含有していても、Bi含有量が0.05mass%以下であり且つBi/Pb≦0.1である合金No.418の衝撃値はさほど低くなっておらず、特に、Bi含有量が0.03mass%以下であり且つBi/Pb≦0.05である合金No.419の衝撃値はBiを含有しないものと同等である。したがって、かかる点から、冒頭で述べた如く切削加工時の割れを防止するためには、Biを含有させないことが必要であり、不純物として不可避的にBiが混入する場合においても、Bi含有量≦0.05mass%,Bi/Pb≦0.1となるように、より好ましくはBi含有量≦0.05mass%,Bi/Pb≦0.05となるように、製造条件等を厳格に管理しておく必要があることが理解される。
【0045】
【表1】

Figure 2004183056
【0046】
【表2】
Figure 2004183056
【0047】
【表3】
Figure 2004183056
【0048】
【表4】
Figure 2004183056
【0049】
【表5】
Figure 2004183056
【0050】
【表6】
Figure 2004183056
【0051】
【表7】
Figure 2004183056
【0052】
【表8】
Figure 2004183056
【0053】
【発明の効果】
以上の説明から容易に理解されるように、本発明の鉛低減快削性銅合金は、被削性改善元素であるPbの含有量を大幅に低減(0.8mass%以下又は0.7mass%以下)させているにも拘わらず、極めて被削性に富むものであり、Pbを大量に含有する従来の快削性銅合金の代替材料として安全に使用できるものであり、切屑の再利用等を含めて環境衛生上の問題が全くなく、Pb含有製品が規制されつつある近時の傾向に充分対応することができる。しかも、被削性に加えて耐蝕性にも優れるものであり、耐蝕性を必要とする切削加工品,鍛造品,鋳物製品等(例えば、給水栓,給排水金具,バルブ,ステム,給湯配管部品,シャフト,熱交換器部品等)の構成材として好適に使用することができるものであり、その実用的価値極めて大なるものである。
【図面の簡単な説明】
【図1】切屑の形態を示す斜視図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lead-reduced free-cutting copper alloy in which the content of Pb, which is a machinability improving element, is significantly reduced.
[0002]
[Prior art]
As copper alloys excellent in machinability, bronze-based alloys such as "JIS H5111 CAC406" and brass-based alloys such as "JIS H3250 C3604" and "JIS H3250C3771" are generally known. These materials have improved machinability by containing about 1.0 to 6.0 mass% of Pb, and have been conventionally used for various products requiring cutting (for example, faucets for water supply pipes). It is useful as a component of metal fittings, plumbing fittings, fittings, slams, water heater parts, valves, bolts, nuts, screws, gears, spindles, mechanical parts, electrical parts, etc.).
[0003]
By the way, Pb does not form a solid solution in the matrix, but functions as a so-called chip breaker by dispersing in the form of particles to improve machinability. However, when the Pb content is less than 1 mass%, As shown in FIG. 1D, various troubles such as generation of chips in a spiral state and entanglement with a cutting tool occur. On the other hand, if the Pb content is 1.0 mass% or more, the cutting resistance can be sufficiently reduced, but if the Pb content is less than 2.0 mass%, the cutting surface becomes rough. Therefore, in order to secure industrially satisfactory machinability, the Pb content is usually set to 2.0 mass% or more. Generally, a wrought copper alloy that requires a high degree of cutting contains about 3.0 mass% or more of Pb, and a bronze-based casting contains about 5 mass% of Pb. For example, in the above-mentioned “JIS H5111 CAC406”, the Pb content is about 5.0 mass%.
[0004]
[Problems to be solved by the invention]
However, since Pb is a harmful substance that has a harmful effect on the human body and the environment, its use has recently tended to be greatly restricted. For example, during a high-temperature operation such as melting and casting an alloy containing a large amount of Pb, the generated metal vapor contains a Pb component, which has an adverse effect on the human body and causes environmental pollution. In addition, in the case of a faucet fitting, a valve or the like made of an alloy containing a large amount of Pb, there is a possibility that the Pb component is eluted by contact with drinking water or the like. Also, when home electric appliances and automobiles including components made of an alloy containing a large amount of Pb are disposed of by landfilling, Pb is eluted from the waste such as shredder dust, thereby contaminating the soil. May cause groundwater contamination. Therefore, recently, developed countries such as the United States have tended to greatly limit the Pb content in copper alloys, and in Japan, there is a strong demand for the development of free-cutting copper alloys with as low a Pb content as possible. Have been.
[0005]
The present invention has been made in response to such global trends and demands, and it has been found that while the Pb content is significantly reduced as compared with the conventional free-cutting copper alloy, the machining which can be industrially sufficiently satisfied is achieved. It is an object of the present invention to provide a lead-reduced free-cutting copper alloy capable of ensuring the workability.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has an alloy composition of [1] to [4] or [5] to [8] described below, and has a reduced lead content of [9]. We propose a machinable copper alloy. That is, the present invention firstly makes Cu, Zn, Si and Pb essential elements, and their contents are determined so as to satisfy the conditions of [1] to [4] and [9]. Secondly, a machinable copper alloy (hereinafter referred to as "first invention alloy") is proposed. Secondly, Cu, Zn, Si, Pb and Sn and / or P are used as essential elements, and their contents are [5] to [5]. A lead-reduced free-cutting copper alloy (hereinafter referred to as "second invention alloy") determined to satisfy the conditions of [8] and [9] is proposed.
[0007]
Alloy composition of the first invention alloy
[1] Cu: 66.0 to 75.0 mass% (more preferably, 68.5 to 74.5 mass%) and Zn: 21.0 to 32.0 mass% (more preferably, 22.0 to 28. 5 mass%), Si: 1.3 to 2.4 mass% (more preferably, 1.7 to 2.4 mass%), and Pb: 0.4 to 0.8 mass% (more preferably, 0.4 to 0.8 mass%). 0.7 mass%).
[2] Between the Cu content and the Si content, 60.0 mass% ≦ Cu-4.5 · Si ≦ 65.0 mass% (more preferably, 60.5 mass% ≦ Cu-4.5 · Si ≦ 64.0 mass%).
[3] Between the Zn content and the Si content, 34.5 mass% ≦ Zn + 5.5.Si ≦ 40.0 mass% (more preferably, 35.0 mass% ≦ Zn + 5.5.Si ≦ 39.0 mass% ).
[4] Between the Pb content and the Si content, 1.5 mass% ≦ 1.5 · Pb + 0.6 · Si ≦ 2.4 mass% (more preferably, 1.6 mass% ≦ 1.5 · Pb + 0. 6.Si ≦ 2.2 mass%).
[0008]
Alloy composition of second invention alloy
[5] Cu: 66.0 to 75.0 mass% (more preferably, 68.5 to 74.5 mass%) and Zn: 21.0 to 32.0 mass% (more preferably, 22.0 to 28. 5 mass%), Si: 1.3 to 2.4 mass% (more preferably, 1.7 to 2.4 mass%), and Pb: 0.4 to 0.8 mass% (more preferably, 0.4 to 0.8 mass%). 0.7 mass%) and Sn: 0.05 to 1.5 mass% and / or P: 0.02 to 0.2 mass%.
[6] Between the Cu content, the Si content, the Sn content and / or the P content, 60.0 mass% ≦ Cu-4.5 · Si-0.7 · Sn−2 · P ≦ 65. 0 mass% (more preferably, 60.5 mass% ≦ Cu-4.5 · Si-0.2 · Sn-2 · P ≦ 64.0 mass%).
[7] Between the Zn content, the Si content, the Sn content and / or the P content, 34.5 mass% ≦ Zn + 5.5 · Si + 1.7 · Sn + 3 · P ≦ 40.0 mass% (more preferably , 35.0 mass% ≦ Zn + 5.5 · Si + 1.7 · Sn + 3 · P ≦ 39.0 mass%).
[8] Between the Pb content, the Si content, the Sn content and / or the P content, 1.5 mass% ≦ 1.5 · Pb + 0.6 · Si + 0.15 · Sn + 0.3 · P ≦ 2. 4 mass% (more preferably, 1.6 mass% ≦ 1.5 · Pb + 0.6 · Si + 0.15 · Sn + 0.3 · P ≦ 2.2 mass%)
[0009]
Metallographic structure of first and second invention alloys
[9] The γ-phase and / or the κ-phase (γ-phase, κ-phase or γ + κ-phase) are contained in an amount of 3 to 30% (more preferably, 5 to 25%) using the α phase as a matrix (mother phase). Here, the content (%) of the γ phase, κ phase or γ + κ phase is an area ratio with respect to the entire metal structure of the alloy.
[0010]
Thus, when the content of Cu is increased, the α phase can be easily obtained, and the dezincification corrosion resistance, stress corrosion cracking resistance, and cold workability can be improved. Reduces the hot deformability. In consideration of these points, the content of Cu is appropriately set to 66.0 to 75.0 mass%, and is more preferably set to 68.5 to 74.5 mass%.
[0011]
Zn forms a solid solution in the matrix and contributes to the improvement of the material strength. However, if the Zn content is too small, the hot extrudability and hot forgeability are reduced, and the effect of adding Si is increased. Therefore, it becomes difficult to generate the γ and κ phases necessary for improving machinability. Conversely, if the Zn content is excessively large, a β phase appears and the cold workability deteriorates, and the stress corrosion cracking resistance and the dezincification corrosion resistance also deteriorate. In consideration of these points, the Zn content is suitably set to 21.0 to 32.0 mass%, and more preferably set to 22.0 to 28.5 mass%.
[0012]
Pb does not form a solid solution in the matrix, but is dispersed in a granular form, thereby improving machinability. On the other hand, Si improves machinability by causing γ and κ phases to appear in the metal structure. As described above, the two have completely different functions in alloy characteristics, but they are common in improving machinability.
[0013]
Thus, if the added amount of Si is less than 1.3 mass%, the formation of γ and κ phases sufficient to secure industrially satisfactory machinability is not performed. That is, the Si content must be set to 1.3 mass% or more in order to secure a γ, κ phase of 3% or more as described later, and must be set to 1 to secure a γ, κ phase of 5% or more. It is preferably set to 0.7 mass% or more. However, if the Si content exceeds 2.4 mass%, the γ and κ phases become excessive and the alloy hardness becomes unnecessarily high, and the machinability required for drill cutting or the like having a large relationship with the hardness is reduced. Instead, lower it. Also, sufficient dezincification corrosion resistance and stress corrosion cracking resistance cannot be ensured. Therefore, it is appropriate to set the Si content to 1.3 to 2.4 mass%, and it is more preferable to set the Si content to 1.7 to 2.4 mass%.
[0014]
On the other hand, the content of Pb can be reduced by the machinability improving function by the addition of Si, but in order to obtain machinability superior to conventional free-cutting copper alloys, Pb is set to 0.4 mass%. % Is preferably added. However, if the added amount of Pb exceeds 0.8 mass%, the cut surface becomes rather rough, the workability during hot work (for example, forgeability) becomes poor, and the ductility during cold work also decreases. If the Pb content is as small as 0.8 mass% or less, it is considered that the Pb content regulation that will be enacted in the near future in advanced countries including Japan can be cleared, and in particular, 0.7 mass% or less. Therefore, it is considered that the regulation can be sufficiently cleared no matter how strict the regulation is. Therefore, the Pb content is suitably set to 0.4 to 0.8 mass%, and more preferably set to 0.4 to 0.7 mass%.
[0015]
Each of Sn and P has a function of accelerating the formation of the γ and κ phases by adding Si. By adding Sn and / or P, the corrosion resistance of the α phase matrix is improved, and By dispersing the κ phase, corrosion resistance, forgeability and stress corrosion cracking resistance can be improved. The above-mentioned functions and effects by containing Sn and / or P are exhibited when the Sn content is 0.05 mass% or more or the P content is 0.02 mass% or more. However, this function is saturated when the Sn content reaches 1.5 mass% or the P content reaches 0.2 mass%. When the Sn content exceeds 1.5 mass% or the P content exceeds 0.2 mass%, not only the effect of promoting the formation of the γ and κ phases becomes saturated, but also the ductility decreases. Therefore, the Sn content is suitably set to 0.05 to 1.5 mass%, and the P content is preferably set to 0.02 to 0.2 mass%.
[0016]
Thus, the γ and κ phases are hard and brittle phases, which are moderate in hardness for obtaining machinability and moderate in hardness so as not to wear a cutting tool (bite, drill, etc.). Therefore, by forming a metal structure containing at least one of the γ and κ phases, machinability can be improved even when Pb is not contained to such an extent that it can function sufficiently as a chip breaker. Can be. That is, since Pb does not form a solid solution in the matrix but is dispersed in a granular form, even if the Pb content is a trace amount that cannot function as a chip breaker, Pb and γ phase in the presence of the α phase as a matrix are present. , Κ phase or γ + κ phase provides the same machinability improvement effect as when a large amount of Pb is contained. On the other hand, the α phase is a phase necessary for improving the cold workability, and such a function is not exhibited in a phase other than the α phase. When a phase other than the α phase, for example, a β phase is contained, the cold workability is rather deteriorated. The γ phase and the κ phase also cause a reduction in the cold workability, but if the content is not more than a certain value, the cold workability does not decrease. Since the α phase is a ductile soft phase, the α phase is used as a matrix, and the γ phase and κ phase are dispersed in the matrix. It can be dramatically improved. However, the effect of improving machinability due to the interaction with Pb is that the content of the γ phase, κ phase, and γ + κ phase (the total content of the γ phase and κ phase) in the entire metal structure using α as a matrix is 3%. If it is less than 3%, it is not sufficiently exhibited, and in order to secure industrially satisfactory machinability, it is necessary to be 3% or more, and preferably 5% or more. Conversely, if the content exceeds 30%, the material strength becomes unnecessarily large and the cold workability deteriorates. The γ phase and κ phase have a limit even if they have a hardness that does not cause wear of the tool. When the content (particularly, the content of the harder γ phase) exceeds 30%, the tool life is shortened. This has an adverse effect, and also saturates the function as a chip breaker under co-addition with Pb. (If the content rate greatly exceeds 30%, the function as a chip breaker is rather deteriorated. Sometimes). Therefore, it is necessary to keep the content of the γ phase, κ phase, and γ + κ phase at 30% or less, and it is preferable to keep the content at 25% or less in order to be able to be suitably used for a wide range of applications. From such a point, the metal structure needs to contain 3 to 30% of any of the γ phase, the κ phase, and the γ + κ phase, provided that the α phase is a matrix. More preferably, it contains 25%.
[0017]
Further, in order to secure industrially satisfactory machinability by forming such a metal structure (the metal structure of the above [9]), it is necessary to contain Cu, Zn, Pb, Si, Sn, and P. Of course, it is necessary that the amount is in the above range, but from the viewpoint of hot and cold workability and corrosion resistance (dezincification corrosion resistance, stress corrosion cracking resistance), these amounts are not limited. It is necessary to consider the mutual relationship between the contents. When Sn and P are not contained, the above-mentioned relationships [2] to [4] are satisfied, and when Sn and / or P are contained, the above [6] is contained. [8] needs to be satisfied.
[0018]
That is, the content formula of [2] and [6] (hereinafter collectively referred to as “first content formula”, and the formula “Cu-4.5 · Si-0.7” when both Sn and P are contained. Sn-2 · P ”. That is, the content formula of [2] when neither Sn nor P is contained is obtained by substituting Sn = P = 0 into the first content formula. In the case where one of Sn and P is contained, the content formula of [6] is obtained by substituting P = 0 into the first content formula. .5.Si-2.P "or" Cu-4.5.Si-2.P "obtained by substituting Sn = 0.) Is less than 60.0 mass%. 3] Content formula of [7] (hereinafter collectively referred to as “second content formula”, and the formula “Zn + 5.5 · Si + 1.7 ·” when Sn and P are both contained. In other words, the content formula of [3] when neither Sn nor P is contained is represented by “Zn + 5” obtained by substituting Sn = P = 0 into the second content formula. .5 · Si ”, and when one of Sn and P is contained, the content formula of [7] is“ Zn + 5.5 · Si + 1.7 · ”obtained by substituting P = 0 into the first content formula. Sn ”or“ Zn + 5.5 · Si + 3 · P ”obtained by substituting Sn = 0) is less than 34.5 mass%, or the content formula of the above [4] [8] ( Hereinafter, it is generically referred to as a “third content formula”, and is expressed by a formula “1.5 · Pb + 0.6 · Si−0.15 · Sn + 0.3 · P” when both Sn and P are contained. That is, the content formula of [4] in the case where neither Sn nor P is contained is expressed by the third formula. “1.5 · Pb + 0.6 · Si” obtained by substituting Sn = P = 0 into the weighing formula, the content formula of [8] when one of Sn and P is contained is the third containing formula. “1.5 · Pb + 0.6 · Si−0.15 · Sn” obtained by substituting P = 0 into the quantity formula or “1.5 · Pb + 0.6 · Si + 0.sub. Obtained by substituting Sn = 0”. 3 · P ”) is less than 1.5 mass%, there is a possibility that the cold workability is reduced and dezincification corrosion and stress corrosion cracking may occur. In particular, when the value of the third content formula is less than 1.5 mass%, the machinability is also adversely affected, and sufficient machinability cannot be obtained. Therefore, in order to prevent such a problem from occurring, the value of the first content formula is 60.0 mass% or more, the value of the second content formula is 34.5 mass% or more, and the value of the third content formula is 1 or more. It is necessary that the value of the first content formula is 60 to ensure sufficient cold workability, dezincification corrosion resistance, stress corrosion cracking resistance, and machinability. It is more preferable that the value of the second content formula is 35.0 mass% or more, and the value of the third content formula is 1.6 mass% or more. On the other hand, when the value of the first content formula exceeds 65.0 mass%, the value of the second content formula exceeds 40.0 mass%, or the value of the third content formula exceeds 2.4 mass% However, there is a problem that the hot workability and the formability are deteriorated, so that hot extrusion becomes difficult and cracks occur during hot forging. Therefore, in order to prevent such a problem from occurring, the value of the first content formula is 65.0 mass% or less, the value of the second content formula is 40.0 mass% or less, and the value of the third content formula is 2 It is necessary that the value of the first content formula is 64.0 mass% or less and the value of the second content formula is 64.0 mass% or less in order to sufficiently ensure hot workability and moldability. It is more preferable that the value of 39.0 mass% or less and the value of the third content formula be 2.2 mass% or less.
[0019]
Thus, the machinability that is industrially satisfactory (with a sufficient amount of Pb to function as a chip breaker) while significantly reducing the Pb content without impairing the original properties of the copper alloy. In order to ensure equivalent or higher machinability), the content of Cu, Zn, Pb, Si, Sn, and P in the first or second invention alloy is set to [1] to [4] or [5]. ] To [8], the metal structure of [9] needs to be obtained. That is, the alloy composition of [1] to [4] or [5] to [8] is a necessary condition for obtaining the metal structure of [9], but is not a sufficient condition. Conversely, the metallographic structure of [9] is a necessary condition for ensuring the above-mentioned machinability, but not a sufficient condition. In order to ensure the machinability, it is necessary and sufficient conditions to form an alloy composition of [1] to [4] or [5] to [8] and form a metal structure of [9].
[0020]
Thirdly, the present invention provides, in addition to the constituent elements of the first or second invention alloy, Sb, As, Mn, Ni in order to secure and improve the alloy properties required according to the application. The present invention proposes a lead-reduced free-cutting copper alloy (hereinafter referred to as "third invention alloy") containing one or more elements selected from Al, Fe, and Co. That is, the third invention alloy has an alloy composition of [10] described below (Cu, Zn, Si, and Pb have the above-mentioned relationships [2] to [4] between their contents) or [11]. (Cu, Zn, Si, Pb, Sn, and P have the relationship of [6] to [8] between their contents) and form the metal structure of [9]. is there.
[0021]
[10] Cu: 66.0 to 75.0 mass% (more preferably, 68.5 to 74.5 mass%) and Zn: 21.0 to 32.0 mass% (more preferably, 22.0 to 28. 5 mass%), Si: 1.3 to 2.4 mass% (more preferably, 1.7 to 2.4 mass%), and Pb: 0.4 to 0.8 mass% (more preferably, 0.4 to 0.8 mass%). 0.7% by mass), Sb: 0.02 to 0.20% by mass, As: 0.02 to 0.20% by mass, Mn: 0.05 to 2.0% by mass, Ni: 0.05 to 2.0% by mass , Al: 0.05 to 2.0 mass%, Fe: 0.05 to 0.5 mass%, and Co: at least one element selected from 0.05 to 0.5 mass%.
[11] Cu: 66.0 to 75.0 mass% (more preferably, 68.5 to 74.5 mass%) and Zn: 21.0 to 32.0 mass% (more preferably, 22.0 to 28. 5 mass%), Si: 1.3 to 2.4 mass% (more preferably, 1.7 to 2.4 mass%), and Pb: 0.4 to 0.8 mass% (more preferably, 0.4 to 0.8 mass%). 0.7 mass%), Sn: 0.05 to 1.5 mass% and / or P: 0.02 to 0.2 mass%, Sb: 0.02 to 0.20 mass%, As: 0.02 to 0 .20 mass%, Mn: 0.05 to 2.0 mass%, Ni: 0.05 to 2.0 mass%, Al: 0.05 to 2.0 mass%, Fe: 0.05 to 0.5 mass%, Co: Selected from 0.05-0.5 mass% Contains one or more elements.
[0022]
Like P, Sb and As have a function of improving the dezincification corrosion resistance and the like, and can be used as an alternative element to P. The function by adding Sb and / or As is exhibited by setting the Sb and As content to 0.02 mass% or more. However, even if Sb and As are added in excess of 0.2 mass%, not only the effect corresponding to the added amount is not obtained, but also the hot forgeability and extrudability are lowered as in the case of excessive addition of P.
[0023]
Mn and Ni combine with Si to form Mn and Ni. X Si Y Or Ni X Si Y To form a fine intermetallic compound and precipitate uniformly in the matrix, thereby improving wear resistance and strength. Therefore, by adding Mn and / or Ni, high strength and wear resistance are improved. Such an effect is exhibited by adding Mn and Ni each in an amount of 0.05 mass% or more. However, even if it is added in excess of 2.0 mass%, the effect becomes saturated and an effect commensurate with the added amount cannot be obtained.
[0024]
Al has a function of accelerating the formation of the γ phase, similar to Sn. By adding Al together with or instead of Sn, the machinability of the Cu—Si—Zn-based alloy can be further improved. it can. In addition to the machinability, Al also has a function of improving strength, abrasion resistance, and high-temperature oxidation resistance and a function of lowering the specific gravity of the alloy. It is necessary to add 0.05% by mass. However, even if added in excess of 2.0 mass%, the machinability improving effect commensurate with the added amount is not observed, and as with Sn, the ductility is reduced.
[0025]
Fe has a function of refining the crystal grains of the alloy, thereby increasing the strength, and can also have an effect of improving machinability. Such functions and effects are exhibited when the Fe content is 0.05 mass% or more. However, even if Fe is added in excess of 0.5 mass%, an effect commensurate with the added amount is not observed, and rather a compound with Si is formed to adversely affect the machinability. Further, there is a possibility that the corrosion resistance is adversely affected.
[0026]
Co is an essential element for suppressing coarsening of crystal grains under high-temperature heating conditions such as hot extrusion and forging. That is, by the addition of Co, the growth of crystal grains when heated to a high temperature (600 to 700 ° C. or more) can be favorably suppressed, and the metal composition can be kept fine. In addition to contributing to the improvement, the fatigue resistance of the alloy after high-temperature heating is also improved. Thus, the effect of such Co addition is not sufficiently exhibited when the addition amount is less than 0.05 mass%. On the other hand, there is a limit to the effect of Co addition, and even if it is added in excess of 0.5 mass%, an effect commensurate with the added amount cannot be obtained. There is a risk of adverse effects.
[0027]
Incidentally, in the production of copper alloys, there is a possibility that impurities may be mixed depending on manufacturing conditions and the like. However, in manufacturing the above-described first to third invention alloys, great care must be taken to mix Bi as an impurity. Fourth, the present invention is directed to a fourth aspect of the present invention in which the content of Bi as an impurity is 0.05 mass% or less (more preferably 0.03 mass% or less) in the first to third invention alloys, and It is proposed that the value Bi / Pb divided by the Pb content does not exceed 0.1 (more preferably the value Bi / Pb ≦ 0.05 or less).
[0028]
That is, when Bi is mixed in the first to third invention alloys, the impact strength at 300 ° C. is remarkably reduced. Therefore, at the time of cutting, the temperature of the workpiece depends on the type of processing. May rise to near 300 ° C. and may give rise to some sort of impact, which may cause cracking. Therefore, the incorporation of Bi should be avoided as much as possible, and even if Bi is inevitably incorporated, the amount of incorporation (the content of Bi as an impurity) is 0.05 mass% or less and the content Is divided by the Pb content, Bi / Pb must not exceed 0.1. That is, it goes without saying that Bi is not contained as an impurity, but even in the case where Bi is contained, the content is not more than 0.05 mass% and the ratio (Bi / Pb) to the Pb content is not more than 0.1. If the Bi content is 0.03 mass% or less and the ratio to the Pb content (Bi / Pb) is 0.05 or less, such a problem does not occur at all. In addition, even if the same problem as the Pb content described at the beginning occurs due to the inclusion of Bi which is a heavy metal, if the Bi content is 0.05 mass% or less, no particular problem may occur. It is considered that there is no problem if it is 0.03 mass% or less.
[0029]
【Example】
As an example, an ingot (having a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) having a composition shown in Tables 1 to 3 was extruded into a round bar having an outer diameter of 15 mm by hot (750 ° C.). Inventive alloy No. 1 101-No. 118, the second invention alloy No. 201-No. 225 and the third invention alloy no. 301-No. 320 was obtained. These inventive alloy Nos. 101-No. 118, no. 201-No. 225, No. 301-No. 320 satisfies the composition conditions [1] to [4] or [5] to [8] and the metallographic conditions of [9] as shown in Tables 1 to 3.
[0030]
As a comparative example, an ingot having a composition shown in Table 4 (having a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) was extruded hot (750 ° C.) in the same manner as in the example. No. 15 mm round bar extruded material (hereinafter referred to as “comparative alloy”) 401-No. 420 was obtained. These comparative alloy Nos. 401-No. As shown in Table 4, 420 does not satisfy at least one of the composition conditions [1] to [4] or [5] to [8] and the metallographic condition of [9]. The alloy No. 409 and no. As for 415, hot extrusion could not be performed, and a comparative example alloy could not be obtained. By the way, alloy No. 401 corresponds to “JIS C3604”, and alloy No. 401 corresponds to “JIS C3604”. 402 corresponds to “JIS C3602”, and alloy No. 402 corresponds to “JIS C3602”. 403 corresponds to “JIS C3771”, and alloy No. 403 is used. 404 corresponds to “JIS C3712”, and alloy No. 404 is used. Reference numeral 405 corresponds to “JIS C4622”.
[0031]
Note that “γ + κ (%)” in Tables 1 to 4 means the content of the γ phase when the κ phase is not contained, the content of the κ phase when the γ phase is not contained, and the case where the γ and κ phases are contained. Shows the value (%) of the total content of both phases in Table 1.
[0032]
Thus, the first to third invention alloys No. 101-No. 118, no. No. 201-225, No. 301-No. 320 and Comparative Example Alloy No. 401-No. With respect to 420 (except for No. 409 and No. 415), the following cutting test was performed to confirm the machinability, and the main cutting force, the chip state, and the cutting surface form were determined.
[0033]
That is, the outer peripheral surface of each of the alloy materials (extruded materials) obtained as described above was cut by a lathe equipped with a serious cutting tool (rake angle: -8 °) at a cutting speed of 50 m / min and a cutting depth (cutting). Substitute): 1.5 mm, feed amount: 0.11 mm / rev. The signal from the three-component dynamometer attached to the cutting tool was converted into a voltage signal by a heavy strain measuring instrument, recorded by a recorder, and converted into a cutting resistance. By the way, the magnitude of the cutting force is determined by three components, that is, the main component, the feed component and the back component. Here, the main component (N) showing the largest value among the three components is used as the cutting force. Was determined to be large or small. The results were as shown in Tables 5 to 8.
[0034]
In addition, the state of the chips generated by cutting was observed, and the chips were classified into four types as shown in FIGS. 1A to 1D according to their shapes, and are shown in Tables 5 to 8. By the way, as shown in Fig. (D), when a chip has a spiral shape of three or more turns, it becomes difficult to process the chip (collection and reuse of the chip, etc.) and the chip is entangled with the cutting tool. In addition, troubles such as damage to the cutting surface occur, and good cutting cannot be performed. Also, as shown in Fig. (C), when the chip has a spiral shape of about two turns from an arc shape of about half a roll, a large trouble such as a case of forming a spiral shape of three or more turns occurs. However, it is still not easy to treat chips, and in the case of continuous cutting, there is a possibility that the cutting tool may be entangled or the cutting surface may be damaged. However, when the chips are sheared into fine needle-shaped pieces as shown in FIG. 1A or small fan-shaped pieces or arc-shaped pieces as shown in FIG. In addition, since it is not bulky as shown in the figures (C) and (D), the processing of chips is easy. However, when the chips are sheared into a fine shape as shown in FIG. 3A, they may sneak into the sliding surface of a machine tool such as a lathe to cause a mechanical obstacle, or to stick into the fingers and eyes of the worker. May be dangerous. Therefore, in judging the machinability, the one shown in FIG. (B) is the best, the one shown in (A) follows, and the one shown in (C) or (D) is inappropriate. It is appropriate to do. In Tables 5 to 8, those in which the best chip state shown in FIG. (B) were observed are indicated by “◎”, and those in which the slightly better chip state shown in FIG. , (C) indicates that a bad chip state was observed, and (D) indicates the worst chip state shown in (D).
[0035]
Further, after cutting, the quality of the cut surface was determined by the surface roughness. The results were as shown in Tables 5 to 8. By the way, the maximum height (Rmax) is often used as a standard of the surface roughness, and although it depends on the use of the brass product, it is generally judged that if Rmax <10 μm, the machinability is extremely excellent. If 10 μm ≦ Rmax <15 μm, it can be determined that industrially satisfactory machinability has been obtained, and if Rmax ≧ 15 μm, it can be determined that the machinability is poor. In Tables 5 to 8, the case where Rmax <10 μm is indicated by “○”, the case where 10 μm ≦ Rmax <15 μm is indicated by “△”, and the case where Rmax ≧ 15 μm is indicated by “×”.
[0036]
As is clear from the results of the cutting tests shown in Tables 5 to 8, the first to third invention alloys Nos. 101-No. 118, no. 201-No. 225, No. 301-No. No. 320 shows Comparative Example Alloy No. 320 containing a large amount of Pb in any of them. 401-No. It has machinability equal to or higher than 403.
[0037]
Further, in order to confirm the hot workability and the mechanical properties, the following hot compression test and tensile test were performed.
[0038]
That is, the first and second test pieces having the same shape (outer diameter 15 mm, length 25 mm) were cut out from each extruded material obtained as described above. Then, in the hot compression test, each first test piece was heated to 700 ° C. and held for 30 minutes, and then compressed at a compression rate of 70% in the axial direction (the height (length) of the first test piece was reduced). It was compressed from 25 mm to 7.5 mm), and the surface morphology (deformability at 700 ° C.) after compression was visually determined. The results were as shown in Tables 5 to 8. Judgment of the deformability was visually performed from the state of cracks on the side surface of the test piece, and in Tables 5 to 8, those in which no cracks occurred were indicated by “○”, and those in which small cracks occurred were indicated by “△”, Those having large cracks are indicated by "x". Further, a tensile test was carried out using each of the second test pieces by a conventional method, and the tensile strength (N / mm 2 ) And elongation (%) were measured.
[0039]
Further, in order to confirm the corrosion resistance and the stress corrosion cracking resistance, a dezincification corrosion test according to a method specified in “ISO 6509” and a stress corrosion crack test specified in “JIS H3250” were performed.
[0040]
That is, in the dezincification corrosion test of “ISO 6509”, a sample collected from each extruded material is embedded in a phenolic resin material such that the exposed sample surface is perpendicular to the extrusion direction of the extruded material, and the sample surface is exposed. Was polished to # 1200 with emery paper, then ultrasonically washed in pure water and dried. The corrosion test sample thus obtained was treated with 1.0% cupric chloride dihydrate (CuCl 2). 2 ・ 2H 2 O), immersed in an aqueous solution (12.7 g / L) and kept at a temperature of 75 ° C. for 24 hours, then taken out of the aqueous solution to obtain the maximum value of the dezincification corrosion depth (maximum dezincification corrosion depth) Was measured. The results were as shown in Tables 5 to 8.
[0041]
Further, in the stress corrosion cracking test of "JIS H3250", a sample having a length of 150 mm was cut out from each extruded material, and the center of the sample was applied to an arc-shaped jig having a radius of 40 mm. Was bent at 45 ° to the other end to obtain a test piece. Each test piece to which the tensile residual stress was applied in this manner was degreased and dried, and then an ammonia atmosphere in a desiccator containing 12.5% ammonia water (ammonia diluted with an equal amount of pure water) was added. (25 ° C.). That is, each test piece is held at a position about 80 mm above the level of the aqueous ammonia in the desiccator. When the holding time of the test piece in the ammonia atmosphere has passed for 2 hours, 8 hours, and 24 hours, the test piece was taken out of the desiccator, washed with 10% sulfuric acid, and the test piece was cracked. The presence or absence was visually recognized with a magnifying glass (magnification: 10 times). The results were as shown in Tables 5 to 8. In these tables, those in which a clear crack was observed when the holding time in the ammonia atmosphere was 2 hours were "XX", and no crack was observed after 2 hours. "X" indicates that a clear crack was observed after 8 hours. No crack was observed after 8 hours, but a clear crack was observed after 24 hours. Is indicated by "、", and when no crack was observed even after 24 hours, is indicated by "○".
[0042]
From the results of the hot compression test, the tensile test, the dezincification corrosion test, and the stress corrosion cracking test shown in Tables 5 to 8, the composition conditions of [1] to [4] or [5] to [8] and [9] Comparative alloys lacking at least one of the metallographic conditions described above have at least one of machinability, hot workability, cold workability, mechanical properties, dezincification corrosion resistance, and stress corrosion cracking resistance. Although inferior, the first to third invention alloy Nos. 101-No. 118, no. 201-No. 225, No. 301-No. It is understood that 320 is excellent in all of these properties, and is extremely practical and can be suitably used industrially.
[0043]
In addition, the first invention alloy No. 110, no. 111, the second invention alloy No. 218 and Comparative Example Alloy No. 401-No. 403, no. 417-No. 419 was subjected to an impact test under a temperature condition of 300 ° C., and a Charpy impact test value was measured. The impact test was performed by a metal material impact test method specified in JIS Z 2242, using a U-notch test piece specified in JIS Z 2202 and a Charpy impact tester specified in JIS B 7722. The results were as shown in Tables 5, 6, and 8. The Charpy impact value is a value obtained by dividing the absorbed energy by the cross-sectional area of the notch, and a material having a low value is a material having a small absorption relaxation force against impact, that is, a brittle material.
[0044]
As shown in Tables 5, 6, and 8, the alloy No. 110, no. 111, No. 218 and No. 401-No. Alloy No. 403 in which the Bi content exceeds 0.05 mass% and the value obtained by dividing the content by the Pb content, Bi / Pb, exceeds 0.1 as compared with alloy No. 403. The impact value of 417 is extremely low. On the other hand, even if Bi is contained, alloy No. whose Bi content is 0.05 mass% or less and Bi / Pb ≦ 0.1 is satisfied. The impact value of Alloy No. 418 is not so low, and in particular, the alloy No. 418 having a Bi content of 0.03 mass% or less and Bi / Pb ≦ 0.05. The impact value of 419 is equivalent to that containing no Bi. Therefore, from this point, it is necessary not to contain Bi in order to prevent cracking during cutting as described at the beginning, and even when Bi is inevitably mixed as an impurity, Bi content ≦ The production conditions and the like are strictly controlled so that 0.05 mass%, Bi / Pb ≦ 0.1, and more preferably, Bi content ≦ 0.05 mass%, Bi / Pb ≦ 0.05. It is understood that it is necessary to keep.
[0045]
[Table 1]
Figure 2004183056
[0046]
[Table 2]
Figure 2004183056
[0047]
[Table 3]
Figure 2004183056
[0048]
[Table 4]
Figure 2004183056
[0049]
[Table 5]
Figure 2004183056
[0050]
[Table 6]
Figure 2004183056
[0051]
[Table 7]
Figure 2004183056
[0052]
[Table 8]
Figure 2004183056
[0053]
【The invention's effect】
As can be easily understood from the above description, the lead-reduced free-cutting copper alloy of the present invention significantly reduces the content of Pb, which is a machinability improving element, by 0.8 mass% or less or 0.7 mass% or less. Despite the following, the material is extremely machinable and can be safely used as a substitute for conventional free-cutting copper alloys containing a large amount of Pb. And there is no environmental health problem at all, and it can sufficiently cope with recent trends in which Pb-containing products are being regulated. In addition, they are excellent in corrosion resistance in addition to machinability, and are required to be corrosion-resistant, such as cut products, forged products, cast products, etc. It can be suitably used as a constituent material of a shaft, a heat exchanger part, and the like, and its practical value is extremely large.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a form of a chip.

Claims (4)

Cu:66.0〜75.0mass%、Zn:21.0〜32.0mass%、Si:1.3〜2.4mass%及びPb:0.4〜0.8mass%を、それらの含有量間に60.0mass%≦Cu−4.5・Si≦65.0mass%、34.5mass%≦Zn+5.5・Si≦40.0mass%及び1.5mass%≦1.5・Pb+0.6・Si≦2.4mass%の関係を有するように、含有する合金組成をなすと共に、α相をマトリックスとしてγ相及び/又はκ相を3〜30%含有する金属組織をなすことを特徴とする鉛低減快削性銅合金。Cu: 66.0 to 75.0 mass%, Zn: 21.0 to 32.0 mass%, Si: 1.3 to 2.4 mass%, and Pb: 0.4 to 0.8 mass%, between their contents 60.0 mass% ≦ Cu-4.5 · Si ≦ 65.0 mass%, 34.5 mass% ≦ Zn + 5.5.Si ≦ 40.0 mass% and 1.5 mass% ≦ 1.5 · Pb + 0.6 · Si ≦ A lead reducing alloy characterized by having an alloy composition containing 2.4 mass% and a metal structure containing an α phase as a matrix and a γ phase and / or a κ phase of 3 to 30%. Machinable copper alloy. Cu:66.0〜75.0mass%、Zn:21.0〜32.0mass%、Si:1.3〜2.4mass%、Pb:0.4〜0.8mass%並びにSn:0.05〜1.5mass%及び/又はP:0.02〜0.2mass%を、それらの含有量間に60.0mass%≦Cu−4.5・Si−0.7・Sn−2・P≦65.0mass%、34.5mass%≦Zn+5.5・Si+1.7・Sn+3・P≦40.0mass%及び1.5mass%≦1.5・Pb+0.6・Si+0.15・Sn+0.3・P≦2.4mass%の関係を有するように、含有する合金組成をなすと共に、α相をマトリックスとしてγ相及び/又はκ相を3〜30%含有する金属組織をなすことを特徴とする鉛低減快削性銅合金。Cu: 66.0 to 75.0 mass%, Zn: 21.0 to 32.0 mass%, Si: 1.3 to 2.4 mass%, Pb: 0.4 to 0.8 mass%, and Sn: 0.05 to 1.5 mass% and / or P: 0.02 to 0.2 mass%, and between those contents, 60.0 mass% ≦ Cu-4.5 · Si-0.7 · Sn-2 · P ≦ 65. 0 mass%, 34.5 mass% ≦ Zn + 5.5 · Si + 1.7 · Sn + 3 · P ≦ 40.0 mass% and 1.5 mass% ≦ 1.5 · Pb + 0.6 · Si + 0.15 · Sn + 0.3 · P ≦ 2. A lead-reducing free-cutting material characterized in that it has an alloy composition so as to have a relationship of 4 mass% and has a metal structure containing an α phase as a matrix and a γ phase and / or a κ phase in an amount of 3 to 30%. Copper alloy. Sb:0.02〜0.20mass%、As:0.02〜0.20mass%、Mn:0.05〜2.0mass%、Ni:0.05〜2.0mass%、Al:0.05〜2.0mass%、Fe:0.05〜0.5mass%及びCo:0.05〜0.5mass%の少なくとも何れかを、更に含有する合金組成をなすことを特徴とする、請求項1又は請求項2に記載する鉛低減快削性銅合金。Sb: 0.02 to 0.20 mass%, As: 0.02 to 0.20 mass%, Mn: 0.05 to 2.0 mass%, Ni: 0.05 to 2.0 mass%, Al: 0.05 to The alloy composition further comprising at least one of 2.0 mass%, Fe: 0.05 to 0.5 mass%, and Co: 0.05 to 0.5 mass%. Item 2. A lead-reduced free-cutting copper alloy according to Item 2. 不純物としてのBiの含有量が0.05mass%以下であり且つ当該含有量をPb含有量で除した値Bi/Pbが0.1を超えないことを特徴とする、請求項1、請求項2又は請求項3に記載する鉛低減銅合金。The content of Bi as an impurity is 0.05 mass% or less, and the value Bi / Pb obtained by dividing the content by the Pb content does not exceed 0.1, wherein the Bi / Pb does not exceed 0.1. Or the lead reduced copper alloy according to claim 3.
JP2002352360A 2002-12-04 2002-12-04 Lead reduced free-cutting copper alloy Expired - Fee Related JP3693994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352360A JP3693994B2 (en) 2002-12-04 2002-12-04 Lead reduced free-cutting copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352360A JP3693994B2 (en) 2002-12-04 2002-12-04 Lead reduced free-cutting copper alloy

Publications (2)

Publication Number Publication Date
JP2004183056A true JP2004183056A (en) 2004-07-02
JP3693994B2 JP3693994B2 (en) 2005-09-14

Family

ID=32753999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352360A Expired - Fee Related JP3693994B2 (en) 2002-12-04 2002-12-04 Lead reduced free-cutting copper alloy

Country Status (1)

Country Link
JP (1) JP3693994B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016624A1 (en) 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper alloy
KR100834201B1 (en) * 2004-08-10 2008-05-30 삼보신도고교 가부시키가이샤 Copper-base alloy casting with refined crystal grains
WO2011125264A1 (en) 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
JP2012062563A (en) * 2010-09-17 2012-03-29 Furukawa Electric Co Ltd:The Cu-zn series copper alloy sheet material and manufacturing method of the same
WO2014187544A1 (en) * 2013-05-24 2014-11-27 Wieland-Werke Ag Refill for a ball-point pen and use thereof
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
EP2634275A4 (en) * 2010-10-25 2017-03-01 Mitsubishi Shindoh Co., Ltd. Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
US9951400B1 (en) 2014-02-07 2018-04-24 Chase Brass And Copper Company, Llc Wrought machinable brass alloy
US10358696B1 (en) 2014-02-07 2019-07-23 Chase Brass And Copper Company, Llc Wrought machinable brass alloy
JP2020158809A (en) * 2019-03-25 2020-10-01 三菱マテリアル株式会社 Copper alloy round bar material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465216A (en) * 2010-11-18 2012-05-23 浙江三瑞铜业有限公司 Environment-friendly lead-free free-cutting brass

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017841B2 (en) 2004-08-10 2018-07-10 Mitsubishi Shindoh Co., Ltd. Copper alloy casting and method of casting the same
US10570483B2 (en) 2004-08-10 2020-02-25 Mitsubishi Shindoh Co., Ltd. Copper-based alloy casting in which grains are refined
EP1777308A1 (en) * 2004-08-10 2007-04-25 Sanbo Shindo Kogyo Kabushiki Kaishah Copper alloy
EP1777305A1 (en) * 2004-08-10 2007-04-25 Sanbo Shindo Kogyo Kabushiki Kaishah Copper-base alloy casting with refined crystal grains
KR100834201B1 (en) * 2004-08-10 2008-05-30 삼보신도고교 가부시키가이샤 Copper-base alloy casting with refined crystal grains
EP1777308A4 (en) * 2004-08-10 2008-11-05 Mitsubishi Shindo Kk Copper alloy
EP1777305A4 (en) * 2004-08-10 2008-11-12 Mitsubishi Shindo Kk Copper-base alloy casting with refined crystal grains
WO2006016624A1 (en) 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper alloy
US9328401B2 (en) 2004-08-10 2016-05-03 Mitsubishi Shindoh Co., Ltd. Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same
WO2006016442A1 (en) 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper-base alloy casting with refined crystal grains
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
WO2011125264A1 (en) 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
JP2012062563A (en) * 2010-09-17 2012-03-29 Furukawa Electric Co Ltd:The Cu-zn series copper alloy sheet material and manufacturing method of the same
EP2634275A4 (en) * 2010-10-25 2017-03-01 Mitsubishi Shindoh Co., Ltd. Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
US9637808B2 (en) 2013-05-24 2017-05-02 Wieland-Werke Ag Refill for a ball-point pen and use thereof
WO2014187544A1 (en) * 2013-05-24 2014-11-27 Wieland-Werke Ag Refill for a ball-point pen and use thereof
US9951400B1 (en) 2014-02-07 2018-04-24 Chase Brass And Copper Company, Llc Wrought machinable brass alloy
US10358696B1 (en) 2014-02-07 2019-07-23 Chase Brass And Copper Company, Llc Wrought machinable brass alloy
JP7180488B2 (en) 2019-03-25 2022-11-30 三菱マテリアル株式会社 Copper alloy round bar
JP2020158809A (en) * 2019-03-25 2020-10-01 三菱マテリアル株式会社 Copper alloy round bar material

Also Published As

Publication number Publication date
JP3693994B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
KR101211206B1 (en) Free-cutting copper alloy containing very low lead
JP3734372B2 (en) Lead-free free-cutting copper alloy
KR100375426B1 (en) Free-cutting copper alloy
US6413330B1 (en) Lead-free free-cutting copper alloys
JP3335002B2 (en) Lead-free free-cutting brass alloy with excellent hot workability
JP6266737B2 (en) Brass alloy with excellent resistance to stress corrosion cracking, processed parts and wetted parts
CN113785081B (en) Free-cutting copper alloy and method for producing free-cutting copper alloy
US7056396B2 (en) Copper/zinc alloys having low levels of lead and good machinability
KR101969010B1 (en) Lead free cutting copper alloy with no lead and bismuth
JP3693994B2 (en) Lead reduced free-cutting copper alloy
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof
JP2002069551A (en) Free cutting copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees