JP2000119774A - Free cutting copper alloy - Google Patents

Free cutting copper alloy

Info

Publication number
JP2000119774A
JP2000119774A JP10287921A JP28792198A JP2000119774A JP 2000119774 A JP2000119774 A JP 2000119774A JP 10287921 A JP10287921 A JP 10287921A JP 28792198 A JP28792198 A JP 28792198A JP 2000119774 A JP2000119774 A JP 2000119774A
Authority
JP
Japan
Prior art keywords
weight
alloy
machinability
silicon
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10287921A
Other languages
Japanese (ja)
Other versions
JP3917304B2 (en
Inventor
Keiichiro Oishi
恵一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBO COPPER ALLOY CO Ltd
Original Assignee
SANBO COPPER ALLOY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP28792198A priority Critical patent/JP3917304B2/en
Application filed by SANBO COPPER ALLOY CO Ltd filed Critical SANBO COPPER ALLOY CO Ltd
Priority to EP98953070A priority patent/EP1038981B1/en
Priority to CA002303512A priority patent/CA2303512C/en
Priority to DE69835912T priority patent/DE69835912T2/en
Priority to AU10540/99A priority patent/AU738301B2/en
Priority to KR10-2000-7006464A priority patent/KR100375426B1/en
Priority to DE69833582T priority patent/DE69833582T2/en
Priority to EP04077561A priority patent/EP1508626B1/en
Priority to EP04077560A priority patent/EP1502964B1/en
Priority to DE69828818T priority patent/DE69828818T2/en
Priority to PCT/JP1998/005156 priority patent/WO2000022181A1/en
Priority to TW088103870A priority patent/TW577931B/en
Publication of JP2000119774A publication Critical patent/JP2000119774A/en
Priority to US09/983,029 priority patent/US7056396B2/en
Priority to US11/004,879 priority patent/US20050092401A1/en
Priority to US11/094,815 priority patent/US8506730B2/en
Application granted granted Critical
Publication of JP3917304B2 publication Critical patent/JP3917304B2/en
Priority to US13/829,813 priority patent/US20130276938A1/en
Priority to US14/463,172 priority patent/US20150044089A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Abstract

PROBLEM TO BE SOLVED: To provide a free cutting copper alloy capable of securing industrially satisfactory machinability while greatly reducing lead content as compared with the conventional free cutting copper alloy. SOLUTION: This free cutting copper alloy has an alloy composition consisting of, by weight, 69-79% copper, 2.0-4.0% silicon, 0.02-0.4% lead, and the balance zinc. It is desirable that one or more elements selected from, by weight, 0.3-3.5% tin, 0.02-0.25% phosphorus, 0.02-0.15% antimony, and 0.02-0.15% arsenic are further incorporated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛成分を殆ど含有
しない快削性銅合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-cutting copper alloy containing almost no lead component.

【0002】[0002]

【従来の技術】被削性に優れた銅合金として、一般に、
JIS H5111 BC6等の青銅系合金やJIS
H3250−C3604,C3771等の黄銅系合金が
知られている。これらは1.0〜6.0重量%程度の鉛
を含有することによって被削性を向上させたものであ
り、従来からも、切削加工を必要とする各種製品(例え
ば、上水道用配管の水栓金具,給排水金具,バルブ等)
の構成材として重宝されている。
2. Description of the Related Art As a copper alloy having excellent machinability, generally,
Bronze alloys such as JIS H5111 BC6 and JIS
Brass alloys such as H3250-C3604 and C3771 are known. These materials have improved machinability by containing about 1.0 to 6.0% by weight of lead, and have conventionally been used for various products requiring cutting (for example, water for water supply pipes). Plugs, plumbing fittings, valves, etc.)
It is useful as a component material.

【0003】ところで、鉛はマトリックスに固溶せず、
粒状をなして分散することによって、被削性を向上させ
るものであるが、鉛含有量が1重量%に満たない場合に
は、切屑が図1(D)の如く螺旋状に連なった状態で生
成してバイトに絡み付く等の種々のトラブルを生じる。
一方、鉛含有量が1.0重量%以上であれば、切削抵抗
の軽減等を充分に図ることができるが、鉛含有量が2.
0重量%に満たない場合には切削表面が粗くなる。した
がって、工業的に満足しうる被削性を確保するために
は、鉛含有量を2.0重量%以上としておくのが普通で
ある。一般に、高度の切削加工が要求される銅合金展伸
材においては約3.0重量%以上の鉛が含有されてお
り、青銅系の鋳物においては約5重量%の鉛が含有され
ている。例えば、上記したJIS H5111 BC6
では鉛含有量が約5.0重量%である。
[0003] By the way, lead does not form a solid solution in the matrix,
It is intended to improve the machinability by dispersing in the form of particles. However, when the lead content is less than 1% by weight, the chips are spirally connected as shown in FIG. 1 (D). Various troubles such as generation and entanglement with the byte occur.
On the other hand, if the lead content is 1.0% by weight or more, the cutting resistance can be sufficiently reduced, but the lead content is not less than 2.
If the amount is less than 0% by weight, the cut surface becomes rough. Therefore, in order to ensure industrially satisfactory machinability, the lead content is usually set to 2.0% by weight or more. Generally, about 3.0% by weight or more of lead is contained in a wrought copper alloy which requires a high degree of cutting, and about 5% by weight of lead is contained in a bronze-based casting. For example, the above-mentioned JIS H5111 BC6
Has a lead content of about 5.0% by weight.

【0004】[0004]

【発明が解決しようとする課題】しかし、鉛は人体や環
境に悪影響を及ぼす有害物質であるところから、近時に
おいては、その用途が大幅に制限される傾向にある。例
えば、合金の溶解,鋳造等の高温作業時に発生する金属
蒸気には鉛成分が含まれることになり、或いは飲料水等
との接触により水栓金具や弁等から鉛成分が溶出する虞
れがあり、人体や環境衛生上問題がある。そこで、近
時、米国等の先進国においては銅合金における鉛含有量
を大幅に制限する傾向にあり、わが国においても鉛含有
量を可及的に低減した快削性銅合金の開発が強く要請さ
れている。
However, since lead is a harmful substance that has an adverse effect on the human body and the environment, its use has recently tended to be greatly restricted. For example, metal vapor generated during high-temperature work such as melting and casting of alloys may contain lead components, or lead components may be eluted from faucet fittings or valves due to contact with drinking water or the like. Yes, there are problems with human health and environmental health. Therefore, recently, developed countries such as the United States have tended to significantly limit the lead content in copper alloys, and in Japan, there has been a strong demand for the development of free-cutting copper alloys with the lowest possible lead content. Have been.

【0005】本発明は、かかる世界的な傾向及び要請に
応えるべくなされたもので、鉛の含有量を従来の快削性
銅合金に比して大幅に低減させつつも、工業的に充分満
足しうる被削性を確保しうる快削性銅合金を提供するこ
とを目的とするものである。
The present invention has been made in response to such global trends and demands, and has been industrially fully satisfied while significantly reducing the lead content as compared with conventional free-cutting copper alloys. It is an object of the present invention to provide a free-cutting copper alloy capable of securing a possible machinability.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成すべく、次のような快削性銅合金を提案する。
SUMMARY OF THE INVENTION The present invention proposes the following free-cutting copper alloy to achieve the above object.

【0007】すなわち、第1発明においては、被削性に
優れた銅合金として、銅69〜79重量%と珪素2.0
〜4.0重量%と鉛0.02〜0.4重量%とを含有
し、且つ残部が亜鉛からなる合金組成をなす快削性銅合
金(以下「第1発明合金」という)を提案する。
That is, in the first invention, 69-79% by weight of copper and 2.0% of silicon are used as a copper alloy having excellent machinability.
The present invention proposes a free-cutting copper alloy (hereinafter, referred to as "first invention alloy") containing -4.0% by weight and 0.02 to 0.4% by weight of lead, and having an alloy composition of zinc. .

【0008】鉛はマトリックスに固溶せず、粒状をなし
て分散することによって、被削性を向上させるものであ
る。一方、珪素は金属組織中にγ相(場合によってはκ
相)を出現させることにより、被削性を改善するもので
ある。このように、両者は合金特性における機能を全く
異にするものであるが、被削性を改善させる点では共通
する。かかる点に着目して、第1発明合金は、珪素を添
加することにより、工業的に満足しうる被削性を確保し
つつ、鉛含有量の大幅な低減を可能としたものである。
すなわち、第1発明合金は、珪素の添加によるγ相形成
により被削性を改善したものである。
[0008] Lead does not form a solid solution in the matrix, but is dispersed in a granular form to improve machinability. On the other hand, silicon contains a γ phase (or κ
By improving the phase, the machinability is improved. As described above, the two have completely different functions in alloy characteristics, but they are common in improving machinability. Focusing on this point, the first invention alloy enables significant reduction of the lead content by adding silicon while securing industrially satisfactory machinability.
That is, the first invention alloy has improved machinability by forming a γ phase by adding silicon.

【0009】而して、珪素の添加量が2.0重量%未満
では、工業的に満足しうる被削性を確保するに充分なγ
相の形成が行われない。また、被削性は珪素添加量の増
大に伴って向上するが、4.0重量%を超えて添加して
も、その添加量に見合う被削性改善効果はない。ところ
で、珪素は融点が高く比重が小さいため又酸化し易いた
め、合金溶融時に珪素単体で炉内に装入すると、当該珪
素が湯面に浮くと共に、溶融時に酸化されて珪素酸化物
ないし酸化珪素となり、珪素含有銅合金の製造が困難と
なる。したがって、珪素含有銅合金の鋳塊製造にあって
は、通常、珪素添加をCu−Si合金とした上で行うこ
とになり、製造コストが高くなる。このような合金製造
コストを考慮した場合にも、被削性改善効果が飽和状態
となる量(4.0重量%)を超えて珪素を添加すること
は好ましくない。また、実験によれば、珪素を2.0〜
4.0重量%添加したときにおいて、Cu−Zn系合金
本来の特性を維持するためには、亜鉛含有量との関係を
も考慮した場合、銅含有量は69〜79重量%の範囲と
しておくことが好ましいことが判明した。このような理
由から、第1発明合金にあっては、銅及び珪素の含有量
を夫々69〜79重量%及び2.0〜4.0重量%とし
た。なお、珪素の添加により、被削性が改善される他、
鋳造時の湯流れ性,強度,耐摩耗性,耐応力腐蝕割れ
性,耐高温酸化性も改善される。また、延性,耐脱亜鉛
腐蝕性も或る程度改善される。
[0009] When the amount of silicon is less than 2.0% by weight, γ sufficient to ensure industrially satisfactory machinability is required.
No phase formation takes place. Further, the machinability is improved as the amount of silicon added increases, but even if added over 4.0% by weight, there is no machinability improvement effect commensurate with the added amount. By the way, since silicon has a high melting point and a low specific gravity and is easily oxidized, when silicon alone is charged into a furnace during melting of the alloy, the silicon floats on the molten metal surface and is oxidized at the time of melting to form silicon oxide or silicon oxide. And it becomes difficult to produce a silicon-containing copper alloy. Therefore, in the production of an ingot of a silicon-containing copper alloy, the addition of silicon is usually performed after a Cu-Si alloy is added, which increases the production cost. Even in consideration of such alloy production costs, it is not preferable to add silicon in an amount exceeding the amount (4.0% by weight) at which the machinability improving effect is saturated. Further, according to the experiment, the silicon content was 2.0 to
When 4.0 wt% is added, in order to maintain the original characteristics of the Cu—Zn alloy, the copper content is set in a range of 69 to 79 wt% in consideration of the relationship with the zinc content. Has been found to be preferable. For these reasons, in the first invention alloy, the contents of copper and silicon are set to 69 to 79% by weight and 2.0 to 4.0% by weight, respectively. The addition of silicon improves machinability,
The flowability, strength, wear resistance, stress corrosion cracking resistance and high temperature oxidation resistance during casting are also improved. Also, ductility and dezincification corrosion resistance are improved to some extent.

【0010】一方、鉛の添加量は、次の理由から0.0
2〜0.4重量%とした。すなわち、第1発明合金で
は、上記した如き機能を有する珪素を添加したことによ
り、鉛添加量を低減しても被削性を確保できるが、特
に、従来の快削性銅合金より優れた被削性を得るために
は、鉛を0.02重量%以上添加する必要がある。しか
し、鉛添加量が0.4重量%を超えると、却って切削表
面が粗くなると共に、熱間での加工性(例えば、鍛造
性)が悪くなり、冷間での延性も低下する。そして、鉛
添加量が0.4重量%以下の微量であれば、わが国を含
めた先進各国において近い将来制定されるであろう鉛含
有量規制が如何に厳格なものであったとしても、その規
制を充分にクリアすることができると考えられる。な
お、後述する第2〜第11発明合金においても、上記し
た理由から、鉛の添加量は0.02〜0.4重量%とさ
れている。
On the other hand, the amount of lead added is 0.0
It was set to 2 to 0.4% by weight. That is, in the first invention alloy, the addition of silicon having the above-described functions ensures the machinability even when the amount of lead is reduced, but in particular, the machinability is superior to the conventional free-machining copper alloy. In order to obtain machinability, it is necessary to add 0.02% by weight or more of lead. However, when the amount of lead exceeds 0.4% by weight, the cut surface is rather rough, the workability in hot working (for example, forgeability) is deteriorated, and the ductility in cold is also reduced. If the amount of lead added is as small as 0.4% by weight or less, no matter how strict the lead content regulation that will be enacted in advanced countries including Japan in the near future, it will be It is thought that regulations can be cleared sufficiently. In addition, also in the second to eleventh invention alloys described later, the amount of lead added is set to 0.02 to 0.4% by weight for the above-described reason.

【0011】また、第2発明においては、同じく被削性
に優れた銅合金として、銅69〜79重量%と、珪素
2.0〜4.0重量%と、鉛0.02〜0.4重量%
と、ビスマス0.02〜0.4重量%、テルル0.02
〜0.4重量%及びセレン0.02〜0.4重量%から
選択された1種の元素とを含有し、且つ残部が亜鉛から
なる合金組成をなす快削性銅合金(以下「第2発明合
金」という)を提案する。
In the second invention, the copper alloy also having excellent machinability includes 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.02 to 0.4% of lead. weight%
And bismuth 0.02 to 0.4% by weight, tellurium 0.02
-0.4% by weight and one element selected from 0.02 to 0.4% by weight of selenium, and the balance is zinc. Inventive alloy ").

【0012】すなわち、第2発明合金は、第1発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の1つ
を更に含有させた合金組成をなすものである。
That is, the second invention alloy is composed of the first invention alloy containing 0.02 to 0.4% by weight of bismuth and 0.02 to 2.0% of tellurium.
The alloy composition further contains 0.4% by weight and one of 0.02 to 0.4% by weight of selenium.

【0013】ビスマス、テルル又はセレンは、鉛と同様
に、マトリックスに固溶せず、粒状をなして分散するこ
とによって、被削性を向上させる機能を発揮するもので
あり、鉛の添加量不足を補いうるものである。したがっ
て、これらの何れかを珪素及び鉛と共添させると、珪素
及び鉛の添加による被削性改善限度を超えて被削性を更
に向上させることが可能となる。第2発明合金では、か
かる点に着目して、第1発明合金における被削性を更に
改善すべく、ビスマス、テルル及びセレンのうちの1つ
を添加させることとした。特に、珪素及び鉛に加えてビ
スマス、テルル又はセレンを添加することにより、複雑
な形状を高速で切削加工する場合にも、高度の被削性を
発揮する。しかし、ビスマス、テルル又はセレンの添加
による被削性向上効果は、各々の添加量が0.02重量
%未満では発揮されない。一方、これらは銅に比して高
価なものであるから、0.4重量%を超えて添加して
も、被削性は僅かながらも添加量の増加に応じて向上す
るものの、経済的に添加量に見合う程の効果は認められ
ない。また、添加量が0.4重量%を超えると、熱間で
の加工性(例えば、鍛造性等)が悪くなり、冷間での加
工性(延性)も低下する。しかも、ビスマス等の重金属
について仮に鉛同様の問題が生じる可能性があったとし
ても、0.4重量%以下の微量添加であれば、格別の問
題を生じる虞れもないと考えられる。これらの点から、
第2発明合金では、ビスマス、テルル又はセレンの添加
量を0.02〜0.4重量%とした。なお、鉛とビスマ
ス、テルル又はセレンとを共添させる場合、両者の合計
添加量は0.4重量%以下となるようにしておくことが
好ましい。けだし、合計添加量が0.4重量%を僅かで
も超えると、それらの単独添加量が0.4重量%を超え
る場合ほどではないが、熱間での加工性や冷間での延性
が低下し始め、或いは切屑形態が図1(B)から同図
(A)へと移行する虞れがあるからである。ところで、
ビスマス、テルル又はセレンは上記した如く珪素と異な
る機能により被削性を向上させるものであるから、これ
らの添加により銅及び珪素の適正含有量は影響されな
い。したがって、第2発明合金における銅及び珪素の含
有量は第1発明合金と同一とした。
Bismuth, tellurium, or selenium, like lead, does not form a solid solution in the matrix, but exhibits a function of improving machinability by dispersing in the form of particles. Is to supplement. Therefore, when any of these is co-added with silicon and lead, the machinability can be further improved beyond the machinability improvement limit by the addition of silicon and lead. In the second invention alloy, noting this point, one of bismuth, tellurium, and selenium is added to further improve the machinability of the first invention alloy. In particular, by adding bismuth, tellurium, or selenium in addition to silicon and lead, a high degree of machinability is exhibited even when a complicated shape is cut at a high speed. However, the effect of improving the machinability due to the addition of bismuth, tellurium or selenium is not exhibited when the amount of each addition is less than 0.02% by weight. On the other hand, since these are more expensive than copper, even if they are added in excess of 0.4% by weight, the machinability is improved with a slight increase in the added amount, but economically. No effect commensurate with the amount added was observed. If the amount exceeds 0.4% by weight, hot workability (for example, forgeability) deteriorates, and cold workability (ductility) also decreases. Moreover, even if heavy metals such as bismuth may have the same problem as lead, it is considered that there is no possibility that a special problem will occur if a small amount of 0.4% by weight or less is added. From these points,
In the second invention alloy, the addition amount of bismuth, tellurium, or selenium was 0.02 to 0.4% by weight. When lead and bismuth, tellurium or selenium are co-added, it is preferable that the total addition amount of both is set to 0.4% by weight or less. When the total amount of addition exceeds slightly 0.4% by weight, the workability in hot and the ductility in cold decrease, though not as much as when the amount of single addition exceeds 0.4% by weight. This is because there is a risk that the cutting may start or the chip form may shift from FIG. 1 (B) to FIG. 1 (A). by the way,
Since bismuth, tellurium, or selenium improves machinability by a function different from that of silicon as described above, the proper contents of copper and silicon are not affected by their addition. Therefore, the contents of copper and silicon in the second invention alloy were the same as those in the first invention alloy.

【0014】また、第3発明においては、同じく被削性
に優れた銅合金として、銅70〜80重量%と、珪素
1.8〜3.5重量%と、鉛0.02〜0.4重量%
と、錫0.3〜3.5重量%、アルミニウム1.0〜
3.5重量%及び燐0.02〜0.25重量%から選択
された1種以上の元素とを含有し、且つ残部が亜鉛から
なる合金組成をなす快削性銅合金(以下「第3発明合
金」という)を提案する。
Further, in the third invention, as a copper alloy also having excellent machinability, 70 to 80% by weight of copper, 1.8 to 3.5% by weight of silicon, and 0.02 to 0.4% of lead. weight%
0.3 to 3.5% by weight of tin and 1.0 to 1.0% of aluminum
A free-cutting copper alloy containing 3.5% by weight and at least one element selected from 0.02 to 0.25% by weight of phosphorus and having an alloy composition consisting of zinc in the remainder (hereinafter referred to as “third alloy”). Inventive alloy ").

【0015】錫は、Cu−Zn系合金に添加した場合、
珪素と同様に、γ相を形成して被削性を向上させるもの
である。例えば、錫は、58〜70重量%のCuを含有
するCu−Zn系合金において1.8〜4.0重量%添
加させることにより、珪素が添加されておらずとも、良
好な被削性を示す。したがって、Cu−Si−Zn系合
金に錫を添加させることにより、γ相の形成を促進させ
ることができ、Cu−Si−Zn系合金の被削性を更に
向上させることができる。錫によるγ相の形成は1.0
重量%以上で行なわれ、3.5重量%に達すると飽和状
態となる。なお、錫の添加量が3.5重量%を超える
と、γ相の形成効果が飽和状態となるばかりでなく、却
って延性が低下する。また、錫の添加量が1.0重量%
未満ではγ相の形成効果が少ないものの、添加量が0.
3重量%以上であれば、珪素により形成されるγ相を分
散させて均一化させる効果があり、このようなγ相の分
散効果によっても被削性が改善される。すなわち、錫の
添加量が0.3重量%以上であれば、その添加により被
削性が改善されることになる。
When tin is added to a Cu—Zn alloy,
Like silicon, it forms a γ phase to improve machinability. For example, by adding 1.8 to 4.0% by weight of tin to a Cu-Zn-based alloy containing 58 to 70% by weight of Cu, even if silicon is not added, good machinability is obtained. Show. Therefore, by adding tin to the Cu—Si—Zn-based alloy, the formation of the γ phase can be promoted, and the machinability of the Cu—Si—Zn-based alloy can be further improved. The formation of the gamma phase by tin is 1.0
When the amount reaches 3.5% by weight, a saturated state is reached. If the amount of tin exceeds 3.5% by weight, not only the effect of forming the γ phase becomes saturated, but also the ductility decreases. Also, the amount of tin added was 1.0% by weight.
When the amount is less than 0.5, the effect of forming the γ phase is small, but the amount of addition is 0.1.
When the content is 3% by weight or more, there is an effect of dispersing and homogenizing the γ phase formed by silicon, and the machinability is also improved by the dispersion effect of the γ phase. That is, if the amount of tin added is 0.3% by weight or more, the machinability is improved by the addition.

【0016】また、アルミニウムも、錫と同様に、γ相
形成を促進させる機能を有するものであり、錫と共に或
いはこれに代えて添加することにより、Cu−Si−Z
n系合金の被削性を更に向上させることができる。アル
ミニウムには、被削性の他、強度,耐摩耗性,耐高温酸
化性を改善させる機能や合金比重を低下させる機能もも
あるが、被削性改善機能が発揮されるためには、少なく
とも1.0重量%添加させる必要がある。しかし、3.
5重量%を超えて添加しても、添加量に見合った被削性
改善効果はみられないし、錫と同様に延性の低下を招来
する。
Also, aluminum has a function of promoting the formation of the γ phase, similarly to tin, and aluminum is added together with or instead of tin to form Cu—Si—Z
The machinability of the n-based alloy can be further improved. Aluminum has a function to improve the strength, abrasion resistance, resistance to high-temperature oxidation, and a function to lower the alloy specific gravity, in addition to the machinability. It is necessary to add 1.0% by weight. However, 3.
Even if it is added in excess of 5% by weight, the machinability improving effect commensurate with the added amount is not observed, and the ductility is reduced as in the case of tin.

【0017】また、燐には、錫やアルミニウムのような
γ相の形成機能はないが、珪素の添加により又はこれと
錫,アルミニウムの一方若しくは両方を共添させること
により生成したγ相を均一に分散して、γ相分布を良好
なものとする機能があり、かかる機能によってγ相形成
による被削性の更なる向上を図ることができる。また、
燐の添加により、γ相の分散化と同時にマトリックスに
おけるα相の結晶粒を微細化して、熱間加工性を向上さ
せ、強度,耐応力腐蝕割れ性も向上させる。さらに、鋳
造時の湯流れ性を著しく向上させる効果もある。このよ
うな燐添加による効果は0.02重量%未満の添加では
発揮されない。一方、燐の添加量が0.25重量%を超
えると、添加量に見合った被削性改善等の効果は得られ
ないし、過剰添加により却って熱間鍛造性,押出性の低
下を招来する。
Phosphorus does not have the function of forming a γ phase unlike tin and aluminum. However, the γ phase generated by adding silicon or by co-adding one or both of tin and aluminum with the phosphorus is uniform. And the function of improving the γ-phase distribution is provided. With such a function, the machinability by the γ-phase formation can be further improved. Also,
By the addition of phosphorus, the crystal grains of the α phase in the matrix are refined at the same time as the dispersion of the γ phase, thereby improving the hot workability and improving the strength and the stress corrosion cracking resistance. Further, there is also an effect of remarkably improving the flowability of the molten metal during casting. Such an effect by the addition of phosphorus is not exhibited when the addition is less than 0.02% by weight. On the other hand, if the added amount of phosphorus exceeds 0.25% by weight, the effect of improving machinability or the like corresponding to the added amount cannot be obtained, and excessive addition leads to deterioration of hot forgeability and extrudability.

【0018】第3発明合金では、かかる点に着目して、
Cu−Si−Pb−Zn系合金(第1発明合金)に、錫
0.3〜3.5重量%、アルミニウム1.0〜3.5重
量%及び燐0.02〜0.25重量%のうち少なくとも
1つを添加させることより、被削性の更なる向上を図っ
ている。
In the third invention alloy, paying attention to this point,
In a Cu-Si-Pb-Zn-based alloy (first invention alloy), 0.3-3.5% by weight of tin, 1.0-3.5% by weight of aluminum, and 0.02-0.25% by weight of phosphorus are added. By adding at least one of them, the machinability is further improved.

【0019】ところで、錫、アルミニウム又は燐は、上
記した如くγ相の形成機能又はγ相の分散機能により被
削性を改善させるものであり、γ相による被削性改善を
図る上で、珪素と密接な関係を有するものである。した
がって、珪素に錫、アルミニウム又は燐を共添させた第
3発明合金では、第1発明合金の珪素に置き換えて被削
性を向上させる機能が発揮され、γ相とは関係なく被削
性を改善させる機能(マトリックスに粒状をなして分散
することにより被削性を向上させる機能)を発揮するビ
スマス、テルル又はセレンを添加した第2発明合金に比
して、珪素の必要添加量が少なくなる。すなわち、珪素
添加量が2.0重量%未満であっても、1.8重量%以
上であれば、錫、アルミニウム又は燐の共添により、工
業的に満足しうる被削性を得ることができる。しかし、
珪素の添加量が4.0重量%以下であっても、3.5重
量%を超えると、錫、アルミニウム又は燐を共添するこ
とにより、珪素添加による被削性改善効果は飽和状態と
なる。かかる点から、第3発明合金では、珪素の添加量
を1.8〜3.5重量%とした。また、かかる珪素の添
加量との関係及び錫、アルミニウム又は燐を添加させる
こととの関係から、銅配合量の上下限値は第2発明合金
より若干大きくして、その好ましい含有量を70〜80
重量%とした。
By the way, tin, aluminum or phosphorus improves the machinability by the function of forming the γ phase or the function of dispersing the γ phase as described above. Has a close relationship with Therefore, in the third invention alloy in which tin, aluminum or phosphorus is added to silicon, the function of improving the machinability by replacing the first invention alloy with silicon is exhibited, and the machinability is improved irrespective of the γ phase. The required addition amount of silicon is smaller than that of the second invention alloy to which bismuth, tellurium, or selenium is added, which exhibits a function of improving (a function of improving machinability by dispersing in a matrix form in a granular form). . That is, even if the silicon addition amount is less than 2.0% by weight, and if it is 1.8% by weight or more, it is possible to obtain industrially satisfactory machinability by co-adding tin, aluminum or phosphorus. it can. But,
Even if the amount of silicon is 4.0% by weight or less, if it exceeds 3.5% by weight, the effect of improving machinability by adding silicon becomes saturated by co-adding tin, aluminum or phosphorus. . From this point, in the third invention alloy, the addition amount of silicon is set to 1.8 to 3.5% by weight. Further, from the relation with the addition amount of silicon and the relation with addition of tin, aluminum or phosphorus, the upper and lower limits of the copper content are slightly larger than those of the second invention alloy, and the preferable content is 70 to 70%. 80
% By weight.

【0020】また、第4発明においては、同じく被削性
に優れた銅合金として、銅70〜80重量%と、珪素
1.8〜3.5重量%と、鉛0.02〜0.4重量%
と、錫0.3〜3.5重量%、アルミニウム1.0〜
3.5重量%及び燐0.02〜0.25重量%から選択
された1種以上の元素と、ビスマス0.02〜0.4重
量%、テルル0.02〜0.4重量%及びセレン0.0
2〜0.4重量%から選択された1種の元素とを含有
し、且つ残部が亜鉛からなる合金組成をなす快削性銅合
金(以下「第4発明合金」という)を提案する。
Further, in the fourth invention, as a copper alloy also having excellent machinability, 70 to 80% by weight of copper, 1.8 to 3.5% by weight of silicon, and 0.02 to 0.4% of lead. weight%
0.3 to 3.5% by weight of tin and 1.0 to 1.0% of aluminum
One or more elements selected from 3.5% by weight and phosphorus 0.02 to 0.25% by weight, bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.0
A free-cutting copper alloy (hereinafter, referred to as a "fourth invention alloy") containing one element selected from 2 to 0.4% by weight and having an alloy composition with the balance being zinc is proposed.

【0021】すなわち、第4発明合金は、第3発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の何れ
かを更に含有させた合金組成をなすものであり、これら
を添加させる理由及び添加量の決定理由は第2発明合金
について述べたと同様である。
That is, in the fourth invention alloy, bismuth 0.02 to 0.4% by weight and tellurium 0.02 to
The alloy composition further contains 0.4% by weight or any of 0.02 to 0.4% by weight of selenium. The reason for adding these elements and the reason for determining the amount of addition are described for the second invention alloy. It is the same as

【0022】また、第5発明においては、被削性に加え
て耐蝕性にも優れた銅合金として、銅69〜79重量%
と、珪素2.0〜4.0重量%と、鉛0.02〜0.4
重量%と、錫0.3〜3.5重量%、燐0.02〜0.
25重量%、アンチモン0.02〜0.15重量%及び
砒素0.02〜0.15重量%から選択された1種以上
の元素とを含有し、且つ残部が亜鉛からなる合金組成を
なす快削性銅合金(以下「第5発明合金」という)を提
案する。
Further, in the fifth invention, the copper alloy having excellent corrosion resistance in addition to machinability is provided in an amount of 69 to 79% by weight of copper.
2.0 to 4.0% by weight of silicon and 0.02 to 0.4% of lead.
Wt%, tin 0.3-3.5 wt%, phosphorous 0.02-0.
25% by weight, 0.02 to 0.15% by weight of antimony and 0.02 to 0.15% by weight of arsenic and at least one element selected from the group consisting of zinc. A machinable copper alloy (hereinafter referred to as "fifth invention alloy") is proposed.

【0023】すなわち、第5発明合金は、第1発明合金
に錫0.3〜3.5重量%、燐0.02〜0.25重量
%、アンチモン0.02〜0.15重量%及び砒素0.
02〜0.15重量%の少なくとも1つを更に含有させ
た合金組成をなすものである。
That is, the fifth invention alloy is the same as the first invention alloy, except that 0.3 to 3.5% by weight of tin, 0.02 to 0.25% by weight of phosphorus, 0.02 to 0.15% by weight of antimony and 0.
The alloy composition further contains at least one of 02 to 0.15% by weight.

【0024】錫には、被削性改善機能の他、耐蝕性(耐
脱亜鉛腐蝕性,耐漬食性)及び鍛造性を向上させる機能
がある。すなわち、α相マトリックスの耐蝕性を向上さ
せ、γ相の分散化により耐蝕性、鍛造性及び耐応力腐蝕
割れ性の改善を図ることができる。第5発明合金では、
錫のかかる機能により耐蝕性の改善を図り、被削性の改
善は主として珪素添加効果により図っている。したがっ
て、珪素及び銅の含有量は第1発明合金と同一としてあ
る。一方、耐蝕性,鍛造性の改善機能を発揮させるため
には、錫の添加量を少なくとも0.3重量%とする必要
がある。しかし、錫添加による耐蝕性,鍛造性の改善機
能は、3.5重量%を超えて添加しても、添加量に見合
うだけの効果が得られず、経済的にも無駄である。
Tin has a function of improving corrosion resistance (anti-zinc corrosion resistance, corrosion resistance) and forgeability in addition to the function of improving machinability. That is, the corrosion resistance of the α-phase matrix can be improved, and the corrosion resistance, forgeability, and stress corrosion cracking resistance can be improved by dispersing the γ phase. In the fifth invention alloy,
Corrosion resistance is improved by such a function of tin, and machinability is improved mainly by the effect of silicon addition. Therefore, the contents of silicon and copper are the same as those of the first invention alloy. On the other hand, in order to exhibit the function of improving corrosion resistance and forgeability, it is necessary that the amount of tin added be at least 0.3% by weight. However, the effect of improving the corrosion resistance and forgeability by adding tin exceeds 3.5% by weight, the effect corresponding to the added amount cannot be obtained, and it is economically useless.

【0025】また、燐は、上記した如くγ相を均一分散
化させる共にマトリックスにおけるα相の結晶粒を細分
化させることにより、被削性改善機能の他、耐蝕性(耐
脱亜鉛腐食性,耐漬食性)、鍛造性、耐応力腐蝕割れ性
及び機械的強度を向上させる機能を発揮するものであ
る。第5発明合金では、燐のかかる機能により耐蝕性等
の改善を図り、被削性の改善は主として珪素添加効果に
より図っている。燐添加による耐蝕性等の改善効果は、
微量の燐添加により発揮されるものであり、0.02重
量%以上の添加で発揮される。しかし、0.25重量%
を超えて添加しても、添加量に見合った効果が得られな
いばかりか、熱間鍛造性,押出性が却って低下する。
As described above, phosphorus not only has a function of improving machinability but also has a corrosion resistance (dezincification corrosion resistance, It has the function of improving pickling resistance, forgeability, stress corrosion cracking resistance and mechanical strength. In the fifth invention alloy, the function of phosphorus improves corrosion resistance and the like, and the machinability is improved mainly by the effect of silicon addition. The effect of improving the corrosion resistance etc. by adding phosphorus is
This is exhibited by adding a small amount of phosphorus, and is exhibited by adding 0.02% by weight or more. However, 0.25% by weight
If the amount exceeds the above range, not only the effect corresponding to the added amount is not obtained, but also the hot forgeability and the extrudability are rather lowered.

【0026】また、アンチモン及び砒素も、燐と同様
に、微量(0.02重量%以上)で耐脱亜鉛腐食性等を
向上させるものである。しかし、0.15重量%を超え
て添加しても、添加量に見合う効果が得られないばかり
か、燐の過剰添加と同様に、熱間鍛造性,押出性が却っ
て低下する。
Antimony and arsenic also improve anti-zinc corrosion resistance, etc., in a very small amount (0.02% by weight or more), like phosphorus. However, even if it is added in excess of 0.15% by weight, not only the effect commensurate with the amount added is not obtained, but also the hot forgeability and extrudability are rather reduced, as in the case of excessive addition of phosphorus.

【0027】これらのことから、第5発明合金では、第
1発明合金におけると同量の銅、珪素及び鉛に加えて、
耐蝕性向上元素として錫、燐、アンチモン及び砒素の少
なくとも1つを上記した範囲内で添加させることによ
り、被削性のみならず、耐蝕性等をも向上させることが
できるのである。なお、第5発明合金にあっては、錫及
び燐は、主として、アンチモン及び砒素と同様の耐蝕性
改善元素として機能するため、珪素及び微量の鉛以外に
被削性改善元素を添加しない第1発明合金と同様に、銅
及び珪素の配合量は、夫々、69〜79重量%及び2.
0〜4.0重量%としてある。
From these facts, in the fifth invention alloy, in addition to the same amounts of copper, silicon and lead as in the first invention alloy,
By adding at least one of tin, phosphorus, antimony, and arsenic as an element for improving corrosion resistance within the above range, not only machinability but also corrosion resistance and the like can be improved. In the fifth invention alloy, tin and phosphorus mainly function as corrosion resistance improving elements similar to antimony and arsenic. As with the inventive alloy, the amounts of copper and silicon were 69-79% by weight and 2.
It is set to 0 to 4.0% by weight.

【0028】また、第6発明においては、同じく被削性
及び耐蝕性に優れた銅合金として、銅69〜79重量%
と、珪素2.0〜4.0重量%と、鉛0.02〜0.4
重量%と、錫0.3〜3.5重量%、燐0.02〜0.
25重量%、アンチモン0.02〜0.15重量%及び
砒素0.02〜0.15重量%から選択された1種以上
の元素と、ビスマス0.02〜0.4重量%、テルル
0.02〜0.4重量%及びセレン0.02〜0.4重
量%から選択された1種の元素とを含有し、且つ残部が
亜鉛からなる合金組成をなす快削性銅合金(以下「第6
発明合金」という)を提案する。
Further, in the sixth invention, the copper alloy, which is also excellent in machinability and corrosion resistance, comprises 69 to 79% by weight of copper.
2.0 to 4.0% by weight of silicon and 0.02 to 0.4% of lead.
Wt%, tin 0.3-3.5 wt%, phosphorous 0.02-0.
At least one element selected from the group consisting of 25% by weight, 0.02 to 0.15% by weight of antimony and 0.02 to 0.15% by weight of arsenic, 0.02 to 0.4% by weight of bismuth, and 0.1% of tellurium; A free-cutting copper alloy (hereinafter referred to as “No. 1”) containing an element selected from the group consisting of 02 to 0.4% by weight and 0.02 to 0.4% by weight of selenium, and the balance being zinc. 6
Inventive alloy ").

【0029】すなわち、第6発明合金は、第5発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の何れ
か1つを更に含有させた合金組成をなすものであり、第
2発明合金と同様に、珪素及び鉛に加えてビスマス、テ
ルル及びセレンの何れか1つを添加することにより被削
性を改善すると共に、第5発明合金と同様に、錫、燐、
アンチモン及び砒素のうちから選択した少なくとも1つ
を添加することにより耐蝕性等を改善したものである。
したがって、銅、珪素、鉛、ビスマス、テルル及びセレ
ンの添加量については第2発明合金と同一とし、錫、
燐、アンチモン及び砒素の添加量については第5発明合
金と同一とした。
That is, in the sixth invention alloy, bismuth 0.02 to 0.4% by weight and tellurium 0.02 to
It has an alloy composition further containing any one of 0.4% by weight and 0.02 to 0.4% by weight of selenium. Similar to the second invention alloy, bismuth, In addition to improving the machinability by adding any one of tellurium and selenium, tin, phosphorus,
Corrosion resistance and the like are improved by adding at least one selected from antimony and arsenic.
Therefore, the addition amounts of copper, silicon, lead, bismuth, tellurium, and selenium are the same as those of the second invention alloy, and tin,
The addition amounts of phosphorus, antimony and arsenic were the same as those of the fifth invention alloy.

【0030】また、第7発明においては、被削性に加え
て高力性,耐摩耗性に優れた銅合金として、銅62〜7
8重量%と、珪素2.5〜4.5重量%と、鉛0.02
〜0.4重量%と、錫0.3〜3.0重量%、アルミニ
ウム0.2〜2.5重量%及び燐0.02〜0.25重
量%から選択された1種以上の元素と、マンガン0.7
〜3.5重量%及びニッケル0.7〜3.5重量%から
選択された1種以上の元素とを含有し、且つ残部が亜鉛
からなる合金組成をなす快削性銅合金(以下「第7発明
合金」という)を提案する。
In the seventh invention, the copper alloy having excellent strength and abrasion resistance in addition to machinability includes copper 62 to 7
8% by weight, 2.5 to 4.5% by weight of silicon, and 0.02% of lead
And 0.4% by weight and one or more elements selected from 0.3 to 3.0% by weight of tin, 0.2 to 2.5% by weight of aluminum and 0.02 to 0.25% by weight of phosphorus. , Manganese 0.7
-3.5% by weight and at least one element selected from 0.7-3.5% by weight of nickel, and the balance is zinc. 7 invention alloy ").

【0031】マンガン又はニッケルは、珪素と結合して
MnX SiY 又はNiX SiY の微細金属間化合物を形
成して、マトリックスに均一に析出し、それにより耐摩
耗性,強度を向上させる。したがって、マンガン及びニ
ッケルの一方又は両方を添加することにより、高力性,
耐摩耗性が改善される。かかる効果は、マンガン及びニ
ッケルを夫々0.7重量%以上添加することに発揮され
る。しかし、3.5重量%を超えて添加しても、効果が
飽和状態となり、添加量に見合う効果が得られない。珪
素は、マンガン又はニッケルの添加に伴い、これらとの
金属間化合物形成に要する消費量を考慮して、2.5〜
4.5重量%を添加させることとした。
Manganese or nickel combines with silicon to form a fine intermetallic compound of Mn X Si Y or Ni X Si Y and precipitates uniformly on the matrix, thereby improving wear resistance and strength. Therefore, by adding one or both of manganese and nickel, high strength,
The wear resistance is improved. Such effects are exhibited when manganese and nickel are each added in an amount of 0.7% by weight or more. However, even if it is added in excess of 3.5% by weight, the effect becomes saturated, and an effect commensurate with the added amount cannot be obtained. Silicon is added with manganese or nickel, taking into account the amount of consumption required for the formation of an intermetallic compound with manganese or nickel.
It was decided to add 4.5% by weight.

【0032】また、錫、アルミニウム及び燐の添加によ
り、マトリックスのα相が強化され、被削性も改善され
る。錫及び燐は、α相,γ相の分散により強度,耐摩耗
性を向上させ、被削性も向上させる。錫は、0.3重量
%以上の添加により強度及び被削性を向上させるが、
3.0重量%を超えて添加すると延性が低下する。した
がって、高力性,耐摩耗性の改善を図る第7発明合金に
おいては、被削性改善効果も考慮して、錫の添加量を
0.3〜3.0重量%とした。また、アルミニウムは、
耐摩耗性改善に寄与し、マトリックスの強化機能は0.
2重量%以上の添加により発揮される。しかし、2.5
重量%を超えて添加すると、延性が低下する。したがっ
て、被削性改善効果も考慮して、アルミニウムの添加量
は0.2〜2.5重量%とした。また、燐の添加によ
り、γ相の分散化と同時にマトリックスにおけるα相の
結晶粒を微細化して、熱間加工性を向上させ、強度,耐
摩耗性も向上させる。しかも、鋳造時の湯流れ性を著し
く向上させる効果もある。このような効果は、燐を0.
02〜0.25重量%の範囲で添加することにより奏せ
られる。なお、銅の配合量については、珪素添加量との
関係及びマンガン,ニッケルが珪素と結合する関係か
ら、62〜78重量%とした。
The addition of tin, aluminum and phosphorus strengthens the α phase of the matrix and improves machinability. Tin and phosphorus improve the strength and wear resistance by dispersing the α phase and the γ phase, and also improve the machinability. Tin improves the strength and machinability by adding 0.3% by weight or more,
When added in excess of 3.0% by weight, ductility decreases. Therefore, in the seventh invention alloy in which high strength and wear resistance are improved, the addition amount of tin is set to 0.3 to 3.0% by weight in consideration of the effect of improving machinability. Aluminum is
It contributes to the improvement of abrasion resistance and the matrix strengthening function is 0.1%.
It is exhibited by addition of 2% by weight or more. However, 2.5
If added in excess of weight percent, the ductility decreases. Therefore, considering the machinability improvement effect, the addition amount of aluminum is set to 0.2 to 2.5% by weight. Further, by adding phosphorus, the crystal grains of the α-phase in the matrix are refined at the same time as the dispersion of the γ-phase, thereby improving the hot workability and improving the strength and wear resistance. In addition, there is also an effect of significantly improving the flowability of the molten metal during casting. Such an effect can be achieved by adding phosphorus to 0.1.
This can be achieved by adding in the range of 02 to 0.25% by weight. The amount of copper was set to 62 to 78% by weight based on the relationship with the amount of silicon added and the relationship between manganese and nickel combined with silicon.

【0033】さらに、第8発明においては、被削性に加
えて耐高温酸化性に優れた銅合金として、銅69〜79
重量%、珪素2.0〜4.0重量%、鉛0.02〜0.
4重量%、アルミニウム0.1〜1.5重量%及び燐
0.02〜0.25重量%を含有し、且つ残部が亜鉛か
らなる合金組成をなす快削性銅合金(以下「第8発明合
金」という)を提案する。
Further, in the eighth invention, as a copper alloy excellent in high temperature oxidation resistance in addition to machinability, copper 69 to 79
Wt%, silicon 2.0-4.0 wt%, lead 0.02-0.
A free-cutting copper alloy containing 4% by weight, 0.1-1.5% by weight of aluminum and 0.02-0.25% by weight of phosphorus, and the balance being zinc (hereinafter referred to as "the eighth invention"). Alloy ”).

【0034】アルミニウムは、強度,被削性,耐摩耗性
を改善させる他、耐高温酸化性を改善させる元素であ
る。また、珪素も、上記した如く、被削性,強度,耐摩
耗性,耐応力腐蝕割れ性を改善させる他、耐高温酸化性
を改善する機能を発揮する。アルミニウムによる耐高温
酸化性の改善は、珪素との共添によって、0.1重量%
以上の添加で行なわれる。しかし、アルミニウムを1.
5重量%を超えて添加しても、添加量に見合う耐高温酸
化性改善効果はみられない。かかる点から、アルミニウ
ムの添加量は0.1〜1.5重量%とした。
Aluminum is an element that improves the strength, machinability, and wear resistance, and also improves the high-temperature oxidation resistance. As described above, silicon also has functions of improving machinability, strength, abrasion resistance, stress corrosion cracking resistance, and high temperature oxidation resistance. Improvement of high-temperature oxidation resistance by aluminum is 0.1% by weight by co-addition with silicon.
The above addition is performed. However, aluminum was added to 1.
Even if it is added in excess of 5% by weight, the effect of improving high-temperature oxidation resistance corresponding to the amount added is not observed. From this point, the addition amount of aluminum is set to 0.1 to 1.5% by weight.

【0035】燐は、合金鋳造時における湯流れ性を向上
させるために添加される。また、燐は、かかる湯流れ性
の他、上記した被削性,耐脱亜鉛腐蝕性に加えて、耐高
温酸化性をも改善する。このような燐の添加効果は0.
02重量%以上で発揮される。しかし、0.25重量%
を超えて添加しても、添加量に見合う効果はみられず、
却って合金の脆性化を招くことになる。かかる点から、
燐の添加量は、0.02〜0.25重量%とした。
[0035] Phosphorus is added to improve the flowability of the molten metal during alloy casting. Phosphorus improves not only the flowability of the molten metal but also the high-temperature oxidation resistance in addition to the above-mentioned machinability and dezincification corrosion resistance. The effect of such phosphorus addition is 0.1.
Exhibited at 02% by weight or more. However, 0.25% by weight
Even if added beyond the above, the effect corresponding to the added amount is not seen,
On the contrary, the alloy becomes brittle. From this point,
The addition amount of phosphorus was 0.02 to 0.25% by weight.

【0036】また、珪素は、上記した如く被削性を改善
させるために添加されるものであるが、燐と同様に湯流
れ性を向上させる機能も有するものである。珪素による
湯流れ性の向上は2.0重量%以上の添加により発揮さ
れ、被削性を向上させるに必要な添加範囲と重複する。
したがって、珪素の添加量は、被削性の改善を考慮し
て、2.0〜4.0重量%とした。
Although silicon is added to improve machinability as described above, silicon also has a function of improving the flowability of molten metal like phosphorus. The improvement of the melt flowability by silicon is exhibited by the addition of 2.0% by weight or more, and overlaps the addition range necessary for improving the machinability.
Therefore, the addition amount of silicon is set to 2.0 to 4.0% by weight in consideration of improvement in machinability.

【0037】また、第9発明においては、同じく被削性
及び耐高温酸化性に優れた銅合金として、銅69〜79
重量%と、珪素2.0〜4.0重量%と、鉛0.02〜
0.4重量%と、アルミニウム0.1〜1.5重量%
と、燐0.02〜0.25重量%と、ビスマス0.02
〜0.4重量%、テルル0.02〜0.4重量%及びセ
レン0.02〜0.4重量%から選択された1種の元素
とを含有し、且つ残部が亜鉛からなる合金組成をなす銅
合金(以下「第9発明合金」という)を提案する。
In the ninth invention, copper alloys having excellent machinability and high-temperature oxidation resistance include copper 69-79.
Wt%, silicon 2.0-4.0 wt%, lead 0.02-
0.4% by weight and 0.1-1.5% by weight of aluminum
0.02 to 0.25% by weight of phosphorus and 0.02 of bismuth
An alloy composition containing at least one element selected from 0.4% by weight, 0.02 to 0.4% by weight of tellurium and 0.02 to 0.4% by weight of selenium, and the balance being zinc. The proposed copper alloy (hereinafter referred to as “ninth invention alloy”) is proposed.

【0038】すなわち、第9発明合金は、第8発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の何れ
かを更に含有させた合金組成をなすものであり、前記し
た如く鉛同様の被削性を改善する元素であるビスマス等
を添加することにより、第8発明合金と同様の耐高温酸
化性を確保しつつ、被削性の更なる改善を図ったもので
ある。
That is, the ninth invention alloy is the same as the eighth invention alloy, except that 0.02 to 0.4% by weight of bismuth and
It is an alloy composition further containing 0.4% by weight and any one of 0.02 to 0.4% by weight of selenium. As described above, bismuth, which is an element for improving machinability similar to lead, is used. By adding the same, the machinability is further improved while ensuring the same high-temperature oxidation resistance as that of the eighth invention alloy.

【0039】また、第10発明においては、同じく被削
性及び耐高温酸化性に優れた銅合金として、銅69〜7
9重量%と、珪素2.0〜4.0重量%と、鉛0.02
〜0.4重量%と、アルミニウム0.1〜1.5重量%
と、燐0.02〜0.25重量%と、クロム0.02〜
0.4重量%及びチタン0.02〜0.4重量%から選
択された1種以上の元素とを含有し、且つ残部が亜鉛か
らなる合金組成をなす快削性銅合金(以下「第10発明
合金」という)を提案する。
Further, in the tenth invention, copper alloys having excellent machinability and high-temperature oxidation resistance include copper 69 to 7
9% by weight, 2.0 to 4.0% by weight of silicon, and 0.02% of lead
-0.4% by weight and aluminum 0.1-1.5% by weight
0.02 to 0.25% by weight phosphorus and 0.02 to chromium
A free-cutting copper alloy containing 0.4% by weight and one or more elements selected from 0.02 to 0.4% by weight of titanium and having the balance of zinc (hereinafter referred to as “No. Inventive alloy ").

【0040】クロム及びチタンは耐高温酸化性を向上さ
せる機能を有するものであり、その機能は、特に、アル
ミニウムとの共添による相乗効果によって顕著に発揮さ
れる。かかる機能は、これらを単独添加すると共添する
とに拘わらず、夫々、0.02重量%以上で発揮され、
0.4重量%で飽和状態となる。このような点から、第
10発明合金においては、第8発明合金にクロム0.0
2〜0.4重量%及びチタン0.02〜0.4重量%の
少なくとも1つを更に含有させた合金組成をなすものと
して、第8発明合金の耐高温酸化性を更に向上させるべ
く図っている。
Chromium and titanium have a function of improving high-temperature oxidation resistance, and the function is remarkably exhibited particularly by a synergistic effect by co-addition with aluminum. Such functions are exhibited at 0.02% by weight or more, regardless of whether they are added alone or co-added,
It is saturated at 0.4% by weight. From such a point, in the tenth invention alloy, chromium 0.0
An alloy composition further containing at least one of 2 to 0.4% by weight and 0.02 to 0.4% by weight of titanium to further improve the high-temperature oxidation resistance of the eighth invention alloy. I have.

【0041】また、第11発明においては、同じく被削
性及び耐高温酸化性に優れた銅合金として、銅69〜7
9重量%と、珪素2.0〜4.0重量%と、鉛0.02
〜0.4重量%と、アルミニウム0.1〜1.5重量%
と、燐0.02〜0.25重量%と、クロム0.02〜
0.4重量%及びチタン0.02〜0.4重量%から選
択された1種以上の元素と、ビスマス0.02〜0.4
重量%、テルル0.02〜0.4重量%及びセレン0.
02〜0.4重量%から選択された1種の元素とを含有
し、且つ残部が亜鉛からなる合金組成をなす快削性銅合
金(以下「第11発明合金」という)を提案する。
In the eleventh invention, the copper alloy having excellent machinability and high-temperature oxidation resistance includes copper 69 to 7
9% by weight, 2.0 to 4.0% by weight of silicon, and 0.02% of lead
-0.4% by weight and aluminum 0.1-1.5% by weight
0.02 to 0.25% by weight phosphorus and 0.02 to chromium
One or more elements selected from 0.4% by weight and 0.02 to 0.4% by weight of titanium;
Wt%, tellurium 0.02 to 0.4 wt% and selenium 0.1 wt%.
The present invention proposes a free-cutting copper alloy (hereinafter, referred to as an "eleventh invention alloy") containing one element selected from 02 to 0.4% by weight and having an alloy composition of zinc.

【0042】すなわち、第11発明合金は、第10発明
合金にビスマス0.02〜0.4重量%、テルル0.0
2〜0.4重量%及びセレン0.02〜0.4重量%の
何れか1つを更に含有させた合金組成をなすものであ
り、前記した如く珪素と異なる機能により被削性を改善
する鉛同様元素であるビスマス等を添加することによ
り、第10発明合金と同様の耐高温酸化性を確保しつ
つ、被削性の更なる改善を図ったものである。
That is, the eleventh invention alloy is the same as the tenth invention alloy, except that 0.02 to 0.4% by weight of bismuth and 0.0
It has an alloy composition further containing any one of 2 to 0.4% by weight and 0.02 to 0.4% by weight of selenium, and improves the machinability by a function different from that of silicon as described above. By adding bismuth, which is an element similar to lead, etc., the machinability is further improved while securing the high-temperature oxidation resistance similar to that of the tenth invention alloy.

【0043】また、第12発明においては、上記した各
発明合金に400〜600℃で30分〜5時間の熱処理
を施しておくことより、その被削性を更に改善した快削
性銅合金(以下「第12発明合金」という)を提案す
る。
Further, in the twelfth invention, the above-mentioned alloys of the invention are subjected to a heat treatment at 400 to 600 ° C. for 30 minutes to 5 hours, thereby improving the machinability of the alloys. Hereinafter, referred to as a “twelfth invention alloy”).

【0044】第1〜第11発明合金は珪素等の被削性改
善元素を添加したものであり、かかる元素の添加により
優れた被削性を有するものであるが、かかる添加元素の
機能による被削性は熱処理によって更に向上する場合が
ある。例えば、第1〜第11発明合金における銅濃度が
高いものであって、γ相が少なく且つκ相が多いものの
については、熱処理によりκ相がγ相に変化して、γ相
が微細に分散析出することにより、被削性が更に改善さ
れる。また、実際の鋳物,展伸材,熱間鍛造品の製造を
想定した場合、鋳造条件や熱間加工(熱間押出,熱間鍛
造等)後の生産性,作業環境等の条件によって、それら
の材料が強制空冷,水冷される場合がある。かかる場
合、第1〜第11発明合金において、特に、銅濃度が低
いものでは、γ相が若干少なく且つβ相を含んでいる
が、熱処理を施すと、これによりβ相がγ相に変化する
と共にγ相が微細に分散析出することになり、被削性が
改善される。しかし、何れの場合においても、熱処理温
度が400℃未満であれば、上記した相変化速度が遅く
なり、熱処理に極めて長時間を要するため、経済的にも
実用できない。逆に、600℃を超えると、却ってκ相
が増大し或いはβ相が出現するため、被削性の改善効果
が得られない。したがって、実用性をも考慮した場合、
被削性改善のためには、400〜600℃の条件で30
分〜5時間の熱処理を行なうことが好ましい。
The alloys of the first to eleventh inventions are added with a machinability improving element such as silicon and have excellent machinability due to the addition of such an element. The machinability may be further improved by heat treatment. For example, when the copper concentration in the first to eleventh invention alloys is high and the γ phase is small and the κ phase is large, the κ phase is changed to the γ phase by the heat treatment, and the γ phase is finely dispersed. Precipitation further improves machinability. In addition, when assuming the production of actual castings, wrought materials, and hot forged products, depending on the conditions of the casting conditions, productivity after hot working (hot extrusion, hot forging, etc.), work environment, etc. May be forcibly air-cooled or water-cooled. In such a case, in the first to eleventh invention alloys, particularly, when the copper concentration is low, the γ phase is slightly less and contains the β phase, but when the heat treatment is performed, the β phase changes to the γ phase. At the same time, the γ phase is finely dispersed and precipitated, and the machinability is improved. However, in any case, if the heat treatment temperature is lower than 400 ° C., the above-mentioned phase change rate becomes slow, and the heat treatment takes an extremely long time, and thus cannot be economically used. Conversely, when the temperature exceeds 600 ° C., the κ phase increases or the β phase appears, so that the effect of improving machinability cannot be obtained. Therefore, considering practicality,
In order to improve machinability, 30 to 400 ° C to 600 ° C
It is preferable to perform the heat treatment for a period of minutes to 5 hours.

【0045】[0045]

【実施例】実施例として、表1〜表15に示す組成の鋳
塊(外径100mm,長さ150mmの円柱形状のも
の)を熱間(750℃)で外径15mmの丸棒状に押出
加工して、第1発明合金No.1001〜No.100
7、第2発明合金No.2001〜No.2006、第
3発明合金No.3001〜No.3010、第4発明
合金No.4001〜No.4021、第5発明合金N
o.5001〜No.5020、第6発明合金No.6
001〜No.6045、第7発明合金No.7001
〜No.7029、第8発明合金No.8001〜N
o.8008、第9発明合金No.9001〜No.9
006、第10発明合金No.10001〜No.10
008及び第11発明合金No.11001〜No.1
1011を得た。また、表16に示す組成の鋳塊(外径
100mm,長さ150mmの円柱形状のもの)を熱間
(750℃)で外径15mmの丸棒状に押出加工した
上、その押出材を表16に示す条件で熱処理して、第1
2発明合金No.12001〜No.12004を得
た。すなわち、No.12001は第1発明合金No.
1006と同一組成をなす押出材を580℃,30分の
条件で熱処理したものであり、No.12002はN
o.1006と同一組成をなす押出材を450℃,2時
間の条件で熱処理したものであり、No.12003は
第1発明合金No.1007と同一組成をなす押出材を
No.12001と同一条件(580℃,30分)で熱
処理したものであり、No.12004はNo.100
7と同一組成をなす押出材をNo.12002と同一条
件(450℃,2時間)で熱処理したものである。
EXAMPLE As an example, an ingot (having a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) having the composition shown in Tables 1 to 15 was extruded into a round bar having an outer diameter of 15 mm while hot (750 ° C.). Then, the first invention alloy No. 1001-No. 100
7, the second invention alloy no. 2001-No. 2006, the third invention alloy No. 3001-No. 3010, 4th invention alloy No. 4001-No. 4021, Fifth invention alloy N
o. 5001-No. 5020, the sixth invention alloy No. 6
001-No. 6045, 7th invention alloy No. 7001
-No. 7029, Eighth Invention Alloy No. 8001-N
o. 8008, ninth invention alloy No. 9001-No. 9
006, the tenth invention alloy No. 10001-No. 10
008 and the eleventh invention alloy no. 11001-No. 1
1011 was obtained. Further, an ingot (having a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) having a composition shown in Table 16 was extruded into a round bar having an outer diameter of 15 mm by hot (750 ° C.). Heat treatment under the conditions shown in
Inventive alloy No. 2 12001-No. 12004 was obtained. That is, No. No. 12001 is the first invention alloy No.
An extruded material having the same composition as No. 1006 was heat-treated at 580 ° C. for 30 minutes. 12002 is N
o. An extruded material having the same composition as that of No. 1006 was heat-treated at 450 ° C. for 2 hours. No. 12003 is the first invention alloy No. The extruded material having the same composition as No. 1007 was No. 1007. No. 12001 was heat-treated under the same conditions (580 ° C., 30 minutes). No. 12004 is No. 100
Extruded material having the same composition as No. 7 It was heat-treated under the same conditions as 12002 (450 ° C., 2 hours).

【0046】また、比較例として、表17に示す組成の
鋳塊(外径100mm,長さ150mmの円柱形状のも
の)を熱間(750℃)で押出加工して、外径15mm
の丸棒状押出材(以下「従来合金」という)No.13
001〜No.13006を得た。なお、No.130
01は「JIS C3604」に相当するものであり、
No.13002は「CDA C36000」に相当す
るものであり、No.13003は「JIS C377
1」に相当するものであり、No.13004は「CD
A C69800」に相当するものである。また、N
o.13005は「JIS C6191」に相当するも
のであり、JISに規定される伸銅品の中で強度,耐磨
耗性に最も優れるアルミニウム青銅である。また、N
o.13006は「JIS C4622」に相当するも
のであり、JISに規定される伸銅品の中で耐蝕性に最
も優れるネーバル黄銅である。
As a comparative example, an ingot having a composition shown in Table 17 (a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) was extruded hot (750 ° C.) to obtain an outer diameter of 15 mm.
No. extruded material (hereinafter referred to as “conventional alloy”) No. 13
001-No. 130006 was obtained. In addition, No. 130
01 is equivalent to “JIS C3604”,
No. No. 13002 corresponds to “CDA C36000”. 13003 is "JIS C377
No. 1 ". 13004 is "CD
AC69800 ". Also, N
o. 13005 is equivalent to "JIS C 6191", and is aluminum bronze having the highest strength and abrasion resistance among the copper products specified in JIS. Also, N
o. 13006 is equivalent to "JIS C4622", and is a naval brass having the highest corrosion resistance among the brass products specified in JIS.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【表6】 [Table 6]

【0053】[0053]

【表7】 [Table 7]

【0054】[0054]

【表8】 [Table 8]

【0055】[0055]

【表9】 [Table 9]

【0056】[0056]

【表10】 [Table 10]

【0057】[0057]

【表11】 [Table 11]

【0058】[0058]

【表12】 [Table 12]

【0059】[0059]

【表13】 [Table 13]

【0060】[0060]

【表14】 [Table 14]

【0061】[0061]

【表15】 [Table 15]

【0062】[0062]

【表16】 [Table 16]

【0063】[0063]

【表17】 [Table 17]

【0064】そして、第1〜第12発明合金の被削性を
従来合金との比較において確認すべく、次のような切削
試験を行い、切削主分力、切屑状態及び切削表面形態を
判定した。
Then, in order to confirm the machinability of the first to twelfth invention alloys in comparison with the conventional alloys, the following cutting tests were performed, and the main component force of the cutting, the chip state, and the cutting surface morphology were determined. .

【0065】すなわち、上記の如くして得られた各押出
材の外周面を、真剣バイト(すくい角:−8°)を取り
付けた旋盤により、切削速度:50m/分,切込み深さ
(切削代):1.5mm,送り量:0.11mm/re
v.の条件で切削し、バイトに取り付けた3分力動力計
からの信号を重歪測定器により電圧信号に変換してレコ
ーダで記録し、これを切削抵抗に換算した。ところで、
切削抵抗の大小は3分力つまり主分力、送り分力及び背
分力によって判断されるが、ここでは、3分力のうち最
も大きな値を示す主分力(N)をもって切削抵抗の大小
を判断することとした。その結果は、表18〜表33に
示す通りであった。
That is, the outer peripheral surface of each extruded material obtained as described above was cut by a lathe with a serious cutting tool (rake angle: -8 °) at a cutting speed of 50 m / min and a cutting depth (cutting allowance). ): 1.5 mm, feed amount: 0.11 mm / re
v. The signal from the three-component dynamometer attached to the cutting tool was converted into a voltage signal by a heavy strain measuring instrument, recorded by a recorder, and converted into a cutting resistance. by the way,
The magnitude of the cutting force is determined by the three-component force, namely, the main component, the feed component and the back component. In this case, the magnitude of the cutting force is determined by the main component (N) showing the largest value among the three components. It was decided to judge. The results were as shown in Tables 18 to 33.

【0066】また、切削により生成した切屑の状態を観
察し、その形状によって図1(A)〜(D)に示す如く
4つに分類して、表1〜表15に示した。ところで、切
屑が、(D)図に示す如く、3巻以上の螺旋形状をなし
ている場合には、切屑の処理(切屑の回収や再利用等)
が困難となる上、切屑がバイトに絡み付いたり、切削表
面を損傷させる等のトラブルが発生して、良好な切削加
工を行なうことができない。また、切屑が、(C)図に
示す如く、半巻程度の円弧形状から2巻程度の螺旋形状
をなしている場合には、3巻以上の螺旋形状をなす場合
のような大きなトラブルは生じないものの、やはり切屑
の処理が容易ではなく、連続切削加工を行う場合等にあ
ってはバイトへの絡み付きや切削表面の損傷等を生じる
虞れがある。しかし、切屑が、(A)の如き微細な針形
状片や(B)の如き扇形状片又は円弧形状片に剪断され
る場合には、上記のようなトラブルが生じることがな
く、(C)図や(D)図に示すもののように嵩張らない
ことから、切屑の処理も容易である。但し、切屑が
(A)図のような微細形状に剪断される場合には、旋盤
等の工作機械の摺動面に潜り込んで機械的障害を発生し
たり、作業者の手指,目に刺さる等の危険を伴うことが
ある。したがって、被削性を判断する上では、(B)図
に示すものが最良であり、(A)図に示すものがこれに
続き、(C)図や(D)図に示すものは不適当とするの
が相当である。表18〜表33においては、(B)に示
す最良の切屑状態が観察されたものを「◎」で、(A)
図に示すやや良好な切屑状態が観察されたものを「○」
で、(C)図に示す不良な切屑状態が観察されたものを
「△」で、(D)に示す最悪の切屑状態が観察されたも
のを「×」で示した。
Further, the state of the chips generated by the cutting was observed and classified into four types as shown in FIGS. 1 (A) to 1 (D) according to their shapes, and the results are shown in Tables 1 to 15. By the way, as shown in Fig. (D), when the chip has a spiral shape of three or more turns, processing of the chip (collection and reuse of the chip, etc.)
In addition, it becomes difficult to perform cutting, and troubles such as chip entanglement with the cutting tool and damage to the cutting surface occur, so that good cutting cannot be performed. Further, as shown in Fig. (C), when the chip has a spiral shape of about two turns from an arc shape of about half a roll, a big trouble such as a spiral shape of three or more turns occurs. However, it is still not easy to treat chips, and in the case of performing continuous cutting, there is a possibility that the cutting tool may be entangled or the cutting surface may be damaged. However, when the chip is sheared into a fine needle-shaped piece as shown in (A) or a fan-shaped piece or an arc-shaped piece as shown in (B), the above trouble does not occur, and (C) Since it is not bulky as shown in the figures and (D), the processing of chips is easy. However, if the chips are sheared into a fine shape as shown in FIG. 3A, the chips may sneak into the sliding surface of a machine tool such as a lathe to cause a mechanical obstacle, or to be stuck by fingers or eyes of an operator. May be dangerous. Therefore, in judging the machinability, the one shown in FIG. (B) is the best, the one shown in (A) follows, and the one shown in (C) or (D) is inappropriate. It is appropriate to do. In Tables 18 to 33, those in which the best chip state shown in FIG.
In the figure, a somewhat good chip condition was observed, and "○"
In the graph, (も の) indicates the case where the bad chip state shown in FIG. 7 (C) was observed, and “×” indicates the case where the worst chip state shown in (D) was observed.

【0067】また、切削後において、切削表面の良否を
表面粗さにより判定した。その結果は、表18〜表33
に示す通りであった。ところで、表面粗さの基準として
は最大高さ(Rmax )が使用されることが多く、黄銅製
品の用途にもよるが、一般に、Rmax <10μmであれ
ば極めて被削性に優れると判断することができ、10μ
m≦Rmax <15μmであれば工業的に満足しうる被削
性を得ることができたものと判断でき、Rmax ≧15μ
mの場合には被削性に劣るものと判断できる。表18〜
表33においては、Rmax <10μmの場合を「○」
で、10μm≦Rmax <15μmの場合を「△」で、R
max ≧15μmの場合を「×」で示した。
After cutting, the quality of the cut surface was judged by the surface roughness. The results are shown in Tables 18 to 33
As shown in FIG. By the way, the maximum height (Rmax) is often used as a standard of the surface roughness, and although it depends on the use of the brass product, it is generally judged that if Rmax <10 μm, the machinability is extremely excellent. 10μ
If m ≦ Rmax <15 μm, it can be determined that industrially satisfactory machinability has been obtained, and Rmax ≧ 15 μm
In the case of m, it can be determined that the machinability is poor. Table 18-
In Table 33, the case where Rmax <10 μm is indicated by “○”.
In the case of 10 μm ≦ Rmax <15 μm, “△” indicates that R
The case where max ≧ 15 μm is indicated by “x”.

【0068】表18〜表33に示す切削試験の結果から
明らかなように、第1発明合金No.1001〜No.
1007、第2発明合金No.2001〜No.200
6、第3発明合金No.3001〜No.3010、第
4発明合金No.4001〜No.4021、第5発明
合金No.5001〜No.5020、第6発明合金N
o.6001〜No.6045、第7発明合金No.7
001〜No.7029、第8発明合金No.8001
〜No.8008、第9発明合金No.9001〜N
o.9006、第10発明合金No.10001〜N
o.10008、第11発明合金No.11001〜N
o.11011及び第12発明合金No.12001〜
No.12004は、その何れにおいても、鉛を大量に
含有する従来合金No.13001〜No.13003
と同等の被削性を有するものである。特に、切屑の生成
状態に限っては、鉛含有量が0.1重量%以下である従
来合金No.13004〜No.13006に比しては
勿論、鉛を大量に含有する従来合金No.13001〜
No.13003に比しても、良好な被削性を有する。
また、第1発明合金No.1006及びNo.1007
に比して、これを熱処理した第12発明合金No.12
001〜No.12004は同等以上の被削性を有して
おり、合金組成等の条件によっては、熱処理により第1
〜第11発明合金の被削性を更に向上させ得ることが理
解される。
As is clear from the results of the cutting tests shown in Tables 18 to 33, the first invention alloy No. 1001-No.
1007, the second invention alloy No. 2001-No. 200
6, the third invention alloy no. 3001-No. 3010, 4th invention alloy No. 4001-No. 4021, Fifth Invention Alloy No. 5001-No. 5020, sixth invention alloy N
o. 6001-No. 6045, 7th invention alloy No. 7
001-No. 7029, Eighth Invention Alloy No. 8001
-No. 8008, ninth invention alloy No. 9001-N
o. 9006, 10th invention alloy No. 10001-N
o. 10008, Eleventh Invention Alloy No. 11001-N
o. No. 11011 and the twelfth invention alloy. 12001-
No. No. 12004 is a conventional alloy No. 1 containing a large amount of lead. No. 13001-No. 13003
It has the same machinability as. In particular, as far as the state of chip formation is concerned, the conventional alloy No. having a lead content of 0.1% by weight or less is used. 13004-No. As compared to the conventional alloy No. 13006, the conventional alloy No. 13001-
No. Excellent machinability compared to 13003.
In addition, the first invention alloy No. 1006 and no. 1007
In comparison with the twelfth invention alloy No. 12
001-No. 12004 has equal or higher machinability, and depending on conditions such as alloy composition, the first
It is understood that the machinability of the eleventh invention alloy can be further improved.

【0069】次に、第1〜第12発明合金の熱間加工性
及び機械的性質を、従来合金との比較において確認すべ
く、次のような熱間圧縮試験及び引張試験を行った。
Next, in order to confirm the hot workability and mechanical properties of the first to twelfth invention alloys in comparison with the conventional alloys, the following hot compression test and tensile test were performed.

【0070】すなわち、上記の如くして得られた各押出
材から同一形状(外径15mm,長さ25mm)の第1
及び第2試験片を切り出した。そして、熱間圧縮試験に
おいては、各第1試験片を700℃に加熱して30分間
保持した上、軸線方向に70%の圧縮率で圧縮(第1試
験片の高さ(長さ)が25mmから7.5mmになるま
で圧縮)して、圧縮後の表面形態(700℃変形能)を
目視判定した。その結果は、表18〜表33に示す通り
であった。変形能の判定は試験片側面におけるクラック
の状態から目視により行い、表18〜表33において
は、クラックが全く生じなかったものを「○」で、小さ
なクラックが生じたものを「△」で、大きなクラックが
生じたものを「×」で示した。また、各第2試験片を使
用して、常法による引張試験を行ない、引張強さ(N/
mm2 )及び伸び(%)を測定した。
That is, from each extruded material obtained as described above, the first extruded material having the same shape (outer diameter 15 mm, length 25 mm)
And the 2nd test piece was cut out. Then, in the hot compression test, each first test piece was heated to 700 ° C. and held for 30 minutes, and then compressed at a compression rate of 70% in the axial direction (the height (length) of the first test piece was reduced). It was compressed from 25 mm to 7.5 mm), and the surface morphology (deformability at 700 ° C.) after compression was visually determined. The results were as shown in Tables 18 to 33. Judgment of the deformability was visually performed from the state of cracks on the side surface of the test piece, and in Tables 18 to 33, those in which no cracks occurred were indicated by “○”, and those in which small cracks occurred were indicated by “△”, Those having large cracks are indicated by "x". Further, a tensile test was carried out using each of the second test pieces by a conventional method, and the tensile strength (N /
mm 2 ) and elongation (%) were measured.

【0071】表18〜表33に示す熱間圧縮試験及び引
張試験の結果から、第1〜第12発明合金は、従来合金
No.13001〜No.13004及びNo.130
06と同等若しくはそれ以上の熱間加工性及び機械的性
質を有するものであり、工業的に好適に使用できるもの
であることが確認された。特に、第7発明合金について
は、JISに規定される伸銅品の中で強度に最も優れる
アルミニウム青銅である従来合金No.13005と同
等の機械的性質を有するものであり、高力性に優れるこ
とが理解される。
From the results of the hot compression test and the tensile test shown in Tables 18 to 33, the first to twelfth invention alloys are the same as those of the conventional alloy No. No. 13001-No. 13004 and No. 130
It has a hot workability and a mechanical property equal to or higher than that of 06, and it has been confirmed that it can be industrially suitably used. In particular, regarding the seventh invention alloy, the conventional alloy No. which is the aluminum bronze having the highest strength among the copper-brought products specified in JIS. It has the same mechanical properties as 13005, and is understood to be excellent in high strength.

【0072】また、第1〜第6発明合金及び第8〜第1
2発明合金の耐蝕性及び耐応力腐蝕割れ性を、従来合金
との比較において確認すべく、「ISO 6509」に
定める方法による脱亜鉛腐蝕試験及び「JIS H32
50」に規定される応力腐蝕割れ試験を行った。
The first to sixth invention alloys and the eighth to first alloys
2 In order to confirm the corrosion resistance and stress corrosion cracking resistance of the invention alloy in comparison with the conventional alloy, a dezincification corrosion test according to the method specified in "ISO 6509" and "JIS H32"
A stress corrosion cracking test specified in “50” was conducted.

【0073】すなわち、「ISO 6509」の脱亜鉛
腐蝕試験においては、各押出材から採取した試料を、暴
露試料表面が当該押出材の押出し方向に対して直角とな
るようにしてフェノール樹脂材に埋込み、試料表面をエ
メリー紙により1200番まで研磨した後、これを純水
中で超音波洗浄して乾燥した。かくして得られた被腐蝕
試験試料を、1.0%の塩化第2銅2水和塩(CuCl
2 ・2H2O)の水溶液(12.7g/l)中に浸漬
し、75℃の温度条件下で24時間保持した後、水溶液
中から取出して、その脱亜鉛腐蝕深さの最大値(最大脱
亜鉛腐蝕深さ)を測定した。その結果は、表18 〜表2
5及び表28〜表33に示す通りであった。
That is, in the dezincification corrosion test of “ISO 6509”, a sample collected from each extruded material was embedded in a phenol resin material such that the surface of the exposed sample was perpendicular to the extrusion direction of the extruded material. The surface of the sample was polished with emery paper to # 1200, and the surface was ultrasonically washed in pure water and dried. The corrosion test sample thus obtained was treated with 1.0% cupric chloride dihydrate (CuCl 2).
Immersed in 2 · 2H 2 O) aqueous solution (12.7 g / l), was held for 24 hours at a temperature of 75 ° C., and taken out from the aqueous solution, the maximum value of the dezincification corrosion depth (maximum Dezincification corrosion depth) was measured. The results are shown in Tables 18 and 2.
5 and Tables 28 to 33.

【0074】表18 〜表25及び表28〜表33に示す
脱亜鉛腐蝕試験の結果から理解されるように、第1〜第
4発明合金及び第8〜第12発明合金は、大量の鉛を含
有する従来合金No.13001〜No.13003に
比して優れた耐蝕性を有し、特に、被削性と共に耐蝕性
の向上を図った第5及び第6発明合金については、JI
Sに規定される伸銅品の中で耐蝕性に最も優れるネーバ
ル黄銅である従来合金No.13006に比しても極め
て優れた耐蝕性を有することが確認された。
As can be understood from the results of the dezincification corrosion tests shown in Tables 18 to 25 and Tables 28 to 33, the first to fourth invention alloys and the eighth to twelfth invention alloys produced a large amount of lead. Conventional alloy No. No. 13001-No. 5th and 6th invention alloys which have excellent corrosion resistance compared to 13003, and which improve corrosion resistance as well as machinability,
Conventional alloy No., which is a Naval brass with the highest corrosion resistance among the brass products specified in S. It was confirmed that it had extremely excellent corrosion resistance as compared with 130006.

【0075】また、「JIS H3250」の応力腐蝕
割れ試験においては、各押出材から長さ150mmの試
料を切り出し、各試料を、その中央部を半径40mmの
円弧状治具に当てた状態で、その一端部が他端部に対し
て45°となるように折曲させて、試験片とした。この
ようにして引張残留応力を付加された各試験片を脱脂,
乾燥処理した上、12.5%のアンモニア水(アンモニ
アを等量の純水で薄めたもの)を入れたデシケータ内の
アンモニア雰囲気(25℃)中に保持させた。すなわ
ち、各試験片をデシケータ内におけるアンモニア水面か
ら約80mm上方の位置に保持する。そして、試験片の
アンモニア雰囲気中における保持時間が、2時間,8時
間,24時間を経過した時点で、試験片をデシケータか
ら取り出して、10%の硫酸で洗浄した上、当該試験片
の割れの有無を拡大鏡(倍率:10倍)で視認した。そ
の結果は、表18 〜表25及び表28〜表33に示す通
りであった。これらの表においては、アンモニア雰囲気
中での保持時間が2時間である場合に明瞭な割れが認め
られたものについては「××」で、2時間経過時におい
ては割れが認められなかったが、8時間経過時において
は明瞭な割れが認められたものについては「×」で、8
時間経過時においては割れが認められなかったが、24
時間経過時においては明瞭な割れが認められたものにつ
いては「△」で、24時間経過時においても割れが全く
認められなかったものについては「○」で示した。
In the stress corrosion cracking test of "JIS H3250", a sample having a length of 150 mm was cut out from each extruded material, and each sample was placed on an arc-shaped jig having a radius of 40 mm. The test piece was bent so that one end thereof was at 45 ° to the other end. Each specimen to which the residual tensile stress was applied in this way was degreased,
After being dried, it was kept in an ammonia atmosphere (25 ° C.) in a desiccator containing 12.5% ammonia water (ammonia diluted with an equal amount of pure water). That is, each test piece is held at a position about 80 mm above the ammonia water level in the desiccator. When the holding time of the test piece in the ammonia atmosphere has passed for 2 hours, 8 hours, and 24 hours, the test piece was taken out of the desiccator, washed with 10% sulfuric acid, and the test piece was cracked. The presence or absence was visually recognized with a magnifying glass (magnification: 10 times). The results were as shown in Tables 18 to 25 and Tables 28 to 33. In these tables, those in which a clear crack was observed when the holding time in the ammonia atmosphere was 2 hours were "XX", and no crack was observed after 2 hours. When a clear crack was observed after 8 hours, it was marked with "X".
No crack was observed after the elapse of time.
A sample in which a clear crack was observed over time was indicated by "△", and a sample in which no crack was observed even after 24 hours was indicated by "○".

【0076】表18 〜表25及び表28〜表33に示す
応力腐蝕割れ試験の結果から理解されるように、被削性
と共に耐蝕性の向上を図った第5及び第6発明合金につ
いては勿論、耐蝕性については格別の配慮をしていない
第1〜第4発明合金及び第8〜第12発明合金について
も、亜鉛を含まないアルミニウム青銅である従来合金N
o.13005と同等の耐応力腐蝕割れ性を有し、JI
Sに規定される伸銅品の中で耐蝕性に最も優れるネーバ
ル黄銅である従来合金No.13006より優れた耐応
力腐蝕割れ性を有することが確認された。
As can be understood from the results of the stress corrosion cracking tests shown in Tables 18 to 25 and Tables 28 to 33, the fifth and sixth invention alloys of which the corrosion resistance is improved as well as the machinability are, of course, included. Also, the first to fourth invention alloys and the eighth to twelfth invention alloys, for which corrosion resistance is not particularly taken into consideration, also include the conventional alloy N which is aluminum bronze containing no zinc.
o. It has stress corrosion cracking resistance equivalent to 13005,
Conventional alloy No., which is a Naval brass with the highest corrosion resistance among the brass products specified in S. It was confirmed to have stress corrosion cracking resistance better than 13006.

【0077】また、第8〜第11発明合金の耐高温酸化
性を、従来合金との比較において確認すべく、次のよう
な酸化試験を行った。
Further, in order to confirm the high-temperature oxidation resistance of the eighth to eleventh invention alloys in comparison with the conventional alloys, the following oxidation tests were performed.

【0078】すなわち、各押出材No.8001〜N
o.8008、No.9001〜No.9006、N
o.10001〜No.10008、No.11001
〜No.11011及びNo.13001〜13006
から、外径が14mmとなるように表面研削され且つ長
さ30mmに切断された丸棒状の試験片を得て、各試験
片の重量(以下「酸化前重量」という)を測定した。し
かる後、各試験片を、磁性坩堝に収納した状態で、50
0℃に保持された電気炉内に放置した。そして、放置時
間が100時間を経過した時点で電気炉から取り出し
て、各試験片の重量(以下「酸化後重量」という)を測
定した上、酸化前重量と酸化後重量とから酸化増量を算
出した。ここに、酸化増量とは、試験片の表面積10c
2 当たりの酸化による増加重量(mg)の程度を示す
ものであり、「酸化増量(mg/10cm2 )=(酸化
後重量(mg)−酸化前重量(mg))×(10cm2
/試験片の表面積(cm2 )」の式から算出されたもの
である。すなわち、各試験片の酸化後重量は酸化前重量
より増加しているが、これは高温酸化によるものであ
る。つまり、高温に晒されると、酸素と銅,亜鉛,珪素
とが結合してCu2O,ZnO,SiO2 となり、その
酸素増分により重量が増加するのである。したがって、
この増加重量の程度(酸化増量)が小さい程、耐高温酸
化性に優れているということができ、表28〜表31及
び表33に示す結果となった。
That is, each extruded material No. 8001-N
o. 8008, no. 9001-No. 9006, N
o. 10001-No. 10008, no. 11001
-No. No. 11011 and No. 13001-13006
From this, a round bar-shaped test piece whose surface was ground to have an outer diameter of 14 mm and cut to a length of 30 mm was obtained, and the weight of each test piece (hereinafter referred to as “weight before oxidation”) was measured. Thereafter, each test piece was stored in a magnetic crucible,
It was left in an electric furnace maintained at 0 ° C. Then, when the standing time has passed 100 hours, the test piece is taken out of the electric furnace, the weight of each test piece (hereinafter referred to as “post-oxidation weight”) is measured, and the oxidation increase is calculated from the pre-oxidation weight and the post-oxidation weight. did. Here, the oxidation increase refers to the surface area 10c of the test piece.
It indicates the degree of weight increase (mg) due to oxidation per m 2 , and “weight increase by oxidation (mg / 10 cm 2 ) = (weight after oxidation (mg) −weight before oxidation (mg)) × (10 cm 2 )
/ Surface area of test piece (cm 2 ) ”. That is, the weight after oxidation of each test piece is greater than the weight before oxidation, which is due to high-temperature oxidation. That is, when exposed to a high temperature, oxygen and copper, zinc, and silicon combine to form Cu 2 O, ZnO, and SiO 2 , and the weight increases due to the oxygen increment. Therefore,
It can be said that the smaller the degree of the increase in weight (oxidation increase), the more excellent the high-temperature oxidation resistance is, and the results shown in Tables 28 to 31 and 33 are obtained.

【0079】表23〜表31及び表33に示す酸化試験
の結果から明らかなように、第8〜第11発明合金の酸
化増量は、JISに規定される伸銅品の中でも高度の耐
高温酸化性を有するアルミニウム青銅である従来合金N
o.13005と同等であり、他の従来合金よりは極め
て小さくなっている。したがって、第8〜第11発明合
金が、被削性に加えて、耐高温酸化性にも極めて優れた
ものであることが確認された。
As is evident from the results of the oxidation tests shown in Tables 23 to 31 and Table 33, the increase in oxidation of the eighth to eleventh invention alloys is the highest in high-temperature oxidation resistance among the copper products specified in JIS. Conventional alloy N which is aluminum bronze
o. 13005, which is much smaller than other conventional alloys. Therefore, it was confirmed that the eighth to eleventh invention alloys were extremely excellent in high-temperature oxidation resistance in addition to machinability.

【0080】[0080]

【表18】 [Table 18]

【0081】[0081]

【表19】 [Table 19]

【0082】[0082]

【表20】 [Table 20]

【0083】[0083]

【表21】 [Table 21]

【0084】[0084]

【表22】 [Table 22]

【0085】[0085]

【表23】 [Table 23]

【0086】[0086]

【表24】 [Table 24]

【0087】[0087]

【表25】 [Table 25]

【0088】[0088]

【表26】 [Table 26]

【0089】[0089]

【表27】 [Table 27]

【0090】[0090]

【表28】 [Table 28]

【0091】[0091]

【表29】 [Table 29]

【0092】[0092]

【表30】 [Table 30]

【0093】[0093]

【表31】 [Table 31]

【0094】[0094]

【表32】 [Table 32]

【0095】[0095]

【表33】 [Table 33]

【0096】また、第2の実施例として、表9〜表11
に示す組成の鋳塊(外径100mm,長さ200mmの
円柱形状のもの)を熱間(700℃)で外径35mmの
丸棒状に押出加工して、第7発明合金No.7001a
〜No.7029aを得た。また、第2の比較例とし
て、表17に示す組成の鋳塊(外径100mm,長さ2
00mmの円柱形状のもの)を熱間(700℃)で押出
加工して、外径35mmの丸棒状押出材(以下「従来合
金」という)No.13001a〜No.13006a
を得た。なお、No.7001a〜No.7029a及
びNo.13001a〜No.13006aは、夫々、
前記した銅合金No.7001〜No.7029及びN
o.13001〜No.13006と同一の合金組成を
なすものである。
As a second embodiment, Tables 9 to 11
Is extruded into a round bar having an outer diameter of 35 mm by hot (700 ° C.) the ingot (in a cylindrical shape having an outer diameter of 100 mm and a length of 200 mm) having the composition shown in FIG. 7001a
-No. 7029a was obtained. In addition, as a second comparative example, an ingot (outer diameter 100 mm, length 2
Extruded into a round bar-shaped extruded material (hereinafter referred to as “conventional alloy”) having an outer diameter of 35 mm. 13001a-No. 13006a
I got In addition, No. 7001a-No. 7029a and No. 13001a-No. 13006a, respectively,
The copper alloy No. described above. 7001-No. 7029 and N
o. No. 13001-No. It has the same alloy composition as 13006.

【0097】そして、第7発明合金No.7001a〜
No.7029aの耐摩耗性を、従来合金No.130
01a〜No.13006aとの比較において確認すべ
く、次のような摩耗試験を行った。
Then, in the seventh invention alloy no. 7001a-
No. The wear resistance of the conventional alloy no. 130
01a-No. The following abrasion test was performed in order to confirm by comparison with 13006a.

【0098】すなわち、上記の如くして得られた各押出
材から、その外周面を切削した上、穴明け加工及び切断
加工を施すことにより、外径32mm,厚さ(軸線方向
長さ)10mmのリング状試験片を得た上、各試験片を
回転自在な軸に嵌合固定して、これと軸線を平行とする
外径48mmのSUS304製ロールに50kgの荷重
を掛けて押圧接触させた状態に保持させる。しかる後、
SUS304製ロール及びこれに転接する試験片を、当
該試験片の外周面にマルチオイルを滴下しつつ、同一回
転数(209r.p.m.)で回転駆動させる。そし
て、当該試験片の回転数が10万回に達した時点で、S
US304製ロール及び試験片の回転を停止して、各試
験片の回転前後における重量差つまり摩耗減量(mg)
を測定した。かかる摩耗減量が少ない程、耐摩耗性に優
れた銅合金ということができるが、その結果は、表34
〜表36に示す通りであった。
That is, each extruded material obtained as described above was cut into an outer peripheral surface, and then punched and cut to obtain an outer diameter of 32 mm and a thickness (length in the axial direction) of 10 mm. After obtaining a ring-shaped test piece, each test piece was fitted and fixed on a rotatable shaft, and a 50 kg load was applied to a 48 mm-diameter SUS304 roll having an axis parallel to the test piece to make pressure contact. Keep in state. After a while
The SUS304 roll and the test piece rolling thereon are driven to rotate at the same rotation speed (209 rpm) while multi-oil is dropped on the outer peripheral surface of the test piece. When the number of rotations of the test piece reaches 100,000 times, S
The rotation of the US304 roll and the test piece was stopped, and the weight difference before and after the rotation of each test piece, that is, the wear loss (mg)
Was measured. The smaller the loss on wear, the better the copper alloy with excellent wear resistance. The results are shown in Table 34.
~ As shown in Table 36.

【0099】表34〜表36に示す摩耗試験の結果から
明らかなように、第7発明合金No.7001a〜N
o.7029aは、従来合金No.13001〜No.
13004及びNo.13006に比しては勿論、JI
Sに規定される伸銅品の中で耐磨耗性に最も優れるアル
ミニウム青銅である従来合金No.13005に比して
も、耐摩耗性が優れることが確認された。したがって、
上記した引張試験の結果をも考慮して総合的に判断した
場合、第7発明合金は、被削性に加えて、JISに規定
される伸銅品の中で耐磨耗性に最も優れるアルミニウム
青銅と同等以上の高力性,耐摩耗性を有するものである
ということができる。
As is clear from the results of the wear tests shown in Tables 34 and 36, the seventh invention alloy No. 7001a-N
o. 7029a is a conventional alloy No. No. 13001-No.
13004 and No. Of course, compared to 13006, JI
Conventional bronze alloy No. S, which is an aluminum bronze having the highest wear resistance among the copper products specified in S.S. It was confirmed that the abrasion resistance was superior to that of 13005. Therefore,
When judged comprehensively in consideration of the results of the tensile test described above, the seventh invention alloy has the most excellent abrasion resistance among the brass products specified in JIS in addition to the machinability. It can be said that it has the same high strength and wear resistance as bronze.

【0100】[0100]

【表34】 [Table 34]

【0101】[0101]

【表35】 [Table 35]

【0102】[0102]

【表36】 [Table 36]

【0103】[0103]

【発明の効果】以上の説明から容易に理解されるよう
に、第1〜第12発明合金は、被削性改善元素である鉛
の含有量が極く微量(0.02〜0.4重量%)である
にも拘わらず、極めて被削性に富むものであり、鉛を大
量に含有する従来の快削性銅合金の代替材料として安全
に使用できるものであり、切屑の再利用等を含めて環境
衛生上の問題が全くなく、鉛含有製品が規制されつつあ
る近時の傾向に充分対応することができる。
As will be easily understood from the above description, the first to twelfth invention alloys have a very small amount of lead (0.02 to 0.4 weight%) which is a machinability improving element. %), It is extremely machinable and can be used safely as a substitute for conventional free-cutting copper alloys containing large amounts of lead. There is no environmental health problem at all, and it is possible to sufficiently respond to recent trends in which lead-containing products are being regulated.

【0104】さらに、第5及び第6発明合金は、被削性
に加えて耐蝕性にも優れるものであり、耐蝕性を必要と
する切削加工品,鍛造品,鋳物製品等(例えば、給水
栓,給排水金具,バルブ,ステム,給湯配管部品,シャ
フト,熱交換器部品等)の構成材として好適に使用する
ことができるものであり、その実用的価値極めて大なる
ものである。
Further, the fifth and sixth invention alloys are excellent in corrosion resistance in addition to machinability, and are used for cutting products, forgings, castings, etc. requiring corrosion resistance (for example, water taps). , Water supply and drain fittings, valves, stems, hot water supply piping parts, shafts, heat exchanger parts, etc.), and their practical value is extremely large.

【0105】また、第7発明合金は、被削性に加えて高
力性,耐摩耗性にも優れるものであり、高力性,耐摩耗
性を必要とする切削加工品,鍛造品,鋳物製品等(例え
ば、軸受,ボルト,ナット,ブッシュ,歯車,ミシン部
品,油圧部品等)の構成材として好適に使用することが
できるものであり、その実用的価値極めて大なるもので
ある。
Further, the alloy of the seventh invention is excellent in high strength and wear resistance in addition to machinability, and is a cut product, a forged product or a cast product requiring high strength and wear resistance. It can be suitably used as a constituent material of products and the like (for example, bearings, bolts, nuts, bushes, gears, sewing machine parts, hydraulic parts, etc.), and its practical value is extremely large.

【0106】また、第8〜第11発明合金は、被削性に
加えて耐高温酸化性にも優れるものであり、耐高温酸化
性を必要とする切削加工品,鍛造品,鋳物製品等(例え
ば、石油・ガス温風ヒータ用ノズル,バーナヘッド,給
湯器用ガスノズル等)の構成材として好適に使用するこ
とができるものであり、その実用的価値極めて大なるも
のである。
Further, the eighth to eleventh invention alloys are excellent in high-temperature oxidation resistance in addition to machinability, and are used in cutting products, forgings, castings, etc. which require high-temperature oxidation resistance. For example, it can be suitably used as a constituent material of a nozzle for an oil / gas hot air heater, a burner head, a gas nozzle for a water heater, etc., and its practical value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】切屑の形態を示す斜視図である。FIG. 1 is a perspective view showing a form of a chip.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 銅69〜79重量%、珪素2.0〜4.
0重量%及び鉛0.02〜0.4重量%を含有し、且つ
残部が亜鉛からなる合金組成をなすことを特徴とする快
削性銅合金。
1. Copper 69-79% by weight, silicon 2.0-4.
A free-cutting copper alloy containing 0% by weight and 0.02 to 0.4% by weight of lead, and a balance of zinc.
【請求項2】 錫0.3〜3.5重量%、燐0.02〜
0.25重量%、アンチモン0.02〜0.15重量%
及び砒素0.02〜0.15重量%から選択された1種
以上の元素を更に含有することを特徴とする、請求項1
に記載する快削性銅合金。
2. Tin 0.3 to 3.5% by weight, phosphorus 0.02 to
0.25% by weight, 0.02-0.15% by weight of antimony
2. The composition according to claim 1, further comprising at least one element selected from the group consisting of arsenic and 0.02 to 0.15% by weight.
Free-cutting copper alloys described in 1.
【請求項3】 銅70〜80重量%と、珪素1.8〜
3.5重量%と、鉛0.02〜0.4重量%と、錫0.
3〜3.5重量%、アルミニウム1.0〜3.5重量%
及び燐0.02〜0.25重量%から選択された1種以
上の元素とを含有し、且つ残部が亜鉛からなる合金組成
をなすことを特徴とする快削性銅合金。
3. The method according to claim 1, wherein 70 to 80% by weight of copper and 1.8% to silicon
3.5% by weight, lead 0.02 to 0.4% by weight and tin 0.
3 to 3.5% by weight, aluminum 1.0 to 3.5% by weight
A free-cutting copper alloy containing an alloy composition containing at least one element selected from the group consisting of phosphorus and 0.02 to 0.25% by weight of phosphorus, with the balance being zinc.
【請求項4】 銅62〜78重量%と、珪素2.5〜
4.5重量%と、鉛0.02〜0.4重量%と、錫0.
3〜3.0重量%、アルミニウム0.2〜2.5重量%
及び燐0.02〜0.25重量%から選択された1種以
上の元素と、マンガン0.7〜3.5重量%及びニッケ
ル0.7〜3.5重量%から選択された1種以上の元素
とを含有し、且つ残部が亜鉛からなる合金組成をなすこ
とを特徴とする快削性銅合金。
4. 62 to 78% by weight of copper and 2.5 to 2.5% of silicon
4.5% by weight, 0.02 to 0.4% by weight of lead, and 0.1% of tin.
3-3.0 wt%, aluminum 0.2-2.5 wt%
And at least one element selected from 0.02 to 0.25% by weight of phosphorus and at least one element selected from 0.7 to 3.5% by weight of manganese and 0.7 to 3.5% by weight of nickel. A free-cutting copper alloy comprising an alloy composition containing the following elements and the balance being zinc.
【請求項5】 銅69〜79重量%、珪素2.0〜4.
0重量%、鉛0.02〜0.4重量%、アルミニウム
0.1〜1.5重量%及び燐0.02〜0.25重量%
を含有し、且つ残部が亜鉛からなる合金組成をなすこと
を特徴とする快削性銅合金。
5. Copper 69-79% by weight, silicon 2.0-4.
0% by weight, lead 0.02 to 0.4% by weight, aluminum 0.1 to 1.5% by weight and phosphorus 0.02 to 0.25% by weight
A free-cutting copper alloy, comprising: an alloy composition containing zinc and the balance being zinc.
【請求項6】 クロム0.02〜0.4重量%及びチタ
ン0.02〜0.4重量%から選択された1種以上の元
素を更に含有することを特徴とする、請求項5に記載す
る快削性銅合金。
6. The method according to claim 5, further comprising at least one element selected from 0.02 to 0.4% by weight of chromium and 0.02 to 0.4% by weight of titanium. Free-cutting copper alloy.
【請求項7】 ビスマス0.02〜0.4重量%、テル
ル0.02〜0.4重量%及びセレン0.02〜0.4
重量%から選択された1種の元素を更に含有することを
特徴とする、請求項1、請求項2、請求項3、請求項5
又は請求項6に記載する快削性銅合金。
7. Bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4%
6. The method according to claim 1, further comprising at least one element selected from the group consisting of:
Or the free-cutting copper alloy according to claim 6.
【請求項8】 400〜600℃で30分〜5時間熱処
理したことを特徴とする、請求項1、請求項2、請求項
3、請求項4、請求項5、請求項6又は請求項7に記載
する快削性銅合金。
8. A heat treatment at 400 to 600 ° C. for 30 minutes to 5 hours. Free-cutting copper alloys described in 1.
JP28792198A 1998-10-09 1998-10-09 Free-cutting copper alloy Expired - Lifetime JP3917304B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP28792198A JP3917304B2 (en) 1998-10-09 1998-10-09 Free-cutting copper alloy
DE69828818T DE69828818T2 (en) 1998-10-09 1998-11-16 AUTOMATED ALLOY ON COPPER BASE
DE69835912T DE69835912T2 (en) 1998-10-09 1998-11-16 Free-cutting alloy based on copper.
AU10540/99A AU738301B2 (en) 1998-10-09 1998-11-16 Free-cutting copper alloys
KR10-2000-7006464A KR100375426B1 (en) 1998-10-09 1998-11-16 Free-cutting copper alloy
DE69833582T DE69833582T2 (en) 1998-10-09 1998-11-16 Free-cutting alloy based on copper
EP04077561A EP1508626B1 (en) 1998-10-09 1998-11-16 Free-cutting copper alloys
EP04077560A EP1502964B1 (en) 1998-10-09 1998-11-16 Free-cutting copper alloys
EP98953070A EP1038981B1 (en) 1998-10-09 1998-11-16 Free-cutting copper alloy
PCT/JP1998/005156 WO2000022181A1 (en) 1998-10-09 1998-11-16 Free-cutting copper alloy
CA002303512A CA2303512C (en) 1998-10-09 1998-11-16 Free cutting copper alloy
TW088103870A TW577931B (en) 1998-10-09 1999-03-12 Free-cutting copper alloy
US09/983,029 US7056396B2 (en) 1998-10-09 2001-10-22 Copper/zinc alloys having low levels of lead and good machinability
US11/004,879 US20050092401A1 (en) 1998-10-09 2004-12-07 Copper/zinc alloys having low levels of lead and good machinability
US11/094,815 US8506730B2 (en) 1998-10-09 2005-03-31 Copper/zinc alloys having low levels of lead and good machinability
US13/829,813 US20130276938A1 (en) 1998-10-09 2013-03-14 Copper/zinc alloys having low levels of lead and good machinability
US14/463,172 US20150044089A1 (en) 1998-10-09 2014-08-19 Copper/zinc alloys having low levels of lead and good machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28792198A JP3917304B2 (en) 1998-10-09 1998-10-09 Free-cutting copper alloy

Publications (2)

Publication Number Publication Date
JP2000119774A true JP2000119774A (en) 2000-04-25
JP3917304B2 JP3917304B2 (en) 2007-05-23

Family

ID=17723462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28792198A Expired - Lifetime JP3917304B2 (en) 1998-10-09 1998-10-09 Free-cutting copper alloy

Country Status (8)

Country Link
EP (3) EP1038981B1 (en)
JP (1) JP3917304B2 (en)
KR (1) KR100375426B1 (en)
AU (1) AU738301B2 (en)
CA (1) CA2303512C (en)
DE (3) DE69833582T2 (en)
TW (1) TW577931B (en)
WO (1) WO2000022181A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069551A (en) * 2000-09-04 2002-03-08 Sumitomo Light Metal Ind Ltd Free cutting copper alloy
US6942742B2 (en) 2003-02-13 2005-09-13 Dowa Mining Co., Ltd. Copper-based alloy excellent in dezincing resistance
WO2008093974A1 (en) * 2007-01-30 2008-08-07 Poongsan Corporation Free-cutting copper alloy
KR100864910B1 (en) * 2007-01-30 2008-10-22 주식회사 풍산 A free-cutting copper alloy
JP2009509031A (en) * 2005-09-22 2009-03-05 三菱伸銅株式会社 Free-cutting copper alloy with ultra-low lead content
JP2012072419A (en) * 2010-09-27 2012-04-12 Lixil Corp Copper-based alloy for forging and cutting, and water equipment
WO2013065830A1 (en) * 2011-11-04 2013-05-10 三菱伸銅株式会社 Hot-forged copper alloy article
JP2013104071A (en) * 2011-11-11 2013-05-30 Mitsubishi Shindoh Co Ltd Raw material for form rolling made of copper alloy, and form-rolled product
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
JP2013194277A (en) * 2012-03-19 2013-09-30 Lixil Corp Copper-based alloy for cutting and device for water service using the alloy
JP2015175008A (en) * 2014-03-13 2015-10-05 株式会社Lixil Lead-less brass material and implement for aqueduct
WO2018034280A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
JP6448166B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
JP6448168B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
JP6448167B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
JP2020158809A (en) * 2019-03-25 2020-10-01 三菱マテリアル株式会社 Copper alloy round bar material
WO2020261604A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261636A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
WO2020261666A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
KR20220059528A (en) 2019-12-11 2022-05-10 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132055C2 (en) * 2001-07-05 2003-12-11 Diehl Metall Stiftung & Co Kg Dezincification-resistant copper-zinc alloy and process for its production
CZ20032094A3 (en) * 2003-08-01 2005-04-13 Kovohutě Čelákovice A. S. Architectural bronze
PT1812612E (en) * 2004-10-11 2010-06-28 Diehl Metall Stiftung & Co Kg Copper/zinc/silicon alloy, use and production thereof
JP5326114B2 (en) 2009-04-24 2013-10-30 サンエツ金属株式会社 High strength copper alloy
CA2826185A1 (en) 2011-02-04 2012-08-09 Baoshida Swissmetal Ag Cu-ni-zn-mn alloy
CN110923500A (en) 2012-10-31 2020-03-27 株式会社开滋 Brass alloy, machined part and water contact part
KR102314457B1 (en) * 2014-03-31 2021-10-19 가부시키가이샤 구리모토 뎃코쇼 Low-lead brass alloy for plumbing member
TWI598452B (en) 2016-01-21 2017-09-11 慶堂工業股份有限公司 Unleaded, free-cutting brass alloys with excellent castability, method for producing the same, and application thereof
KR101969010B1 (en) 2018-12-19 2019-04-15 주식회사 풍산 Lead free cutting copper alloy with no lead and bismuth
DE102020127317A1 (en) 2020-10-16 2022-04-21 Diehl Metall Stiftung & Co. Kg Lead-free copper alloy and use of lead-free copper alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696040A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material for casting
DE3427740A1 (en) * 1984-07-27 1986-02-06 Diehl GmbH & Co, 8500 Nürnberg BRASS ALLOY, MANUFACTURING METHOD AND USE
JPS61133357A (en) * 1984-12-03 1986-06-20 Showa Alum Ind Kk Cu base alloy for bearing superior in workability and seizure resistance
JPS62297429A (en) * 1986-06-17 1987-12-24 Nippon Mining Co Ltd Copper alloy having excellent corrosion resistance
US5288458A (en) * 1991-03-01 1994-02-22 Olin Corporation Machinable copper alloys having reduced lead content
DE4339426C2 (en) * 1993-11-18 1999-07-01 Diehl Stiftung & Co Copper-zinc alloy
KR20000064324A (en) * 1996-09-05 2000-11-06 후루까와 준노스께 Copper alloy for electronic device
JP3459520B2 (en) * 1996-09-05 2003-10-20 古河電気工業株式会社 Copper alloy for lead frame

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
JP2002069551A (en) * 2000-09-04 2002-03-08 Sumitomo Light Metal Ind Ltd Free cutting copper alloy
US6942742B2 (en) 2003-02-13 2005-09-13 Dowa Mining Co., Ltd. Copper-based alloy excellent in dezincing resistance
US7883589B2 (en) 2005-09-22 2011-02-08 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy containing very low lead
JP2009509031A (en) * 2005-09-22 2009-03-05 三菱伸銅株式会社 Free-cutting copper alloy with ultra-low lead content
KR100864910B1 (en) * 2007-01-30 2008-10-22 주식회사 풍산 A free-cutting copper alloy
WO2008093974A1 (en) * 2007-01-30 2008-08-07 Poongsan Corporation Free-cutting copper alloy
JP2012072419A (en) * 2010-09-27 2012-04-12 Lixil Corp Copper-based alloy for forging and cutting, and water equipment
WO2013065830A1 (en) * 2011-11-04 2013-05-10 三菱伸銅株式会社 Hot-forged copper alloy article
JP5412600B2 (en) * 2011-11-04 2014-02-12 三菱伸銅株式会社 Copper alloy hot forging
CN103917674A (en) * 2011-11-04 2014-07-09 三菱伸铜株式会社 Hot-forged copper alloy article
US9017491B2 (en) 2011-11-04 2015-04-28 Mitsubishi Shindoh Co., Ltd. Hot-forged copper alloy part
JP2013104071A (en) * 2011-11-11 2013-05-30 Mitsubishi Shindoh Co Ltd Raw material for form rolling made of copper alloy, and form-rolled product
JP2013194277A (en) * 2012-03-19 2013-09-30 Lixil Corp Copper-based alloy for cutting and device for water service using the alloy
JP2015175008A (en) * 2014-03-13 2015-10-05 株式会社Lixil Lead-less brass material and implement for aqueduct
TWI657155B (en) * 2016-08-15 2019-04-21 日商三菱伸銅股份有限公司 Free cutting copper alloy and method for manufacturing free cutting copper alloy
CN110337499B (en) * 2016-08-15 2020-06-23 三菱伸铜株式会社 High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
WO2018034282A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
WO2018034283A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
WO2018034284A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy, and method for producing free-cutting copper alloy
JPWO2018034283A1 (en) * 2016-08-15 2018-08-16 三菱伸銅株式会社 Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
JPWO2018034280A1 (en) * 2016-08-15 2018-08-16 三菱伸銅株式会社 Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material
JPWO2018034282A1 (en) * 2016-08-15 2018-08-16 三菱伸銅株式会社 Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
JPWO2018034281A1 (en) * 2016-08-15 2018-08-23 三菱伸銅株式会社 Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material
TWI635191B (en) * 2016-08-15 2018-09-11 日商三菱伸銅股份有限公司 Free cutting copper alloy and method for manufacturing the same (1)
US11434548B2 (en) 2016-08-15 2022-09-06 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11421301B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
US11421302B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2019035226A1 (en) * 2016-08-15 2019-02-21 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
US11313013B2 (en) 2016-08-15 2022-04-26 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2019035225A1 (en) 2016-08-15 2019-02-21 三菱伸銅株式会社 High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
KR20190018538A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Preparation method of free-cutting copper alloy and free-cutting copper alloy
KR20190018534A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Manufacturing method of free-cutting copper alloy and free-cutting copper alloy
KR20190018537A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Manufacturing method of free-cutting copper alloy castings and free-cutting cast copper alloy castings
KR20190018539A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Manufacturing method of free-cutting cast copper alloy and free-cutting cast copper alloy casting
KR20190018540A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Preparation method of free-cutting copper alloy and free-cutting copper alloy
WO2018034280A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
KR20190095508A (en) 2016-08-15 2019-08-14 미쓰비시 신도 가부시키가이샤 Free cutting copper alloy and manufacturing method of free cutting copper alloy
KR20190095520A (en) 2016-08-15 2019-08-14 미쓰비시 신도 가부시키가이샤 Free cutting copper alloy and manufacturing method of free cutting copper alloy
KR20190100418A (en) 2016-08-15 2019-08-28 미쓰비시 신도 가부시키가이샤 High strength free cutting copper alloy, and manufacturing method of high strength free cutting copper alloy
CN110337499A (en) * 2016-08-15 2019-10-15 三菱伸铜株式会社 The manufacturing method of high-strength simple-cutting copper alloy and high-strength simple-cutting copper alloy
US10538827B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
US10538828B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
US10557185B2 (en) 2016-08-15 2020-02-11 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
WO2018034281A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy, and method for producing free-cutting copper alloy
EP3656883A4 (en) * 2016-08-15 2020-07-29 Mitsubishi Shindoh Co., Ltd. High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
US11136648B2 (en) 2016-08-15 2021-10-05 Mitsubishi Materials Corporation Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11131009B2 (en) 2016-08-15 2021-09-28 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
JP6448166B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
JP6448168B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
JP6448167B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
WO2019035224A1 (en) * 2017-08-15 2019-02-21 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
JP2020158809A (en) * 2019-03-25 2020-10-01 三菱マテリアル株式会社 Copper alloy round bar material
JP7180488B2 (en) 2019-03-25 2022-11-30 三菱マテリアル株式会社 Copper alloy round bar
KR20210152562A (en) 2019-06-25 2021-12-15 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
WO2020261603A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
KR20210083364A (en) 2019-06-25 2021-07-06 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
KR20210142165A (en) 2019-06-25 2021-11-24 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
KR20210148347A (en) 2019-06-25 2021-12-07 미쓰비시 마테리알 가부시키가이샤 Free-machining copper alloy castings, and methods of manufacturing free-machining copper alloy castings
WO2020261611A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
KR20210080590A (en) 2019-06-25 2021-06-30 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
KR20230174286A (en) 2019-06-25 2023-12-27 미쓰비시 마테리알 가부시키가이샤 Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
WO2021117528A1 (en) 2019-06-25 2021-06-17 三菱マテリアル株式会社 Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
WO2020261604A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261666A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
US11479834B2 (en) 2019-06-25 2022-10-25 Mitsubishi Materials Corporation Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US11512370B2 (en) 2019-06-25 2022-11-29 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261636A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
US11788173B2 (en) 2019-06-25 2023-10-17 Mitsubishi Materials Corporation Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
US11814712B2 (en) 2019-06-25 2023-11-14 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
KR20220059528A (en) 2019-12-11 2022-05-10 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy

Also Published As

Publication number Publication date
KR100375426B1 (en) 2003-03-10
EP1502964A1 (en) 2005-02-02
DE69828818D1 (en) 2005-03-03
DE69833582D1 (en) 2006-04-27
CA2303512A1 (en) 2000-04-20
EP1508626A1 (en) 2005-02-23
DE69835912T2 (en) 2007-03-08
EP1508626B1 (en) 2006-09-13
DE69835912D1 (en) 2006-10-26
TW577931B (en) 2004-03-01
DE69833582T2 (en) 2007-01-18
WO2000022181A1 (en) 2000-04-20
DE69828818T2 (en) 2006-01-05
KR20010033101A (en) 2001-04-25
AU1054099A (en) 2000-05-01
EP1038981A4 (en) 2003-02-19
EP1502964B1 (en) 2006-03-01
JP3917304B2 (en) 2007-05-23
EP1038981A1 (en) 2000-09-27
EP1038981B1 (en) 2005-01-26
AU738301B2 (en) 2001-09-13
CA2303512C (en) 2006-07-11

Similar Documents

Publication Publication Date Title
JP3734372B2 (en) Lead-free free-cutting copper alloy
JP3917304B2 (en) Free-cutting copper alloy
US6413330B1 (en) Lead-free free-cutting copper alloys
JP4951623B2 (en) Free-cutting copper alloy with ultra-low lead content
JP3335002B2 (en) Lead-free free-cutting brass alloy with excellent hot workability
US20150044089A1 (en) Copper/zinc alloys having low levels of lead and good machinability
US7056396B2 (en) Copper/zinc alloys having low levels of lead and good machinability
TWI700380B (en) Free-cutting leadless copper alloy with no lead and bismuth
JP3693994B2 (en) Lead reduced free-cutting copper alloy
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof

Legal Events

Date Code Title Description
A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term