JPH03281595A - Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst - Google Patents

Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst

Info

Publication number
JPH03281595A
JPH03281595A JP8182390A JP8182390A JPH03281595A JP H03281595 A JPH03281595 A JP H03281595A JP 8182390 A JP8182390 A JP 8182390A JP 8182390 A JP8182390 A JP 8182390A JP H03281595 A JPH03281595 A JP H03281595A
Authority
JP
Japan
Prior art keywords
catalyst
group
periodic table
hydrodesulfurization
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8182390A
Other languages
Japanese (ja)
Inventor
Mitsugi Yumoto
湯本 貢
Ichiji Usui
薄井 一司
Shigenori Nakashizu
茂徳 中静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP8182390A priority Critical patent/JPH03281595A/en
Publication of JPH03281595A publication Critical patent/JPH03281595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject composition having remarkably prolonged catalytic life by supporting a hydrogenation active component of a metal of group VIB and a metal of group VIII on an alumina(-containing) carrier and supporting a hydrogenation-active component of a noble metal element of group VIII on the supported layer. CONSTITUTION:The objective composition is produced by supporting (A) 2-30wt.% (based on catalyst) of one or more kinds of metals of group VIB in the form of oxides and (B) 0.5-20wt.% of one or more kinds of metals of group VIII in the form of oxides on an alumina(-containing) carrier, drying and calcining the product and supporting (C) 0.05-8.0wt.% of one or more kinds of noble metal elements of group VIII in the form of metal. The use of the catalyst enables industrially profitable hydrodesulfurization process in high desulfurization ratio and the effect to prolong the catalytic life is especially remarkable in the case of using a petroleum distillate raw material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭化水素油残渣油及び炭化水素油残渣油の水
素化脱硫処理に使用される触媒組成物、特に触媒寿命が
大幅に改善された上記触媒組成物と、その製法と、それ
を用いた炭化水素油の水素化脱硫法に関する。更に詳し
くは、アルミナ等の担体に先ずモリブデン又はニッケル
等の水素化活性成分を担持させ、焼成後、更に貴金属を
担持させてなる触媒寿命の長い炭化水素油用水素化脱硫
触媒組成物、及びその製法、並びにそれを使用する水素
化脱硫法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a catalyst composition used for hydrodesulfurization treatment of hydrocarbon oil residues and hydrocarbon oil residues, and in particular, a catalyst composition that has a significantly improved catalyst life. The present invention relates to the above catalyst composition, a method for producing the same, and a hydrodesulfurization method for hydrocarbon oil using the same. More specifically, a hydrodesulfurization catalyst composition for hydrocarbon oil with a long catalyst life, which is made by first supporting a hydrogenation active component such as molybdenum or nickel on a carrier such as alumina, and further supporting a noble metal after calcination, and its composition. This article relates to a manufacturing method and a hydrodesulfurization method using the same.

〔従来の技術〕[Conventional technology]

炭化水素油は一般に硫黄化合物を含み、これらの炭化水
素油を燃料として使用した場合には、該硫黄化合物中の
硫黄が硫黄酸化物に転化し、大気中に排出される。
Hydrocarbon oils generally contain sulfur compounds, and when these hydrocarbon oils are used as fuel, the sulfur in the sulfur compounds is converted to sulfur oxides and discharged into the atmosphere.

従って、これらの炭化水素油を燃焼させた場合の硫黄酸
化物による大気汚染をできるだけ抑制するために、該炭
化水素油の硫黄含有量を予め減少させておく必要がある
Therefore, in order to suppress air pollution caused by sulfur oxides as much as possible when these hydrocarbon oils are burned, it is necessary to reduce the sulfur content of the hydrocarbon oils in advance.

この硫黄含有量の減少は、炭化水素油の水素化脱硫処理
によって達成することができる。
This reduction in sulfur content can be achieved by hydrodesulfurization treatment of hydrocarbon oils.

そして、酸性雨や窒素酸化物等の環境問題が地球規模で
取り上げられている昨今、現状の技術レベル以上の硫黄
分の除去が望まれている。
Nowadays, environmental problems such as acid rain and nitrogen oxides are being taken up on a global scale, and there is a desire to remove sulfur at a level higher than the current level of technology.

炭化水素油中の硫黄分をより低下させるためには、上記
の炭化水素油の水素化脱硫処理の運転条件、例えばL 
HS V、温度、圧力を苛酷にすることで、ある程度達
成することができる。
In order to further reduce the sulfur content in the hydrocarbon oil, the operating conditions for the hydrodesulfurization treatment of the hydrocarbon oil, such as L
This can be achieved to some extent by making the HSV, temperature, and pressure more severe.

しかし、このような方法では、触媒上に炭素質を析出さ
せ、触媒の活性を低下させる。特に、炭化水素油が軽質
留分の場合、色相安定性や貯蔵安定性等の性状面の悪影
響もある。
However, in such a method, carbonaceous matter is deposited on the catalyst, reducing the activity of the catalyst. In particular, when the hydrocarbon oil is a light distillate, there may be adverse effects on properties such as hue stability and storage stability.

このように、運転条件をコントロールすることによって
深度な脱硫を得るには、限度がある。
Thus, there is a limit to how deep desulfurization can be achieved by controlling operating conditions.

従って、最も良い方策は、格段に優れた脱硫活性を有す
る触媒を開発することである。
Therefore, the best strategy is to develop catalysts with significantly better desulfurization activity.

従来、水素化脱硫触媒を製造する一般的な方法としては
、周期律表第6B族金属塩及び第8族金属塩の水溶液を
担体に含浸させた後、乾燥及び焼成するいわゆる「含浸
法」、アルミナあるいはアルミナゲルを分散させた水溶
液中に周期律表第6B族金属塩の水溶液及び第8族金属
塩の水溶液を加えて金属化合物を沈澱させる「共沈法コ
、アルミナあるいはアルミナゲル、周期律表第6B族金
属塩の水溶液及び第8族金属塩の水溶液の混合ペースト
を混練しながら加熱し、水分除去を行う「混練法1があ
る(「触媒調製化学」9尾崎草編講談社サイエンティッ
ク、250〜252頁参照)現在は、以上のような方法
で製造された触媒が、炭化水素油用水素化脱硫触媒とし
て広く使用されている。
Conventionally, common methods for producing hydrodesulfurization catalysts include the so-called "impregnation method" in which a carrier is impregnated with an aqueous solution of a Group 6B metal salt and a Group 8 metal salt of the periodic table, and then dried and calcined. Co-precipitation method involves adding an aqueous solution of a group 6B metal salt of the periodic table and an aqueous solution of a group 8 metal salt to an aqueous solution in which alumina or alumina gel is dispersed. There is a ``kneading method 1'' in which water is removed by heating a mixed paste of an aqueous solution of a Group 6B metal salt and an aqueous solution of a Group 8 metal salt in Table 6. (See pages 1 to 252) Currently, catalysts produced by the method described above are widely used as hydrodesulfurization catalysts for hydrocarbon oils.

ところで、従来使用さている触媒の脱硫活性レベルは、
例えば軽油の水素化脱硫の場合、硫黄含有率1. 4重
量%の軽油を液空間速度5.OHr温度360℃、圧力
30Kg/cm”の条件で水素°化脱硫を行ったとき、
生成油の硫黄含有率は0゜13重量%程度にまで低下す
る。
By the way, the desulfurization activity level of conventionally used catalysts is
For example, in the case of hydrodesulfurization of light oil, the sulfur content is 1. 4% by weight of light oil at a liquid hourly velocity of 5. When hydrodesulfurization was performed under the conditions of OHr temperature 360℃ and pressure 30Kg/cm,
The sulfur content of the produced oil is reduced to about 0.13% by weight.

また、減圧軽油(VCO)の水素化脱硫の場合は、硫黄
含有率2.7重量%のVCOを液空間速度1. 4Hr
−’、湿温度00°C1圧力40Kg/cm2の条件で
水素化脱硫を行ったとき、生成油の硫黄含有率は0.1
3重量%程度にまで低下する。
In the case of hydrodesulfurization of vacuum gas oil (VCO), VCO with a sulfur content of 2.7% by weight is used at a liquid hourly space velocity of 1. 4 hours
-', when hydrodesulfurization is carried out under the conditions of humidity temperature 00°C and pressure 40Kg/cm2, the sulfur content of the produced oil is 0.1
The amount decreases to about 3% by weight.

更に、常圧残油の水素化脱硫の場合は、硫黄含有率3.
3重量%の常圧残油を液空間速度0. 4Hr−’、湿
温度10°C1圧力110Kg/cm20条件で水素化
脱硫を行ったとき、生成油の硫黄さ有率は0.3重量%
程度ムこまで低下する。
Furthermore, in the case of hydrodesulfurization of atmospheric residual oil, the sulfur content is 3.
3% by weight of atmospheric residual oil at a liquid hourly space velocity of 0. When hydrodesulfurization was carried out under the conditions of 4Hr-', humidity temperature 10°C, pressure 110Kg/cm20, the sulfur content of the produced oil was 0.3% by weight.
It decreases to a certain degree.

[発明が解決しようとする課題] しかし、従来使用されている前述のような触媒が有して
いる大きな問題は、前述のような脱硫活性が一定に維持
され難く、脱硫反応の経過と共に脱硫活性が象、激に低
下してしまい、その寿命が極めて短いことである。
[Problems to be Solved by the Invention] However, a major problem with the conventionally used catalysts as described above is that the desulfurization activity is difficult to maintain at a constant level, and as the desulfurization reaction progresses, the desulfurization activity decreases. However, their lifespan is extremely short.

言うまでもなく、工業的には、これらの触媒は少なくと
も1年以上、長い場合は、数年に亘って連続使用される
場合が殆どである。
Needless to say, industrially, these catalysts are used continuously for at least one year, and in most cases, for several years.

従って、工業上使用される触媒においては、上記の初期
活性レベルも重要ではあるが、同時に、この活性を1〜
数年間安定に保持されることが更に重要である。
Therefore, while the above initial activity level is important for industrially used catalysts, it is also important to
It is even more important that it remains stable for several years.

そこで、本発明が解決しようとする課題は、従来の触媒
の有する脱硫活性を損なうことなく、更に長寿命の触媒
を、また反応条件を苛酷にしても触媒寿命を一定のレベ
ルに維持することのできる触媒組成物と、その製造方法
と、それを使用する炭化水素油の水素化脱硫方法とを開
発することにある。
Therefore, the problem to be solved by the present invention is to create a catalyst with a longer lifespan without impairing the desulfurization activity of conventional catalysts, and to maintain the catalyst life at a certain level even under harsh reaction conditions. The purpose of the present invention is to develop a catalyst composition that can be used, a method for producing the same, and a method for hydrodesulfurization of hydrocarbon oil using the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、上記課題を解決するために、鋭意研究を
重ねた結果、アルミナ担体に通常この種の工業的な水素
化脱硫処理に用いられている周期律表第6B族の金属及
び周期律表第8族の鉄族金属の水素化機能を持った金属
を担持させ、次にこの物質をベースに更に周期律表第8
族の貴金属を担持させるという工程を経ることにより、
水素化活性に改良を加えることができ、しかもこの水素
化活性の改良が触媒寿命の大幅な改善を可能にするとい
うことを見出し、本発明を完成するに至った。
In order to solve the above problems, the present inventors have conducted intensive research and found that metals from group 6B of the periodic table, which are normally used in this type of industrial hydrodesulfurization treatment, and periodic A metal with a hydrogenation function of iron group metal of Group 8 of the Periodic Table is supported, and then based on this material, further hydrogenation of iron group metal of Group 8 of the Periodic Table of
By going through the process of supporting precious metals of the group,
The present invention was completed based on the discovery that hydrogenation activity can be improved and that this improvement in hydrogenation activity makes it possible to significantly improve catalyst life.

すなわち、本発明は、 (1)アルミナ又はアルミナ含有物担体に、(A)周期
律表第6B族金属の中から選ばれる少なくとも1種、及
び (B)周期律表第8族の鉄族金属の中から選ばれる少な
(とも1種 の水素化活性成分を担持し、更にその上に、(C)周期
律表第8族の貴金属元素の中から選ばれる少なくとも1
種 の水素化活性成分を担持してなり、 上記の周期律表第6B族金属の中から選ばれる少なくと
も1種の金属量が酸化物として触媒に対して2〜30重
量%、上記の周期律表第8族の鉄族金属の中から選ばれ
る少なくとも1種の金属量が酸化物として触媒に対して
0.5〜20重量%、上記の周期律表第8族の貴金属元
素の中から選ばれる少なくとも1種の金属量が金属とし
て触媒に対して0.05〜8.0重量%であることを特
徴とする炭化水素油用水素化脱硫触媒組成物、及び(2
)アルミナ又はアルミナ含有物担体に、周期律表第6B
族金属の中から選ばれる少なくとも1種、及び周期律表
第8族の鉄族金属の中から選ばれる少なくとも1種を担
持させ、乾燥、焼成後に、周期律表第8族の貴金属元素
の中から選ばれる少なくとも1種を担持させることを特
徴とする炭化水素油用水素化脱硫触媒組成物の製法、並
びに(3)上記(1)に記載の触媒を用いて、炭化水素
油を水素化脱硫することを特徴とする炭化水素油の水素
化脱硫法 を要旨とする。
That is, the present invention provides: (1) an alumina or alumina-containing material carrier containing (A) at least one metal selected from group 6B metals of the periodic table; and (B) an iron group metal of group 8 of the periodic table. (C) at least one selected from the group 8 noble metal elements of the periodic table;
2 to 30% by weight of at least one metal selected from the group 6B metals of the periodic table as an oxide based on the catalyst; The amount of at least one metal selected from the iron group metals of group 8 in the table is 0.5 to 20% by weight of the catalyst as an oxide, and the amount of at least one metal selected from the above noble metal elements of group 8 of the periodic table is 0.5 to 20% by weight based on the catalyst. A hydrodesulfurization catalyst composition for hydrocarbon oil, characterized in that the amount of at least one metal contained in the catalyst is 0.05 to 8.0% by weight based on the catalyst, and (2)
) alumina or alumina-containing material carrier, periodic table 6B
At least one metal selected from group metals and at least one selected from iron group metals from group 8 of the periodic table are supported, and after drying and firing, a noble metal element from group 8 of the periodic table is supported. A method for producing a hydrodesulfurization catalyst composition for hydrocarbon oil, characterized in that it supports at least one selected from the following: and (3) hydrodesulfurization of hydrocarbon oil using the catalyst described in (1) above. The gist of this paper is a method for hydrodesulfurization of hydrocarbon oil, which is characterized by the following.

本発明の触媒組成物は、以下に述べる本発明の製造方法
により得ることができる。
The catalyst composition of the present invention can be obtained by the production method of the present invention described below.

本発明の製造方法における第1工程は、アルミナ又はア
ルミナ含有物担体に周期律表第6B族金属の中から選ば
れる少なくとも1種、及び周期律表第8族の鉄族金属の
中から選ばれる少なくとも1種の水素化活性成分を担持
させる工程である。
In the first step in the production method of the present invention, at least one metal selected from group 6B metals of the periodic table and iron group metals of group 8 of the periodic table is added to the alumina or alumina-containing carrier. This is a step of supporting at least one hydrogenation active component.

本発明において用いることのできるアルミナは、T−ア
ルミナ、χ−アルミナ、又はη−アルミナのいずれか1
種又はこれらの混合体が好適である。
The alumina that can be used in the present invention is any one of T-alumina, χ-alumina, and η-alumina.
Species or mixtures thereof are preferred.

また、アルミナ含有物は、アルミナの他に担体物質を配
合することにより得られる組成物で、例えば、シリカ、
マグネシア、酸化カルシウム、ジルコニア、チタニア、
ボリア等の1種又は2種以上をアルミナに配合すること
ができる。
Furthermore, an alumina-containing material is a composition obtained by blending a carrier material in addition to alumina, such as silica,
magnesia, calcium oxide, zirconia, titania,
One or more types of boria etc. can be blended with alumina.

このアルミナ担体は、例えば、硫酸アルミニウム、硝酸
アルミニウム等のアルミニウム塩をアンモニアのような
塩基で中和し、あるいはアルミン酸ナトリウムのような
アルミン酸塩を酸性アルミニウム塩又は酸で中和し、生
成したゲルを洗浄、加熱、成型、乾燥、焼成等の通常の
処理法で処理で調製することができる。
This alumina support is produced, for example, by neutralizing an aluminum salt such as aluminum sulfate or aluminum nitrate with a base such as ammonia, or by neutralizing an aluminate such as sodium aluminate with an acidic aluminum salt or an acid. The gel can be prepared by processing using conventional processing methods such as washing, heating, molding, drying, baking, etc.

アルミナ担体の調製法の一態様は、次の通りである。One embodiment of the method for preparing the alumina carrier is as follows.

酸性アルミニウム水溶液(好ましくは濃度約0゜3〜2
モルの範囲)及びアルミン酸アルカリ溶液にアルカリ溶
液等を添加し、pH約6.0〜11゜0、好ましくは約
8.0〜10.5の範囲でヒドロゲル又はヒドロシルを
生成させるか、あるいはアンモニア水、硝酸又は酢酸を
適宜添加し、pHを調整しながら、この懸濁液を約50
〜90°Cに加熱して少な(とも2時間保持する。次い
で、沈澱を日別し、酢酸アンモニウム及び水で洗浄して
不純物イオンを除去する。その後、乾燥及び焼成等の通
常の方法を採用して担体に仕上げる。
Acidic aluminum aqueous solution (preferably a concentration of about 0°3-2
molar range) and alkali aluminate solution to form a hydrogel or hydrosil at a pH of about 6.0 to 11°0, preferably about 8.0 to 10.5, or ammonia While adjusting the pH by adding water, nitric acid or acetic acid as appropriate, this suspension was heated to about 50%
Heat to ~90°C and hold for 2 hours. Then, the precipitate is separated and washed with ammonium acetate and water to remove impurity ions. Then, usual methods such as drying and calcination are adopted. and finish it into a carrier.

乾燥は、酸素の存在下又は非存在下において、常温〜約
200°Cに加熱することにより行い、焼成は、酸素の
存在下において、約200〜800°Cに加熱すること
により行う。
Drying is carried out by heating from room temperature to about 200°C in the presence or absence of oxygen, and baking is carried out by heating to about 200 to 800°C in the presence of oxygen.

このようにして得られる担体に第1工程で担持させる周
期律表第6B族の中から選ばれる少なくとも1種の金属
は、好ましくはクロム、モリブデン2タングステンであ
る。また、周期律表第8族の鉄族金属の中から選ばれる
少なくとも1種の金属は、好ましくはコバルト、ニッケ
ルである。特に好ましくは、モリブデン−コバルト、モ
リブデン−ニッケル、モリブデン−コバルト−ニッケル
At least one metal selected from Group 6B of the periodic table to be supported on the carrier thus obtained in the first step is preferably chromium or molybdenum ditungsten. Further, at least one metal selected from iron group metals of Group 8 of the periodic table is preferably cobalt or nickel. Particularly preferred are molybdenum-cobalt, molybdenum-nickel, and molybdenum-cobalt-nickel.

タングステン−ニッケル等の組合せである。Combinations such as tungsten and nickel.

これら水素化活性金属成分は、酸化物又は硫化物として
担持させることが好適である。
These hydrogenation active metal components are preferably supported as oxides or sulfides.

上記のアルミナ又はアルミナ含有物担体に上記の水素化
活性金属成分を担持させる方法も、通常の方法により行
うことができる。
The method of supporting the hydrogenation-active metal component on the alumina or alumina-containing material carrier can also be carried out by a conventional method.

例えば、担体を水素化活性成分を含有する溶液中に浸漬
したり、担体とこの溶液とを混練したり、担体上にこの
溶液を滴下したり、担体を溶液中に浸漬した状態で水素
化活性成分の沈澱剤を加えて担体上に水素化活性成分沈
着させる等、担体と水素化活性成分を含有する溶液とを
接触させる方法で担体上に水素化活性成分を担持させる
ことができる。
For example, the carrier may be immersed in a solution containing a hydrogenation-active ingredient, the carrier and this solution may be kneaded, the solution may be dropped onto the carrier, or the carrier may be immersed in a solution to activate hydrogenation. The hydrogenation active ingredient can be supported on the carrier by a method of bringing the carrier into contact with a solution containing the hydrogenation active ingredient, such as adding a precipitant for the component and depositing the hydrogenation active ingredient on the carrier.

モリブデン又はタングステンと、ニッケル又はコバルト
とを併用する場合、担持順位は、どちらが先でもよいし
、また同時でもよい。
When molybdenum or tungsten and nickel or cobalt are used together, either one may be supported first or they may be supported simultaneously.

担持後には、乾燥、焼成等を行う。乾燥は、通常、常温
〜約150°C1特に約100〜120°Cで、約5時
間以上、特に約12〜24時間保持するのが好ましく、
焼成は、通常、約350〜600°C1特に約400〜
550°Cで、約3時間以上、特に約12〜24時間保
持するのが好ましい。
After supporting, drying, baking, etc. are performed. Drying is usually carried out at room temperature to about 150°C, especially about 100 to 120°C, preferably for about 5 hours or more, especially about 12 to 24 hours.
Firing is usually performed at about 350 to 600°C, especially about 400 to 600°C.
Preferably, the temperature is maintained at 550°C for about 3 hours or more, especially about 12 to 24 hours.

以上の第1工程で得られる物質は、触媒基準で酸化物と
して、約2〜30重量%、好ましくは約5〜20重量%
の周期律表第6B族金属の中から選ばれる少なくとも1
種の金属、及び約0.5〜20重景%置火ましくは約3
〜10重量%の周期律表第8族金属の鉄族金属の中から
選ばれる少なくとも1種の金属を含有する。
The substance obtained in the first step above is about 2 to 30% by weight, preferably about 5 to 20% by weight as an oxide based on the catalyst.
At least one metal selected from group 6B metals of the periodic table of
Seed metal, and about 0.5 to 20% heavy weight or about 3
Contains ~10% by weight of at least one metal selected from iron group metals of group 8 metals of the periodic table.

次に、本発明の製造方法における第2工程は、上記の第
1工程で得られる物質に、更に周期律表第8族の貴金属
、すなわち白金、パラジウム ロジウム、オスミウム、
イリジウム、ルテニウムの中から選ばれる少なくとも1
種の水素化活性成分を含浸法等により担持させる工程で
ある。
Next, in the second step in the production method of the present invention, the material obtained in the first step is further added with noble metals of group 8 of the periodic table, namely platinum, palladium, rhodium, and osmium.
At least one selected from iridium and ruthenium
This is a step in which a seed hydrogenation active component is supported by an impregnation method or the like.

出発物質は、特に限定されない。すなわち、上記の貴金
属の塩でもよいし、金属錯体であってもよい。勿論、上
記の貴金属を含む塩類が、陽イオンであっても、陰イオ
ンであっても使用できる。
The starting material is not particularly limited. That is, it may be a salt of the above-mentioned noble metal or a metal complex. Of course, the salts containing the above-mentioned noble metals can be used regardless of whether they are cations or anions.

具体的には、塩化白金酸、塩化パラジウム、塩化ロジウ
ム等を用いることができる。
Specifically, chloroplatinic acid, palladium chloride, rhodium chloride, etc. can be used.

また、これら貴金属の全含有量は、最終的な触媒に対し
て金属で約0.05〜8.0重量%、好ましくは約0.
1〜5.0重量%である。これら貴金属が多過ぎると該
貴金属の分散性が低下し、不経済となるばかりでなく、
脱硫活性点が減少し、好ましくない。
The total content of these noble metals is about 0.05 to 8.0% by weight of metal, preferably about 0.05% by weight, based on the final catalyst.
It is 1 to 5.0% by weight. Too much of these precious metals not only reduces the dispersibility of the precious metals and becomes uneconomical, but also
Desulfurization active sites decrease, which is not preferable.

上記第1工程で得られる物質へのこれら貴金属の担持方
法も、通常の方法により行うことができる。
The method for supporting these noble metals on the substance obtained in the first step can also be carried out by a conventional method.

例えば、第1工程で得られる物質を貴金属化合物の水溶
液中に浸漬したり、第1工程で得られる物質上にこの溶
液を滴下させる等により、担持させることができる。
For example, the substance obtained in the first step can be supported by immersing the substance obtained in the first step in an aqueous solution of a noble metal compound, or by dropping this solution onto the substance obtained in the first step.

担持後には、乾燥、焼成等を行うことが好ましい。乾燥
は、通常、常温〜約150″C1特に約100〜120
°Cで、約5時間以上、特に約12〜24時間保持する
のが好ましく、焼成は、通常、約350〜600°C1
特に約400〜550 ”Cで、約3時間以上、特に約
3〜6時間保持するのが好ましい。
After supporting, drying, baking, etc. are preferably performed. Drying is usually done at room temperature to about 150" C1, especially about 100 to 120"
℃ for about 5 hours or more, especially about 12 to 24 hours, and the calcination is usually carried out at about 350 to 600 degrees Celsius.
It is particularly preferred to hold the temperature at about 400-550''C for about 3 hours or more, especially about 3-6 hours.

本発明の製造方法で得られる触媒を硫化物の形態で使用
する場合には、この触媒を予備硫化しておく。
When the catalyst obtained by the production method of the present invention is used in the form of a sulfide, the catalyst is presulfurized.

硫化の方法としては、約1.0重量%又はそれ以上の硫
黄を含有する炭化水素油や気相硫黄化合物を、高温高圧
下で触媒上に通じる方法等が採用される。
As the sulfiding method, a method is employed in which a hydrocarbon oil or a gaseous sulfur compound containing about 1.0% by weight or more of sulfur is passed over the catalyst at high temperature and high pressure.

この硫化後に水素で還元すると、その寿命の延命効果は
一層顕著に現れる。
When reduced with hydrogen after sulfidation, the effect of extending the lifespan becomes even more remarkable.

本発明触媒を使用する本発明の水素化脱硫方法で適用す
ることのできる炭化水素油としては、原油の常圧蒸留留
出油及び残渣、減圧蒸留留出油及び残渣、ビスブレーキ
ング油、タールサンド油。
Hydrocarbon oils that can be applied to the hydrodesulfurization method of the present invention using the catalyst of the present invention include atmospheric distillation distillates and residues of crude oil, vacuum distillation distillates and residues, visbreaking oils, tars, etc. Sand oil.

シェールオイル等が挙げられる。Examples include shale oil.

また、本発明の水素化脱硫方法における条件は、温度約
200〜450℃、圧力約10〜200Kg/cm”、
LH3V (液空間速度)約0.1〜5.0Hr−’と
することが好ましい。
Further, the conditions for the hydrodesulfurization method of the present invention are a temperature of about 200 to 450°C, a pressure of about 10 to 200 Kg/cm'',
LH3V (liquid hourly velocity) is preferably about 0.1 to 5.0 Hr-'.

〔作用〕[Effect]

一般に、触媒の活性劣化の原因の1つは、被処理油中の
炭化水素の炭素−硫黄結合や炭素−炭素結合が切断され
る際に、該切断が効果的に進行せず、過度の縮合や環化
を併発し、触媒表面上に炭素質となって析出することに
あると言われている。
Generally, one of the causes of catalyst activity deterioration is that when the carbon-sulfur bonds and carbon-carbon bonds of hydrocarbons in the oil to be treated are broken, the cutting does not proceed effectively, resulting in excessive condensation. It is said that this is because carbonaceous substances are deposited on the surface of the catalyst as a result of cyclization and cyclization.

これに対し、本発明では、前述のように、アルミナ又は
アルミナ含有担体に例えばモリブデンやニッケル等の周
期律表第6B族金属の少なくとも1種及び周期律表第8
族の鉄族金属の少なくとも1種を担持させた物質を予め
調製しておき、この物質に、更に周期律表第8族の貴金
属の少なくとも1種を担持させることにより、その理由
は明らかでないが、上記の被処理油中の炭化水素の炭素
−硫黄結合や炭素−炭素結合の切断を効果的に進行させ
、上記の炭素質の析出を抑制する。
In contrast, in the present invention, as described above, at least one metal of group 6B of the periodic table, such as molybdenum or nickel, and a metal of group 8 of the periodic table, such as alumina or an alumina-containing carrier,
Although the reason for this is not clear, by preparing in advance a material on which at least one kind of noble metal of group 8 of the periodic table is supported, and making this material support at least one kind of noble metal of group 8 of the periodic table. , effectively advances the cutting of carbon-sulfur bonds and carbon-carbon bonds of hydrocarbons in the oil to be treated, and suppresses the precipitation of carbonaceous substances.

この結果、本発明では、苛酷な条件下において使用して
も、触媒寿命の大幅な延命を達成することができる。
As a result, the present invention can significantly extend the life of the catalyst even when used under severe conditions.

そして、この触媒を使用する本発明の水素化脱硫方法で
は、工業的に採算のある、かつ高脱硫率での処理が達成
できる。
The hydrodesulfurization method of the present invention using this catalyst can achieve industrially profitable treatment at a high desulfurization rate.

なお、本発明においては、上記したように、第1工程に
おいてモリブデンやニッケル等の周期律表第6B族金属
及び周期律表第8族の鉄族金属を担持させ、第2工程に
おいて周期律表第8族の貴金属を担持させる場合におい
てのみ、上記のような作用を得ることができるのであり
、担持順序をこれとは逆にしたり、あるいは周期律表第
6B族金属、第8族の鉄族金属1周期律表第8族の貴金
属を同時に担持させても、その理由は明らかではないが
、上記のような作用は発現しない。
In addition, in the present invention, as described above, in the first step, a group 6B metal of the periodic table, such as molybdenum or nickel, and an iron group metal of group 8 of the periodic table are supported, and in the second step, a metal of group 6B of the periodic table, such as The above effect can only be obtained when a noble metal from group 8 is supported, and the order of the support may be reversed, or when metals from group 6B of the periodic table or iron group from group 8 are supported. Even if one metal and a noble metal from group 8 of the periodic table are supported at the same time, the above-mentioned effect does not occur, although the reason is not clear.

〔実施例〕〔Example〕

以下、実施例及び比較例を用いて本発明を更に具体的に
説明する。
Hereinafter, the present invention will be explained in more detail using Examples and Comparative Examples.

「触媒の製造例1 ; 実施例1 (第1工程) 50!のイオン交換水の中に、29.8Kgのアルミン
酸ナトリウム溶液(A 1 z O3として約23%含
む)と、38.0Kgの硫酸アルミニウム溶液(AI!
、203として約7.9%含む)とをゆっくり滴下した
。このとき、その溶液のpHは8〜9の間に保持した。
"Catalyst Production Example 1; Example 1 (First Step) In 50! of ion-exchanged water, 29.8Kg of sodium aluminate solution (containing about 23% as A 1 z O3) and 38.0Kg of sodium aluminate solution were added. Aluminum sulfate solution (AI!
, 203 (containing about 7.9%) was slowly added dropwise. At this time, the pH of the solution was maintained between 8 and 9.

最後に、残っているアルミン酸ナトリウム溶液を加え、
最終的に溶液のpHは11とした。
Finally, add the remaining sodium aluminate solution,
The pH of the solution was finally set to 11.

以上の操作により生成したアルミナスラリーを口過し、
日別された沈澱物(アルミナゲル)を、先ずアンモニア
を加えてpHを9に調整した水で繰り返し洗浄し、次い
で硝酸を加えてpHを6に調整した水で再び繰り返し洗
浄して、アルミナケーキを得た。
Pass the alumina slurry produced by the above operations,
The separated precipitate (alumina gel) is first washed repeatedly with water to which the pH has been adjusted to 9 by adding ammonia, and then repeatedly washed again with water to which the pH has been adjusted to 6 by adding nitric acid. I got it.

このアルミナケーキを噴霧乾燥して得られたアルミナ粉
末に、再びイオン交換水を加えて調湿した。
Ion-exchanged water was again added to the alumina powder obtained by spray-drying this alumina cake to adjust the humidity.

これを押し出し成型機で、必要な触媒直径に合うように
押し出し成型した。
This was extruded and molded using an extrusion molding machine to match the required catalyst diameter.

この押し出し成型物を、120°Cで一昼夜乾燥し、次
いで550°Cで12時間焼成した。
This extruded product was dried at 120°C for a day and night, and then baked at 550°C for 12 hours.

このようにして調製されたアルミナ担体を5Kg採取し
て、次のようにして周期律表第6B族金属及び第8族の
鉄族金属を担持させた。
5 kg of the thus prepared alumina carrier was collected, and a group 6B metal of the periodic table and an iron group metal of group 8 of the periodic table were supported thereon in the following manner.

すなわち、先ず、2900rr+42のアンモニア水溶
液中に1252gのバラモリブデン酸アンモニウムを加
えて溶解させ、更に、この中に785gの硝酸ニッケル
を加えて、沈澱物のない溶液を調製した。
That is, first, 1252 g of ammonium rosemolybdate was added and dissolved in a 2900 rr + 42 ammonia aqueous solution, and further, 785 g of nickel nitrate was added thereto to prepare a solution free of precipitates.

次いで、この溶液を上記のアルミナ担体に注意深く滴下
した。
This solution was then carefully dropped onto the above alumina support.

全ての溶液を滴下した後、3時間静置し、その後120
°Cで12時間乾燥した。最後に、500°Cで12時
間焼成した。
After dropping all the solutions, let stand for 3 hours, then 120
Dry at °C for 12 hours. Finally, it was baked at 500°C for 12 hours.

(第2工程) 第1工程で得られた物質を2Kg採取し、次のようにし
て周期律表第8族の貴金属を担持させた。
(Second Step) 2 kg of the material obtained in the first step was collected, and a noble metal of Group 8 of the periodic table was supported in the following manner.

すなわち、先ず、希塩酸水溶液5000mj!を用意し
、これに塩化白金酸410gを溶解させた。
That is, first, 5000mj of diluted hydrochloric acid aqueous solution! was prepared, and 410 g of chloroplatinic acid was dissolved therein.

次いで、この水溶液中に、上記の第1工程で得られた物
質をドブ漬けし、3時間放置した。
Next, the substance obtained in the first step was soaked in this aqueous solution and left for 3 hours.

その後、ドブ漬けしたものを引上げ、120°Cで12
時間乾燥し、最後に450“Cで3時間焼成して触媒A
を得た。
After that, the pickled food was taken out and heated to 120°C for 12 hours.
Catalyst A
I got it.

この触媒Aには、酸化ニッケルが5重量%、酸化モリブ
デンが17重量%、白金が0.6重量%含まれていた。
This catalyst A contained 5% by weight of nickel oxide, 17% by weight of molybdenum oxide, and 0.6% by weight of platinum.

実施例2 実施例1の第1工程で得られた物質を2Kg採取し、次
のようにして周期律表第8族の貴金属を担持させた。
Example 2 2 kg of the material obtained in the first step of Example 1 was collected, and a noble metal of group 8 of the periodic table was supported on it in the following manner.

すなわち、先ず、水5000rneを用意し、これに塩
化パラジウム325gを溶解させた。
That is, first, 5000 rne of water was prepared, and 325 g of palladium chloride was dissolved therein.

次いで、この水溶液中に、上記の第1工程で得られた物
質をドブ漬けし、3時間放置した。
Next, the substance obtained in the first step was soaked in this aqueous solution and left for 3 hours.

その後、ドブ漬けしたものを引上げ、120″Cで12
時間乾燥し、最後に450 ”Cで3時間焼成して触媒
Bを得た。
After that, take out the soaked food and boil it at 120"C for 12 hours.
Catalyst B was obtained by drying for hours and finally calcining at 450''C for 3 hours.

この触媒Bには、酸化ニッケルが5重量%、酸化モリブ
デンが17重量%、パラジウムが3.3重量%含まれて
いた。
This catalyst B contained 5% by weight of nickel oxide, 17% by weight of molybdenum oxide, and 3.3% by weight of palladium.

実施例3 実施例1の第1工程で得られた物質を2Kg採取し、次
のようにして周期律表第8族の貴金属を担持させた。
Example 3 2 kg of the material obtained in the first step of Example 1 was collected, and a noble metal of Group 8 of the periodic table was supported on it in the following manner.

すなわち、先ず、水5000mj2を用意し、これに塩
化ロジウム293gを溶解させた。
That is, first, 5000 mj2 of water was prepared, and 293 g of rhodium chloride was dissolved therein.

次いで、この水溶液中に、上記の第1工程で得られた物
質をドブ漬けし、3時間放置した。
Next, the substance obtained in the first step was soaked in this aqueous solution and left for 3 hours.

その後、ドブ漬けしたものを引上げ、120°Cで12
時間乾燥し、最後に450℃で3時間焼成して触媒Cを
得た。
After that, the pickled food was taken out and heated to 120°C for 12 hours.
The catalyst was dried for hours and finally calcined at 450°C for 3 hours to obtain catalyst C.

この触媒Cには、酸化ニッケルが5重量%、酸化モリブ
デンが17重量%、ロジウムが1. 9重量%含まれて
いた。
This catalyst C contains 5% by weight of nickel oxide, 17% by weight of molybdenum oxide, and 1.5% by weight of rhodium. It contained 9% by weight.

比較例1 実施例1の第1工程で得られた物質を、そのまま触媒り
とした。
Comparative Example 1 The substance obtained in the first step of Example 1 was used as a catalyst as it was.

この触媒りには、酸化ニッケルが5重量%、酸化モリブ
デンが17重量%含まれていた。
This catalyst contained 5% by weight of nickel oxide and 17% by weight of molybdenum oxide.

比較例2 実施例Iの第1工程の周期律表第6B族金属及び第8族
の鉄族金属を担持させる方法において、アンモニア水溶
液中に1252gのバラモリブデン酸アンモニウムと7
85gの硝酸ニッケルと108gの塩化パラジウムを溶
解させたものを使用し、更に実施例Iの第2工程を省略
した以外は、実施例1と同様の方法で触媒Eを調製した
Comparative Example 2 In the method of supporting Group 6B metals and Iron group metals of Group 8 of the periodic table in the first step of Example I, 1252 g of ammonium rosemolybdate and 7
Catalyst E was prepared in the same manner as in Example 1, except that 85 g of nickel nitrate and 108 g of palladium chloride were dissolved and the second step of Example I was omitted.

この触媒Eには、酸化ニッケルが5重量%、酸化モリブ
デンが17重量%、パラジウムが1. 0重量%含まれ
ていた。
This catalyst E contained 5% by weight of nickel oxide, 17% by weight of molybdenum oxide, and 1.5% by weight of palladium. It contained 0% by weight.

r炭化水素油の水素化脱硫処理例1 ;上記の実施例1
〜3及び比較例1.2で得られた触媒A−Eを用いて本
発明の水素化脱硫処理方法を実施し、各触媒A−Eにつ
いて、下記の条件で水素化脱硫の相対活性を評価し、ま
た下記の条件の触媒寿命を評価した。
Hydrodesulfurization treatment example 1 of hydrocarbon oil; Example 1 above
The hydrodesulfurization treatment method of the present invention was carried out using catalysts A-E obtained in ~3 and Comparative Example 1.2, and the relative activity of hydrodesulfurization was evaluated for each catalyst A-E under the following conditions. In addition, the catalyst life under the following conditions was evaluated.

の アラビアンライト軽質軽油(AL−1、Go)。of Arabian Light light gas oil (AL-1, Go).

減圧軽油(AL−VGO)あるいはアラビアンヘビー常
圧残油(AH−AR)に対する水素化脱硫相対活性を内
径10mmφの固定床式反応管を用い、夫々10日日(
条件11条件2)、20日日目条件3)、25日日目条
件4)(反応初期には生成物の硫黄分は少ないが、日数
とともに増加安定するため、10日日日20日目、25
日目とした。)の反応生成物の残留硫黄分(重量%)か
ら得られる初期相対脱硫活性求めた。
The relative hydrodesulfurization activity for vacuum gas oil (AL-VGO) or Arabian heavy atmospheric residual oil (AH-AR) was measured using a fixed bed reaction tube with an inner diameter of 10 mmφ for 10 days (
Condition 11 Condition 2), Condition 3) on the 20th day, Condition 4) on the 25th day (at the beginning of the reaction, the sulfur content of the product is low, but it increases and stabilizes as the days pass, so on the 10th day and 20th day, 25
It was marked as the day. ) The initial relative desulfurization activity obtained from the residual sulfur content (wt%) of the reaction product was determined.

放星寿倉丘債来件: 上記の水素化脱硫の相対活性評価条件と同様の条件によ
り水素化脱硫処理を行い、生成油の硫黄含有量が増加し
0.2重量%(条件19条件2)。
Hosei Jukuraoka bond case: Hydrodesulfurization treatment was performed under the same conditions as the relative activity evaluation conditions for hydrodesulfurization described above, and the sulfur content of the produced oil increased by 0.2% by weight (Condition 19 Condition 2) ).

0.3重量%(条件3)、0.5重量%(条件4)とな
るまでに要した時間の累計を求め、相対寿命として評価
した。
The cumulative amount of time required to reach 0.3% by weight (condition 3) and 0.5% by weight (condition 4) was determined and evaluated as relative life.

原料油の性状と反応条件を第1表に示し、結果を第2表
(軽質軽油)、第3表(減圧軽油)及び第4表(常圧残
油)に示す。
The properties and reaction conditions of the feedstock oil are shown in Table 1, and the results are shown in Table 2 (light gas oil), Table 3 (vacuum gas oil), and Table 4 (atmospheric residual oil).

第2表から明らかなように、軽質軽油の水素化脱硫処理
においては、実施例1〜3で製造された本発明触媒A−
Cを用いた実施例4〜8はいずれも、比較例1.2で製
造された従来触媒り、 Eを用いた比較例3〜5と同程
度の脱硫レベルを維持し、また実施例1〜3で製造され
た本発明触媒A〜Cを用いた実施例4〜8は、従来触媒
り、 Eを用いた比較例3〜5に比し、その触媒寿命が
著しく延長していることが判る。
As is clear from Table 2, in the hydrodesulfurization treatment of light gas oil, the present catalyst A-
Examples 4 to 8 using C maintained the same level of desulfurization as the conventional catalyst produced in Comparative Example 1.2 and Comparative Examples 3 to 5 using E, and also Examples 1 to 8. It can be seen that Examples 4 to 8 using catalysts A to C of the present invention produced in Example 3 have significantly longer catalyst life than Comparative Examples 3 to 5 using conventional catalyst E. .

第3表から明らかなように、減圧軽油の水素化脱硫処理
においても、実施例1,3で製造された本発明触媒A、
  Cを用いた実施例9.10はいずれも、比較例1.
2で製造された従来触媒り、 Eを用いた比較例6.7
と同程度の脱硫レベルを維持し、また実施例1,3で製
造された本発明触媒A、Cを用いた実施例9,1oは、
従来触媒り。
As is clear from Table 3, in the hydrodesulfurization treatment of vacuum gas oil, the present catalyst A produced in Examples 1 and 3,
Examples 9 and 10 using Comparative Example 1.
Comparative example 6.7 using conventional catalyst E prepared in 2.
In Examples 9 and 1o, which maintained the same level of desulfurization and also used the catalysts A and C of the present invention produced in Examples 1 and 3,
Conventional catalyst.

Eを用いた比較例6,7に比し、その触媒寿命が著しく
延長していることが判る。
It can be seen that the catalyst life was significantly extended compared to Comparative Examples 6 and 7 using E.

第4表から明らかなように、常圧残油の水素化脱硫処理
においても、実施例1で製造された本発明触媒Aを用い
た実施例11は、比較例1で製造された従来触媒りを用
いた比較例8と同程度の脱硫レベルを維持し、また実施
例1で製造された本発明触媒Aを用いた実施例IIが、
従来触媒りを用いた比較例8に比し、その触媒寿命が著
しく延長していることが判る。
As is clear from Table 4, in the hydrodesulfurization treatment of atmospheric residual oil, Example 11 using catalyst A of the present invention manufactured in Example 1 was superior to the conventional catalyst manufactured in Comparative Example 1. Example II, which maintained the same level of desulfurization as Comparative Example 8 using catalyst A of the present invention produced in Example 1,
It can be seen that the catalyst life is significantly extended compared to Comparative Example 8 using a conventional catalyst.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の製造方法で得られる本発
明の触媒によれば、被処理油中の炭化水素の炭素−硫黄
結合や炭素−炭素結合の切断を効果的に進行させること
ができ、過度の縮合や環化を併発することなく、従って
触媒表面上に炭素質が析出するような事態が発生せず、
触媒寿命が大幅に延長する。
As detailed above, according to the catalyst of the present invention obtained by the production method of the present invention, it is possible to effectively proceed with the cleavage of carbon-sulfur bonds and carbon-carbon bonds of hydrocarbons in the oil to be treated. without causing excessive condensation or cyclization, and therefore preventing the precipitation of carbonaceous matter on the catalyst surface.
Catalyst life is significantly extended.

このように触媒寿命が延長すれば、例えば触媒にとって
苛酷度の高い運転、すなわち処理量のアップや、生成物
中の硫黄含有率のダウンすなわち深度の脱硫を行っても
、その触媒寿命は、従来の通常の運転すなわち苛酷度の
低い運転を行う場合に比較して短くなることはなく、寿
命期間を確保できる。
If the catalyst life is extended in this way, even if the catalyst is operated under severe conditions, i.e. increases the throughput or reduces the sulfur content in the product, i.e. deep desulfurization, the catalyst life will be longer than the conventional one. Compared to normal operation, i.e., low-severity operation, the lifespan is not shortened, and the service life can be ensured.

このように本発明の製造方法で得られる本発明の触媒を
使用する本発明の水素化脱硫処理方法によれば、工業的
に採算のある、かつ高脱硫率での水素化脱硫処理を行う
ことができる。
As described above, according to the hydrodesulfurization treatment method of the present invention using the catalyst of the present invention obtained by the production method of the present invention, it is possible to perform hydrodesulfurization treatment that is industrially profitable and at a high desulfurization rate. I can do it.

しかも、本発明の製造方法で得られる本発明の触媒は、
石油各留分及び残渣骨のいずれの原料油に対しても効果
があり、特に石油留出原料を用いたときの触媒寿命の延
命効果は著しい。
Moreover, the catalyst of the present invention obtained by the production method of the present invention is
It is effective for both petroleum fractions and residues, and the effect of extending the life of the catalyst is particularly remarkable when petroleum distillate raw materials are used.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミナ又はアルミナ含有物担体に、(A)周期
律表第6B族金属の中から選ばれる少なくとも1種、及
び (B)周期律表第8族の鉄族金属の中から選ばれる少な
くとも1種 の水素化活性成分を担持し、更にその上に、(C)周期
律表第8族の貴金属元素の中から選ばれる少なくとも1
種 の水素化活性成分を担持してなり、 上記の周期律表第6B族金属の中から選ばれる少なくと
も1種の金属量が酸化物として触媒に対して2〜30重
量%、上記の周期律表第8族の鉄族金属の中から選ばれ
る少なくとも1種の金属量が酸化物として触媒に対して
0.5〜20重量%、上記の周期律表第8族の貴金属元
素の中から選ばれる少なくとも1種の金属量が金属とし
て触媒に対して0.05〜8.0重量%であることを特
徴とする炭化水素油用水素化脱硫触媒組成物。
(1) The alumina or alumina-containing material carrier contains (A) at least one metal selected from group 6B metals of the periodic table, and (B) at least one metal selected from iron group metals of group 8 of the periodic table. Supporting one kind of hydrogenation active component, furthermore, (C) at least one selected from noble metal elements of Group 8 of the periodic table.
2 to 30% by weight of at least one metal selected from the group 6B metals of the periodic table as an oxide based on the catalyst; The amount of at least one metal selected from the iron group metals of group 8 in the table is 0.5 to 20% by weight of the catalyst as an oxide, and the amount of at least one metal selected from the above noble metal elements of group 8 of the periodic table is 0.5 to 20% by weight based on the catalyst. A hydrodesulfurization catalyst composition for hydrocarbon oil, characterized in that the amount of at least one metal contained in the catalyst is 0.05 to 8.0% by weight based on the catalyst.
(2)アルミナ又はアルミナ含有物担体に、周期律表第
6B族金属の中から選ばれる少なくとも1種、及び周期
律表第8族の鉄族金属の中から選ばれる少なくとも1種
を担持させ、乾燥、焼成後に、周期律表第8族の貴金属
元素の中から選ばれる少なくとも1種を担持させること
を特徴とする炭化水素油用水素化脱硫触媒組成物の製法
(2) supporting at least one metal selected from group 6B metals of the periodic table and at least one metal selected from iron group metals of group 8 of the periodic table on alumina or an alumina-containing material carrier; A method for producing a hydrodesulfurization catalyst composition for hydrocarbon oil, which comprises supporting at least one element selected from noble metal elements of group 8 of the periodic table after drying and calcination.
(3)第1請求項記載の触媒を用いて、炭化水素油を水
素化脱硫することを特徴とする炭化水素油の水素化脱硫
法。
(3) A method for hydrodesulfurizing hydrocarbon oil, which comprises hydrodesulfurizing hydrocarbon oil using the catalyst according to claim 1.
JP8182390A 1990-03-28 1990-03-28 Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst Pending JPH03281595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8182390A JPH03281595A (en) 1990-03-28 1990-03-28 Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8182390A JPH03281595A (en) 1990-03-28 1990-03-28 Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst

Publications (1)

Publication Number Publication Date
JPH03281595A true JPH03281595A (en) 1991-12-12

Family

ID=13757206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8182390A Pending JPH03281595A (en) 1990-03-28 1990-03-28 Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst

Country Status (1)

Country Link
JP (1) JPH03281595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210363A (en) * 2001-01-17 2002-07-30 Petroleum Energy Center Catalyst for hydrogenating light hydrocarbon oil, its production method, and method for hydrogenating light hydrocarbon oil using the catalyst
JP2010221158A (en) * 2009-03-24 2010-10-07 Jx Nippon Oil & Energy Corp Method of producing catalyst for hydrogenating/purifying diesel oil, and method of hydrogenating/purifying diesel oil
US7995949B2 (en) 2007-05-07 2011-08-09 Ricoh Company, Ltd. Powder conveyance device, process unit, and image forming device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124593A (en) * 1974-07-01 1976-02-27 Universal Oil Prod Co
JPS5170197A (en) * 1974-12-16 1976-06-17 Kuraray Co SUISOKADATSURYUS HOKUBAI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124593A (en) * 1974-07-01 1976-02-27 Universal Oil Prod Co
JPS5170197A (en) * 1974-12-16 1976-06-17 Kuraray Co SUISOKADATSURYUS HOKUBAI

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210363A (en) * 2001-01-17 2002-07-30 Petroleum Energy Center Catalyst for hydrogenating light hydrocarbon oil, its production method, and method for hydrogenating light hydrocarbon oil using the catalyst
JP4564673B2 (en) * 2001-01-17 2010-10-20 Jx日鉱日石エネルギー株式会社 Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same
US7995949B2 (en) 2007-05-07 2011-08-09 Ricoh Company, Ltd. Powder conveyance device, process unit, and image forming device
JP2010221158A (en) * 2009-03-24 2010-10-07 Jx Nippon Oil & Energy Corp Method of producing catalyst for hydrogenating/purifying diesel oil, and method of hydrogenating/purifying diesel oil

Similar Documents

Publication Publication Date Title
JP2547115B2 (en) Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same
US3242101A (en) Nickel-molybdenum-alumina hydrocarbon conversion catalyst
EP1145763B1 (en) Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
JPH0772273B2 (en) Hydroprocessing method for hydrocarbon oil
JP2002536166A (en) Manufacture of hydrotreating catalyst
JP2556341B2 (en) Process for producing hydrotreated catalyst made from hydrogel and produced catalyst
US3637525A (en) Catalyst and method of preparation
JPH03281595A (en) Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP3802939B2 (en) Catalyst for hydrotreating
JPH06127931A (en) Silica-alumina, its production and catalyst for hydrogenation
JP2794320B2 (en) Method for producing hydrotreating catalyst composition for hydrocarbon oil
JP3293861B2 (en) Novel hydrotreating catalyst supporting noble metal and hydrotreating method using the same
JPH07196308A (en) Silica-alumina, its production and catalyst for hydrotreating of light hydrocarbon oil
JPH0576758A (en) Catalyst for hydrogenation treatment
JP2000354766A (en) Catalyst for hydrogenation treatment of hydrocarbon oil
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP2002085975A (en) Hydrogenation catalyst for hydrocarbon oil and method of hydrogenating hydrocarbon oil
JP2001104789A (en) Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst
JP2920186B2 (en) Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil
JP3221705B2 (en) Method for producing catalyst composition for hydrotreating hydrocarbon oil
JPH09276712A (en) Catalyst for hydrogenation and metal removal of heavy oil and its production
JPH0813328B2 (en) Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
JP3376067B2 (en) Method for producing hydrotreating catalyst
US4186111A (en) Stabilized aluminosilicate hydrocracking catalyst