JPH06127931A - Silica-alumina, its production and catalyst for hydrogenation - Google Patents

Silica-alumina, its production and catalyst for hydrogenation

Info

Publication number
JPH06127931A
JPH06127931A JP4303073A JP30307392A JPH06127931A JP H06127931 A JPH06127931 A JP H06127931A JP 4303073 A JP4303073 A JP 4303073A JP 30307392 A JP30307392 A JP 30307392A JP H06127931 A JPH06127931 A JP H06127931A
Authority
JP
Japan
Prior art keywords
range
diameter
silica
alumina
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4303073A
Other languages
Japanese (ja)
Inventor
Naoyuki Ito
直之 伊藤
Tadashi Miura
正 三浦
Kazuo Saeki
和男 佐伯
Tomio Ueda
富雄 上田
Ikutaka Hayashi
郁孝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP4303073A priority Critical patent/JPH06127931A/en
Publication of JPH06127931A publication Critical patent/JPH06127931A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve the hydrogenation desulfurization activity for light and heavy oils an the uniform dispersibility of deposited hydrogenation metal in silica-alumina by specifying the structure, silica content, a pore volume and the total surface area with respect to the catalyst. CONSTITUTION:The alumina-silica has the structure where a silica layer is formed on the surface of alumina as a nucleus and contains silica by 10-20wt.%. It has the 1st peak of the pore volume distribution in the range of 30-300A pore diameter by a nitrogen absorption method and it has the 2nd peak in the range of 300-1500A pore diameter by a mercury forcible feeding method. The volume A of pores of 30-300A diameter including the 1st peak is in the range of 80% of the volume B of pores of 0-300A diameter by the nitrogen absorption method. Further the volume C of pores of 300-1500A diameter including the 2nd peak is in the range of 15-40% of the volume D of pores of 0-1500A diameter and the volume E of pores of 150-150000A diameter by the mercury forcible feeding method is in the range of 0.3-0.9ml/g and the alumina-silica has the total surface area of >=250m<2>/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリカ−アルミナとそ
の製造方法、及びシリカ−アルミナを担体とする炭化水
素油の水素化処理用触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silica-alumina, a method for producing the same, and a catalyst for hydrotreating hydrocarbon oils using silica-alumina as a carrier.

【0002】[0002]

【従来の技術】炭化水素油の水素化処理用触媒として
は、従来各種のものが提案されているが、その中で常圧
蒸留処理油又は減圧蒸留の留出油、残渣油及びこれらの
混合油の水素化精製用触媒として比較的すぐれた性能を
有するものとして、特定の細孔容積分布を有するシリカ
を含有するアルミナ含有担体上に水素化活性金属成分を
担持させたものがある(特公平3−31496号公
報)。この公知触媒は、細孔直径が300Å以下のミク
ロポアーと細孔直径がそれ以上のマクロポアーの両領域
に細孔分布を有し、水素化脱硫と水素化脱窒素の両方の
反応にすぐれた性能を有する。しかしながら、本発明者
らの研究によれば、この触媒の場合、重質油の水素化脱
硫活性の点で未だ満足し得るものではなく、また担持さ
せた水素化活性金属成分の担体に対する均一分散性の点
でも未だ満足し得るものではないことが判明した。
2. Description of the Related Art Various types of catalysts for hydrotreating hydrocarbon oils have been proposed. Among them, atmospheric distillation treated oils or distillate oils under reduced pressure distillation, residual oils and mixtures thereof As a catalyst having a relatively excellent performance as an oil hydrorefining catalyst, there is one in which a hydrogenation-active metal component is supported on an alumina-containing carrier containing silica having a specific pore volume distribution. 3-31496). This known catalyst has a pore distribution in both micropores with a pore diameter of 300 Å or less and macropores with a pore diameter of more than 300, and has excellent performance in both hydrodesulfurization and hydrodenitrogenation reactions. Have. However, according to the studies by the present inventors, in the case of this catalyst, it is still unsatisfactory in terms of hydrodesulfurization activity of heavy oil, and the homogeneous dispersion of the supported hydrogenation active metal component on the carrier is carried out. In terms of sex, it turned out to be unsatisfactory.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来技術に
見られる前記問題点を解決し、軽質油に対してはもちろ
ん、重質油に対してもすぐれた水素化脱硫活性を有し、
かつ担持させた水素化金属成分の均一分散性にすぐれた
水素化処理用触媒及びその触媒担体としてのシリカ含有
アルミナとその製造方法を提供することをその課題とす
る。
The present invention solves the above problems found in the prior art and has excellent hydrodesulfurization activity not only for light oils but also for heavy oils,
It is an object of the present invention to provide a hydrotreating catalyst excellent in uniform dispersibility of a supported metal hydride component, silica-containing alumina as a catalyst carrier thereof, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、核としてのアルミナ
の表面上にシリカ層を形成した構造を有し、シリカを1
0〜20重量%含有するシリカ−アルミナであって、窒
素吸着法により測定した細孔直径が30〜300Åの範
囲に細孔容積分布の第1ピークを、水銀圧入法により測
定した細孔直径が300〜1500Åの範囲に細孔容積
分布の第2ピークを有するとともに、第1ピークを含む
30〜300Åの範囲の直径を有する細孔の容積Aが窒
素吸着法により測定した0〜300Åの範囲の直径を有
する細孔の容積Bの80%以上であり、該第2ピークを
含む300〜1500Åの範囲の直径を有する細孔の容
積Cが0〜1500Åの直径を有する細孔容積Dの15
〜40%の範囲にあり、かつ水銀圧入法により測定した
150〜150000Åの範囲の直径を有する細孔の容
積Eが0.3〜0.9ml/gの範囲にあり、さらに全
表面積が250m2/g以上であることを特徴とするシ
リカ−アルミナが提供される。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, it has a structure in which a silica layer is formed on the surface of alumina as a core,
It is a silica-alumina containing 0 to 20% by weight, and the first peak of the pore volume distribution is in the range of 30 to 300 Å as measured by the nitrogen adsorption method, and the pore diameter measured by the mercury penetration method is While having the second peak of the pore volume distribution in the range of 300 to 1500Å, the volume A of the pores having the diameter of the range of 30 to 300Å including the first peak is in the range of 0 to 300Å measured by the nitrogen adsorption method. It is 80% or more of the volume B of the pores having a diameter, and the volume C of the pores having a diameter in the range of 300 to 1500Å including the second peak is 15 of the volume D of the pores having a diameter of 0 to 1500Å.
The volume E of the pores having a diameter in the range of 150 to 150000Å as measured by the mercury penetration method is in the range of 0.3 to 0.9 ml / g, and the total surface area is 250 m 2 Silica-alumina is provided which is characterized by being / g or more.

【0005】また、本発明によれば、核としてのアルミ
ナの表面上にシリカ層を形成した構造を有し、シリカを
10〜20重量%含有するシリカ−アルミナ含有担体に
少なくとも1種の水素化活性金属成分を担持させた触媒
であって、窒素吸着法により測定した細孔直径が30〜
300Åの範囲に細孔容積分布の第1ピークを、水銀圧
入法により測定した細孔直径が300〜1500Åの範
囲に細孔容積分布の第2ピークを有するとともに、第1
ピークを含む30〜300Åの範囲の直径を有する細孔
の容積Aが窒素吸着法により測定した0〜300Åの範
囲の直径を有する細孔の容積Bの80%以上であり、該
第2ピークを含む300〜1500Åの範囲の直径を有
する細孔の容積Cが0〜1500Åの直径を有する細孔
容積Dの15〜40%の範囲にあり、かつ水銀圧入法に
より測定した150〜150000Åの範囲の直径を有
する細孔の容積Eが0.3〜0.9ml/gの範囲にあ
り、さらに全表面積が250m2/g以上であることを
特徴とする水素化処理用触媒が提供される。
Further, according to the present invention, at least one hydrogenation is carried out on a silica-alumina-containing carrier having a structure in which a silica layer is formed on the surface of alumina as a nucleus and containing 10 to 20% by weight of silica. A catalyst supporting an active metal component, wherein the pore diameter measured by a nitrogen adsorption method is 30 to
The first peak of the pore volume distribution is in the range of 300Å, and the second peak of the pore volume distribution is in the range of 300 to 1500Å where the pore diameter measured by mercury porosimetry is
The volume A of the pores having a diameter in the range of 30 to 300Å including the peak is 80% or more of the volume B of the pores having a diameter in the range of 0 to 300Å measured by the nitrogen adsorption method, and the second peak is The volume C of the pores having a diameter in the range of 300 to 1500 Å is in the range of 15 to 40% of the volume D of the pores having a diameter of 0 to 1500 Å, and in the range of 150 to 150,000 Å measured by mercury porosimetry. There is provided a hydrotreating catalyst characterized in that the volume E of pores having a diameter is in the range of 0.3 to 0.9 ml / g and the total surface area is 250 m 2 / g or more.

【0006】さらに、本発明によれば、前記シリカ−ア
ルミナを製造する方法において、pH7〜13の範囲の
水酸化ナトリウム水溶液に酸性アルミニウム水溶液を4
5秒以内で添加混合し、この混合液を60〜80℃に保
持してアルミナ水和物を沈殿させる工程と、このアルミ
ナ水和物の沈殿を含む水溶液に水溶性ケイ素化合物の水
溶液を添加混合し、pH7〜10の条件下、温度60〜
80℃に保持してアルミナ水和物沈殿上にシリカ水和物
を沈着させる工程からなることを特徴とするシリカ−ア
ルミナの製造方法が提供される。
Furthermore, according to the present invention, in the method for producing silica-alumina, an acidic aluminum aqueous solution is added to a sodium hydroxide aqueous solution having a pH range of 7 to 13.
A step of adding and mixing within 5 seconds, maintaining the mixed solution at 60 to 80 ° C. to precipitate alumina hydrate, and adding and mixing an aqueous solution of a water-soluble silicon compound to an aqueous solution containing the precipitate of alumina hydrate. However, under the condition of pH 7-10, temperature 60-
There is provided a method for producing silica-alumina, which comprises the step of depositing silica hydrate on an alumina hydrate precipitate while maintaining the temperature at 80 ° C.

【0007】本発明の水素化処理用触媒においては、触
媒担体として、核としてのアルミナの表面上にシリカ層
を形成した構造を有するシリカ−アルミナ担体を用い
る。この触媒におけるシリカの含有率は、水素化脱硫反
応や水素化脱窒素反応における過度の分解反応に伴う水
素消費量の増大又はコークの生成等を制御するために、
10〜20重量%の範囲に規定するのがよい。また、こ
のアルミナは、シリカの他、他の耐火性無機酸化物、例
えば、マグネシア、酸化カルシウム、ジルコニア、チタ
ニア、ボリア、ハフニア及び結晶性ゼオライト等の一種
又は二種以上を含有することができる。この場合、シリ
カは、触媒に必要な固体酸性度を制御する作用を示し、
その具体的添加量は、所望する触媒酸強度に応じて適宜
決める。シリカは、触媒に強酸点を賦与し、触媒の炭化
水素分解活性を増大させるが、一方、例えば、マグネシ
アは、アルミナ−シリカ等が有する強酸点を減少させ、
同時に弱酸点を増加させて触媒の選択性を向上させる作
用を有する。前記マグネシア、酸化カルシウム、ジルコ
ニア、チタニア、ボリア、ハフニア及び結晶性ゼオライ
ト等の耐火性無機酸化物の含有量は、アルミナ−シリカ
に対して約1〜10重量%の範囲が適当である。アルミ
ナとしては、γ−アルミナ、χ−アルミナ又はη−アル
ミナのいずれか又はそれらの混合体を形成するものが好
適である。
In the hydrotreating catalyst of the present invention, a silica-alumina carrier having a structure in which a silica layer is formed on the surface of alumina as a nucleus is used as a catalyst carrier. The content of silica in this catalyst is to control the increase of hydrogen consumption or the production of coke due to the excessive decomposition reaction in the hydrodesulfurization reaction or the hydrodenitrogenation reaction,
It is preferable to set it in the range of 10 to 20% by weight. In addition to silica, this alumina may contain one or more kinds of other refractory inorganic oxides such as magnesia, calcium oxide, zirconia, titania, boria, hafnia and crystalline zeolite. In this case, silica acts to control the solid acidity required for the catalyst,
The specific addition amount is appropriately determined according to the desired catalyst acid strength. Silica imparts a strong acid point to the catalyst and increases the hydrocarbon decomposition activity of the catalyst, while, for example, magnesia reduces the strong acid point of alumina-silica, etc.
At the same time, it has the effect of increasing the weak acid point and improving the selectivity of the catalyst. The content of the refractory inorganic oxide such as magnesia, calcium oxide, zirconia, titania, boria, hafnia and crystalline zeolite is appropriately in the range of about 1 to 10% by weight based on alumina-silica. As the alumina, one forming γ-alumina, χ-alumina or η-alumina or a mixture thereof is suitable.

【0008】本発明の触媒担体として好適なシリカ−ア
ルミナを製造するには、先ずpH7〜13、好ましくは
11〜12.5に調整したアルカリ水溶液を調製する。
アルカリとしては、水酸化ナトリウム、水酸化カリウ
ム、水酸化アンモニウム等が用いられる。水溶液中のア
ルカリ濃度は、通常、25〜35重量%、好ましくは2
8〜30重量%である。本発明においては、このアルカ
リ水溶液中に、酸性アルミニウム化合物水溶液を添加混
合する。酸性アルミニウム化合物としては、アルミニウ
ムの硫酸塩、塩化物、硝酸塩等が用いられる。水溶液中
の酸性アルミニウム化合物の濃度は、通常、36〜42
重量%、好ましくは38〜40重量%である。この場
合、混合水溶液中のpHは7〜11、好ましくは7〜1
0である。本発明においては、アルカリ水溶液に対する
酸性アルミニウム化合物水溶液の添加は、可及的迅速に
行う。一般的には、アルカリ水溶液に対する酸性アルミ
ニウム水溶液の添加は、45秒以内、好ましくは30秒
以内に終了するように行う。
In order to produce silica-alumina suitable as the catalyst carrier of the present invention, first, an alkaline aqueous solution adjusted to pH 7 to 13, preferably 11 to 12.5 is prepared.
As the alkali, sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like is used. The alkali concentration in the aqueous solution is usually 25 to 35% by weight, preferably 2
It is 8 to 30% by weight. In the present invention, an acidic aluminum compound aqueous solution is added to and mixed with this alkaline aqueous solution. As the acidic aluminum compound, aluminum sulfate, chloride, nitrate and the like are used. The concentration of the acidic aluminum compound in the aqueous solution is usually 36 to 42.
%, Preferably 38-40% by weight. In this case, the pH of the mixed aqueous solution is 7 to 11, preferably 7-1.
It is 0. In the present invention, the addition of the acidic aluminum compound aqueous solution to the alkaline aqueous solution is performed as quickly as possible. Generally, the addition of the acidic aluminum aqueous solution to the alkaline aqueous solution is completed within 45 seconds, preferably within 30 seconds.

【0009】前記のようにして得られる混合水溶液は、
これを温度60〜80℃、好ましくは65〜75℃に保
持する。この場合の保持時間は、少なくとも0.5時
間、好ましくは1〜2時間である。このことにより、混
合水溶液中には、アルミナ水和物の沈殿(ゲル)が生じ
る。この場合のアルミナ水和物の沈殿は、前記したよう
に、アルカリ水溶液に対して酸性アルミニウム化合物水
溶液を短時間で添加混合して形成されたものであること
から、混合水溶液中全体にアルミナ水和物の綿状の沈殿
物が均一に分散したものである。
The mixed aqueous solution obtained as described above is
This is maintained at a temperature of 60 to 80 ° C, preferably 65 to 75 ° C. The holding time in this case is at least 0.5 hour, preferably 1 to 2 hours. As a result, precipitation (gel) of alumina hydrate occurs in the mixed aqueous solution. Since the precipitation of the alumina hydrate in this case is formed by adding and mixing the acidic aluminum compound aqueous solution to the alkaline aqueous solution in a short time as described above, the alumina hydrate is entirely hydrated in the mixed aqueous solution. The product is a cotton-like precipitate uniformly dispersed.

【0010】本発明においては、次に、このようなアル
ミナ水和物の沈殿を含む混合水溶液に対し、水溶性ケイ
素化合物の水溶液を添加混合する。水溶性ケイ素化合物
としては、アルカリ金属ケイ酸塩や、テトラアルコキシ
シラン、オルソケイ酸エステル等が用いられる。アルカ
リ金属ケイ酸塩としては、Na2O:SiO2のモル比が
1:2〜1:4の範囲にあるケイ酸ナトリウムの使用が
好ましい。水溶液中のケイ素化合物の濃度は、5〜10
重量%、好ましくは6〜8重量%である。前記アルミナ
水和物の沈殿を含む水溶液に対するケイ素化合物の添加
量は、最終製品であるシリカ含有アルミナの組成に対応
する量であり、シリカ−アルミナ中のシリカ含有量が1
0〜20重量%になるような量である。アルミナ水和物
の沈殿を含む水溶液とケイ素化合物の水溶液との混合溶
液は、pH7〜11、好ましくは7〜10の条件に保持
する。この場合、必要に応じて、鉱酸水溶液等のpH調
節剤を添加し、混合水溶液のpHを前記範囲に保持す
る。この混合水溶液は、温度60〜80℃、好ましくは
65〜75℃に保持する。その保持時間は少なくとも
0.5時間であり、好ましくは1〜2時間である。この
操作により、アルミナ水和物上にシリカ水和物が沈着し
た沈殿粒子が得られる。この沈殿粒子は、液中から分離
した後、常法の洗浄処理、例えば、炭酸アンモニウム水
溶液及び水を用いて洗浄処理を施して不純物イオンを除
去し、次いで乾燥及び焼成処理を施す。乾燥は、酸素の
存在下又は非存在下で常温〜200℃の温度で行う。ま
た、焼成は、酸素の存在下で、200〜800℃、好ま
しくは550〜650℃で行う。このようにして、核と
してのアルミナ表面上にシリカ層が形成した構造を有
し、以下に示した特定の特性を有するシリカ−アルミナ
を得ることができる。 (1)250m2/g以上、特に255〜350m2/g
の全表面積を有する。 (2)窒素吸着法により測定した細孔直径が30〜30
0Åの範囲に細孔容積分布の第1ピークを有する。 (3)水銀圧入法により測定した細孔直径が300〜1
500Åの範囲に細孔容積分布の第2ピークを有する。 (4)前記第1ピークを含む30〜300Åの直径を有
する細孔の容積Aが、窒素吸着法により測定した細孔直
径が0〜300Åの細孔の容積Bの80%以上、殊に、
80〜95%の範囲にある。 (5)前記第2ピークを含む300〜1500Åの範囲
の直径を有する細孔の容積Cが、0〜1500Åの直径
を有する細孔容積Dの15〜40%、好ましくは15〜
30%の範囲にある。 (6)水銀圧入法により測定した150〜150000
Åの範囲の直径を有する細孔の容積Eが、0.3〜0.
9ml/g、好ましくは0.3〜0.6ml/gの範囲
にある。 本発明の触媒は、前記性状の他、さらに、次のような特
徴を有する。 (7)水銀圧入法により測定した150〜2000Åの
範囲の直径を有する細孔の容積Fが、0.3〜0.9m
l/g、好ましくは0.3〜0.6ml/gの範囲にあ
る。 (8)窒素吸着法により測定した150〜300Åの範
囲に直径を有する細孔の容積Gが、0〜300Åの範囲
の直径を有する細孔の容積Bの10〜30%、好ましく
は15〜20%の範囲にある。 (9)窒素吸着法により測定した0〜600Åの範囲の
直径を有する細孔の容積Hが、0.8〜1.2ml/g
の範囲にある。
In the present invention, next, an aqueous solution of a water-soluble silicon compound is added and mixed to the mixed aqueous solution containing such a precipitate of alumina hydrate. As the water-soluble silicon compound, alkali metal silicate, tetraalkoxysilane, orthosilicate ester, etc. are used. As the alkali metal silicate, it is preferable to use sodium silicate having a molar ratio of Na 2 O: SiO 2 in the range of 1: 2 to 1: 4. The concentration of the silicon compound in the aqueous solution is 5 to 10
% By weight, preferably 6-8% by weight. The amount of the silicon compound added to the aqueous solution containing the alumina hydrate precipitate is an amount corresponding to the composition of the silica-containing alumina as the final product, and the silica content in the silica-alumina is 1
The amount is 0 to 20% by weight. The pH of the mixed solution of the aqueous solution containing the precipitate of alumina hydrate and the aqueous solution of the silicon compound is maintained at pH 7 to 11, preferably 7 to 10. In this case, if necessary, a pH adjuster such as an aqueous solution of mineral acid is added to maintain the pH of the mixed aqueous solution within the above range. This mixed aqueous solution is maintained at a temperature of 60 to 80 ° C, preferably 65 to 75 ° C. The holding time is at least 0.5 hour, preferably 1-2 hours. By this operation, precipitated particles obtained by depositing silica hydrate on alumina hydrate are obtained. The precipitated particles are separated from the liquid, and then subjected to a conventional washing treatment, for example, a washing treatment using an aqueous solution of ammonium carbonate and water to remove impurity ions, and then a drying and firing treatment. Drying is performed at room temperature to 200 ° C. in the presence or absence of oxygen. The firing is performed at 200 to 800 ° C, preferably 550 to 650 ° C in the presence of oxygen. In this way, it is possible to obtain silica-alumina having a structure in which a silica layer is formed on the surface of an alumina core and having the following specific characteristics. (1) 250 m 2 / g or more, especially 255 to 350 m 2 / g
Has a total surface area of. (2) Pore diameter of 30 to 30 measured by nitrogen adsorption method
It has the first peak of the pore volume distribution in the range of 0Å. (3) Pore diameter measured by mercury porosimetry is 300 to 1
It has a second peak of the pore volume distribution in the range of 500Å. (4) The volume A of pores having a diameter of 30 to 300Å including the first peak is 80% or more of the volume B of pores having a diameter of 0 to 300Å measured by a nitrogen adsorption method, and particularly,
It is in the range of 80 to 95%. (5) The volume C of pores having a diameter in the range of 300 to 1500Å including the second peak is 15 to 40%, preferably 15 to 40% of the volume D of pores having a diameter of 0 to 1500Å.
It is in the range of 30%. (6) 150-150,000 measured by mercury porosimetry
The volume E of pores having a diameter in the range of Å is 0.3 to 0.
It is in the range of 9 ml / g, preferably 0.3 to 0.6 ml / g. The catalyst of the present invention has the following characteristics in addition to the above properties. (7) The volume F of pores having a diameter in the range of 150 to 2000 Å measured by the mercury penetration method is 0.3 to 0.9 m.
It is in the range of 1 / g, preferably 0.3-0.6 ml / g. (8) The volume G of pores having a diameter in the range of 150 to 300Å measured by the nitrogen adsorption method is 10 to 30% of the volume B of pores having a diameter in the range of 0 to 300Å, preferably 15 to 20. It is in the range of%. (9) The volume H of pores having a diameter in the range of 0 to 600Å measured by the nitrogen adsorption method is 0.8 to 1.2 ml / g.
Is in the range.

【0011】本発明のシリカ−アルミナには、必要に応
じ、他の金属成分、例えば、マグネシア、酸化カルシウ
ム、ジルコニア、ボリア、ハフニア、結晶性ゼオライト
等を添加することができる。これらの金属成分は、混合
法により添加することができる他、従来公知の含浸法や
共沈法により添加することができるが、含浸法により添
加するのが好ましい。含浸法により添加する場合には、
シリカ−アルミナを、所定の可溶性金属成分を含む含浸
溶液中に浸漬して、その金属成分をシリカ−アルミナ中
に所望量含浸させた後、乾燥し、焼成する。本発明の水
素化処理用触媒は、前記シリカ−アルミナに対して、水
素化活性金属を担持させることによって得ることができ
る。この水素化活性金属の担持方法としては、従来公知
の含浸法や、共沈法により行うことがきるが、含浸法に
より行うのが好ましい。本発明の水素化処理用触媒の細
孔特性は、その担体として用いるシリカ−アルミナに対
応するもので、本発明の触媒は、担体として用いるシリ
カ−アルミナとほぼ同等の細孔特性を有する。
If necessary, other metal components such as magnesia, calcium oxide, zirconia, boria, hafnia, and crystalline zeolite can be added to the silica-alumina of the present invention. These metal components can be added by a mixing method, or can be added by a conventionally known impregnation method or a coprecipitation method, but it is preferable to add them by an impregnation method. When adding by the impregnation method,
Silica-alumina is immersed in an impregnation solution containing a predetermined soluble metal component to impregnate silica-alumina with a desired amount of the metal component, and then dried and fired. The hydrotreating catalyst of the present invention can be obtained by supporting a hydrogenation active metal on the silica-alumina. As a method for supporting the hydrogenation active metal, a conventionally known impregnation method or a coprecipitation method can be used, but the impregnation method is preferable. The pore characteristics of the hydrotreating catalyst of the present invention correspond to those of silica-alumina used as a carrier thereof, and the catalyst of the present invention has pore characteristics almost equivalent to those of silica-alumina used as a carrier.

【0012】シリカ−アルミナ上に担持させる水素化活
性金属成分としては、元素周期律表第VIB族金属及び第V
III族金属の群から選択される一種又は二種以上の金属
を選択する。すなわち、第VIB族のクロム、モリブデン
及びタングステン、第VIII族の鉄、コバルト、ニッケ
ル、パラジウム、白金、オスミウム、イリジウム、ルテ
ニウム及びロジウム等から一種又は二種以上を選択して
使用する。炭化水素油の水素化脱硫のためには、特に、
第VIB族金属と第VIII族金属との組合せ、例えば、モリ
ブデン−コバルト、モリブデン−ニッケル、タングステ
ン−ニッケル、モリブデン−コバルト−ニッケル又はタ
ングステン−コバルト−ニッケル等の組合せを好ましく
使用することができる。これらの活性金属成分に元素周
期律表第VII族金属、例えばマンガン、及び第IV族金
属、例えば、錫、ゲルマニウム等を添加して使用するこ
ともできる。これら水素化活性金属成分は、酸化物及び
/又は硫化物として担持させることが好適である。ま
た、担体には、触媒強度を高めるために、チタニア等を
同時に担持させることもできる。金属成分の担持量とし
ては、酸化物として、前記第VIII族金属については、触
媒中約0.5〜20重量%の範囲、第VIB族金属は、約
5〜30重量%の範囲でよい。また、触媒強度の向上の
ために添加する金属成分は、触媒中、0.5〜1.5重
量%、好ましくは0.9〜1.1重量%の範囲にするの
がよい。
Hydrogenation active metal components supported on silica-alumina include metals of Group VIB and V of the Periodic Table of Elements.
One or more metals selected from the group III group metals are selected. That is, one or more selected from the group VIB chromium, molybdenum and tungsten, the group VIII iron, cobalt, nickel, palladium, platinum, osmium, iridium, ruthenium and rhodium are used. For hydrodesulfurization of hydrocarbon oils, in particular:
Combinations of Group VIB and Group VIII metals, such as molybdenum-cobalt, molybdenum-nickel, tungsten-nickel, molybdenum-cobalt-nickel or tungsten-cobalt-nickel, can be preferably used. It is also possible to add and use a metal of Group VII, for example, manganese, and a metal of Group IV, for example, tin, germanium, etc., to these active metal components. These hydrogenation active metal components are preferably supported as oxides and / or sulfides. In addition, titania or the like can be simultaneously loaded on the carrier in order to enhance the catalyst strength. The amount of the metal component supported may be, as an oxide, about 0.5 to 20% by weight of the Group VIII metal in the catalyst and about 5 to 30% by weight of the Group VIB metal. Further, the metal component added for improving the catalyst strength is 0.5 to 1.5% by weight, preferably 0.9 to 1.1% by weight in the catalyst.

【0013】担持金属を含浸法によりシリカ−アルミナ
に担持させる場合、担持させる金属の種類により一液含
浸法又は二液含浸法等のいずれの方法を採用してもよ
い。すなわち、二種以上の金属成分を担持するには、二
種以上の金属成分を混合し、その混合溶液から同時に含
浸(一液含浸法)させるか又は二種以上の金属成分の溶
液を別々に調製し、逐次含浸させていく(二液含浸法)
こともでき、本発明においてはこの金属担持法は特に制
約されない。
When the supported metal is supported on silica-alumina by the impregnation method, either one-liquid impregnation method or two-liquid impregnation method may be adopted depending on the kind of the metal to be supported. That is, in order to support two or more metal components, two or more metal components are mixed and impregnated simultaneously from the mixed solution (one-liquid impregnation method), or two or more metal component solutions are separately prepared. Prepare and sequentially impregnate (two-component impregnation method)
However, the metal supporting method is not particularly limited in the present invention.

【0014】本発明の触媒を好ましく製造するには、担
体として上述したようなシリカ−アルミナを担体として
使用し、この担体上に先ず元素周期律表第VIII族金属の
群から選択される一種又は二種以上の金属を担持させ
(第1ステップ)、次いで元素周期律表第VIB族金属の群か
ら選択される一種又は二種以上の金属を担持させる(第
2ステップ)。更に詳しく説明すると、この2段階方法
によると、担体上に第1ステップにて担持させる水素化
活性金属成分は、元素周期律表第VIII族金属の中から選
択される一種又は二種以上の金属である。即ち、第VIII
族の鉄、コバルト、ニッケル、パラジウム、白金、オス
ミウム、イリジウム、ルテニウム及びロジウム等から一
種又は二種以上が選択して使用される。好ましくは、コ
バルト及びニッケルが単独又は両者を組合せて使用され
る。第2ステップで担体に担持させる水素化活性金属成
分は、元素周期律表第VIB族金属の群から選択される一
種又は二種以上の金属である。即ち、第VIB族のクロ
ム、モリブデン及びタングステンの中から一種又は二種
以上が選択して使用される。好ましくはモリブデン及び
タングステンが単独で又は両者を組合せて使用される。
In order to preferably produce the catalyst of the present invention, the above-mentioned silica-alumina is used as a carrier, and one of the metals selected from the group of Group VIII metals of the Periodic Table of Elements is first used on this carrier. Support two or more metals
(First step), and then one or more metals selected from the group of Group VIB metals of the Periodic Table of the Elements are supported (second step). More specifically, according to this two-step method, the hydrogenation-active metal component supported on the carrier in the first step is one or more metals selected from Group VIII metals of the Periodic Table of the Elements. Is. That is, VIII
One or more selected from the group consisting of iron, cobalt, nickel, palladium, platinum, osmium, iridium, ruthenium and rhodium are used. Preferably, cobalt and nickel are used alone or in combination of both. The hydrogenation-active metal component supported on the carrier in the second step is one or more metals selected from the group of Group VIB metals of the Periodic Table of the Elements. That is, one or more selected from the VIB group chromium, molybdenum, and tungsten are used. Preferably molybdenum and tungsten are used alone or in combination.

【0015】上記第VIII族及び第VIB族の水素化活性金
属成分は、酸化物及び/又は硫化物として担持させるこ
とが好適であり、前記第1及び第2ステップによる2段
階担持方法では、活性金属成分の担持量は、酸化物基準
で、触媒中、第VIII族金属では0.1〜20重量%、好
ましくは1〜8重量%、より好ましくは2〜5重量%で
ある。第VIB族金属では3〜30重量%、好ましくは8
〜25重量%、より好ましくは5〜20重量%である。
第VIII族金属を0.1重量%未満担持させたのでは十分
な活性を有する触媒が得られず、又20重量%を超える
と、担体と結合しない遊離の金属成分が増加する。第VI
II族金属の遊離成分が増加すると、その後に第VIB族金
属を担持させる場合に不活性の複合酸化物が生成し、第
VIB族金属の分散性を低下せしめ、触媒活性を低下させ
る。一方、第VIB族金属が3重量%未満では活性が得ら
れず、10重量%を超えると分散性が低下すると同時に
第VIII族金属の助触媒効果が発揮されない。
It is preferable that the hydrogenation-active metal components of Group VIII and Group VIB are supported as oxides and / or sulfides. In the two-step supporting method according to the first and second steps, The supported amount of the metal component is 0.1 to 20% by weight, preferably 1 to 8% by weight, and more preferably 2 to 5% by weight in the catalyst, based on the oxide. For Group VIB metals 3 to 30% by weight, preferably 8
-25% by weight, more preferably 5-20% by weight.
If less than 0.1% by weight of the Group VIII metal is supported, a catalyst having sufficient activity cannot be obtained, and if it exceeds 20% by weight, the amount of free metal components not bound to the carrier increases. VI
An increase in the free components of Group II metals results in the formation of inert complex oxides when supporting Group VIB metals,
It lowers the dispersibility of Group VIB metals and lowers the catalytic activity. On the other hand, if the amount of the Group VIB metal is less than 3% by weight, the activity cannot be obtained, and if the amount of the Group VIB metal is more than 10% by weight, the dispersibility is lowered and the cocatalyst effect of the Group VIII metal is not exhibited.

【0016】上記触媒金属の担持方法において、第1及
び第2ステップにおける活性金属成分の担体への担持方
法としては、担体を前記金属の可溶性塩の水溶液に浸漬
し、金属成分を担体に導入する含浸法を採用することが
できる。含浸操作としては、担体を常温又は常温以上で
含浸溶液に浸漬して所望成分が十分担体に含浸する条件
に保持する。含浸溶液の量及び温度は、所望量の金属が
担持されるように適宜調整することができる。担持量に
応じて、含浸溶液に浸漬する担体の量が決定される。本
発明の触媒の形状は、円筒状、粒状又は錠剤状その他如
何なるものでもよく、このような形状は、押出成形、造
粒成形等の成形法に応じて決められる。成形物の直径は
0.5〜3.0mmの範囲が好ましい。水素化活性金属
成分を含浸した担体は、含浸溶液を分離した後、水洗、
乾燥及び焼成を行う。乾燥及び焼成の条件は、前記担体
の場合の条件と同一でもよい。重質炭化水素油の水素化
脱硫において、触媒は、使用に先立ち、予備硫化を行う
ことが好ましい。その方法については、後に記載する。
In the method for supporting the catalytic metal, the method of supporting the active metal component on the carrier in the first and second steps is as follows: the carrier is immersed in an aqueous solution of a soluble salt of the metal, and the metal component is introduced into the carrier. An impregnation method can be adopted. As the impregnation operation, the carrier is immersed in the impregnating solution at room temperature or above room temperature to maintain the condition that the desired component is sufficiently impregnated into the carrier. The amount and temperature of the impregnating solution can be appropriately adjusted so that a desired amount of metal is supported. The amount of carrier to be dipped in the impregnation solution is determined according to the supported amount. The catalyst of the present invention may have any shape such as a cylindrical shape, a granular shape or a tablet shape, and such a shape is determined according to a molding method such as extrusion molding or granulation molding. The diameter of the molded product is preferably in the range of 0.5 to 3.0 mm. The carrier impregnated with the hydrogenation active metal component is washed with water after separating the impregnation solution.
Dry and bake. The conditions of drying and baking may be the same as the conditions for the above carrier. In hydrodesulfurization of heavy hydrocarbon oils, the catalyst is preferably subjected to pre-sulfurization prior to use. The method will be described later.

【0017】前記のようにして製造される触媒は、シリ
カを約10〜20重量%含有するシリカ−アルミナ担体
上に少なくとも一種の水素化活性金属成分を担持させた
触媒であるが、以下に示す触媒性状を有することを特徴
とする。 (1)250m2/g以上、特に255〜350m2/g
の全表面積を有する。 (2)窒素吸着法により測定した細孔直径が30〜30
0Åの範囲に細孔容積分布の第1ピークを有する。 (3)水銀圧入法により測定した細孔直径が300〜1
500Åの範囲に細孔容積分布の第2ピークを有する。 (4)前記第1ピークを含む30〜300Åの直径を有
する細孔の容積Aが、窒素吸着法により測定した細孔直
径が0〜300Åの細孔の容積Bの80%以上、殊に、
80〜95%の範囲にある。 (5)前記第2ピークを含む300〜1500Åの範囲
の直径を有する細孔の容積Cが、0〜1500Åの直径
を有する細孔容積Dの15〜40%、好ましくは15〜
30%の範囲にある。 (6)水銀圧入法により測定した150〜150000
Åの範囲の直径を有する細孔の容積Eが、0.3〜0.
9ml/g、好ましくは0.3〜0.6ml/gの範囲
にある。 本発明の触媒は、前記性状の他、さらに、次のような特
徴を有する。 (7)水銀圧入法により測定した150〜2000Åの
範囲の直径を有する細孔の容積Fが、0.3〜0.9m
l/g、好ましくは0.3〜0.6ml/gの範囲にあ
る。 (8)窒素吸着法により測定した150〜300Åの範
囲に直径を有する細孔の容積Gが、0〜300Åの範囲
の直径を有する細孔の容積Bの15〜30%、好ましく
は15〜20%の範囲にある。 (9)窒素吸着法により測定した0〜600Åの範囲の
直径を有する細孔の容積Hが、0.8〜1.2ml/g
の範囲にある。
The catalyst produced as described above is a catalyst in which at least one hydrogenation active metal component is supported on a silica-alumina carrier containing about 10 to 20% by weight of silica. It is characterized by having a catalytic property. (1) 250 m 2 / g or more, especially 255 to 350 m 2 / g
Has a total surface area of. (2) Pore diameter of 30 to 30 measured by nitrogen adsorption method
It has the first peak of the pore volume distribution in the range of 0Å. (3) Pore diameter measured by mercury porosimetry is 300 to 1
It has a second peak of the pore volume distribution in the range of 500Å. (4) The volume A of pores having a diameter of 30 to 300Å including the first peak is 80% or more of the volume B of pores having a diameter of 0 to 300Å measured by a nitrogen adsorption method, and particularly,
It is in the range of 80 to 95%. (5) The volume C of pores having a diameter in the range of 300 to 1500Å including the second peak is 15 to 40%, preferably 15 to 40% of the volume D of pores having a diameter of 0 to 1500Å.
It is in the range of 30%. (6) 150-150,000 measured by mercury porosimetry
The volume E of pores having a diameter in the range of Å is 0.3 to 0.
It is in the range of 9 ml / g, preferably 0.3 to 0.6 ml / g. The catalyst of the present invention has the following characteristics in addition to the above properties. (7) The volume F of pores having a diameter in the range of 150 to 2000 Å measured by the mercury penetration method is 0.3 to 0.9 m.
It is in the range of 1 / g, preferably 0.3-0.6 ml / g. (8) The volume G of pores having a diameter in the range of 150 to 300Å measured by the nitrogen adsorption method is 15 to 30%, preferably 15 to 20% of the volume B of pores having a diameter in the range of 0 to 300Å. It is in the range of%. (9) The volume H of pores having a diameter in the range of 0 to 600Å measured by the nitrogen adsorption method is 0.8 to 1.2 ml / g.
Is in the range.

【0018】シリカ−アルミナ及び触媒の細孔容積の測
定法として使用した窒素吸着法及び水銀圧入法は、P.
H.エメット他著「キヤタリシス」第1巻、第123頁
(ラインホールド・パブリシング・カンパニー発行」(1
959年)P.H. Emmett, et al.“Catalysis”,1,123(1959)
(Reinhold Publishing Co.)、及び触媒工学講座、第4
巻、第69頁〜第78頁(地人書館発行)(昭和39
年)に記載の方法による。水銀圧入法においては、触媒
に対する水銀の接触角を130°、表面張力を485ダ
イン/cmとし、すべての細孔は円筒形であると仮定し
た。窒素吸着法に対しては多分子層吸着に基づく補正の
方法が種々提案されており、その中でもBJH法〔E.P.
Barreff. L.G. Joyner and P.P.Halnda, J._Amer., Ch
em, Sco., 73, 373(1951)〕及びCI法〔R.W. Cranston
and F.A. Inkley,“Advances in Catalysis," 1X, 143
(1957)(New York Academic Press)〕が一般に用いられ
ている。本発明における細孔容積に係るデータは吸着等
温線の吸着側を使用し、DH法〔D.Dollimore and G.R.
Heal, J. Appl., Chem., 14, 109(1964)〕によって計算
したものである。
The nitrogen adsorption method and mercury porosimetry used as a method for measuring the pore volume of silica-alumina and catalysts are described in P.
H. Emmet et al., "Catalysis," Vol. 1, p. 123 (Published by Linehold Publishing Company) (1
959) PH Emmett, et al. “Catalysis”, 1,123 (1959)
(Reinhold Publishing Co.), and Catalysis Engineering Course, 4th
Volume, pp. 69-78 (published by Jishin Shokan) (Showa 39)
Year). In the mercury porosimetry, the contact angle of mercury with the catalyst was 130 °, the surface tension was 485 dynes / cm, and it was assumed that all pores were cylindrical. Various correction methods based on multi-layer adsorption have been proposed for the nitrogen adsorption method. Among them, the BJH method [EP
Barreff. LG Joyner and PPHalnda, J._Amer., Ch
em, Sco., 73 , 373 (1951)] and CI method [RW Cranston
and FA Inkley, “Advances in Catalysis,” 1X , 143
(1957) (New York Academic Press)] is generally used. The data relating to the pore volume in the present invention uses the adsorption side of the adsorption isotherm and the DH method [D.Dollimore and GR
Heal, J. Appl., Chem., 14 , 109 (1964)].

【0019】次に、本発明の触媒の使用による炭化水素
油の水素化精製について述べる。炭化水素油としては、
直留軽油、分解軽油、減圧蒸留軽油、重質分解油等を使
用することができる。減圧蒸留軽油は、常圧蒸留残渣油
を減圧蒸留して得られる約370℃〜610℃の範囲の
沸点を有する留分を含有する留出油であり、硫黄分、窒
素分及び金属分を相当量含有するものである。例えば、
中東原油減圧蒸留軽油の一例を挙げるならば、約2〜4
重量%の硫黄分、約0.05〜0.2重量%の窒素分を
含有する。重質分解油は、残渣油を熱分解して得られる
約200℃以上の沸点を有する分解油であり、例えば、
接触分解装置からのライトサイクル油、残渣油のコーキ
ング及びビスブレーキング等から得られる軽油を使用す
ることができる。また、炭化水素油としては、硫黄分、
窒素分、アスファルト分及び金属含有化合物を含有し、
実質的に約480℃以上に沸点を有するものを用いるこ
とができる。このような炭化水素油は、原油の常圧又は
減圧蒸留残渣油を含有する。例えば、常圧において約4
80℃以上の沸点を有する炭化水素成分が約30〜10
0重量%の範囲の残渣油は、通常、約1〜10重量%の
硫黄分、約0.1〜1重量%の窒素分、約10〜100
0ppmの金属及び約1重量%の残留炭素分(コンラド
ソン)を含有する。以上のように、原料油としては、前
記の如き常圧蒸留残渣油、減圧蒸留残渣油、減圧蒸留軽
油、重質分解油、常圧蒸留軽油、分解軽油又はこれらの
混合油を使用することができる。
Next, hydrorefining of hydrocarbon oil by using the catalyst of the present invention will be described. As a hydrocarbon oil,
Straight-run light oil, cracked light oil, vacuum distilled light oil, heavy cracked oil and the like can be used. The vacuum-distilled gas oil is a distillate oil containing a fraction having a boiling point in the range of about 370 ° C. to 610 ° C., which is obtained by distilling an atmospheric distillation residue oil under reduced pressure, and corresponds to a sulfur content, a nitrogen content and a metal content. It is contained in an amount. For example,
Middle East crude oil If you give an example of vacuum distillation gas oil, it is about 2-4
It contains sulfur by weight and about 0.05-0.2% nitrogen by weight. Heavy cracked oil is cracked oil having a boiling point of about 200 ° C. or higher obtained by thermally cracking residual oil, and for example,
Light cycle oil from a catalytic cracker, light oil obtained from coking of residual oil and visbreaking, etc. can be used. Further, as hydrocarbon oil, sulfur content,
Contains nitrogen, asphalt and metal-containing compounds,
A substance having a boiling point of substantially 480 ° C. or higher can be used. Such a hydrocarbon oil contains crude oil at atmospheric pressure or vacuum distillation residue oil. For example, about 4 at normal pressure
About 30 to 10 hydrocarbon components having a boiling point of 80 ° C or higher
Residual oils in the range of 0% by weight typically contain about 1-10% by weight sulfur, about 0.1-1% by weight nitrogen, about 10-100%.
It contains 0 ppm of metal and about 1% by weight of residual carbon (Conradson). As described above, as the feedstock oil, it is possible to use the atmospheric distillation residue oil, the vacuum distillation residue oil, the vacuum distillation gas oil, the heavy cracked oil, the atmospheric distillation gas oil, the cracked gas oil or a mixed oil thereof as described above. it can.

【0020】反応条件は、原料油の種類、所望する脱硫
率又は脱窒素率に応じて適宜選択することができる。す
なわち、反応温度;約320〜420℃、反応圧力;約
30〜200kg/cm2、水素含有ガスの対原料油割
合;約100〜270リットル/リットル、及び液空間
速度;約0.2〜2.0V/H/Vを採用する。水素含
有ガス中の水素濃度は、約60〜100%の範囲でよ
い。水素化脱硫を行うにあたり、触媒は、固定床、流動
床又は移動床のいずれの形式でも使用することができる
が、装置面又は操作上からは固定床を採用することが好
ましい。また、二基以上の複数基の反応塔を結合して水
素化脱硫を行い、高度の脱硫率を達成することもでき
る。更に、本発明の触媒は、マクロポアに富むため、脱
硫、脱窒素反応を主体とする主反応塔に付設された金属
除去を目的とするカード・ドラムに脱メタル触媒として
充填使用することもできる。
The reaction conditions can be appropriately selected according to the type of feed oil, the desired desulfurization rate or denitrification rate. That is, reaction temperature: about 320 to 420 ° C., reaction pressure: about 30 to 200 kg / cm 2 , ratio of hydrogen-containing gas to feedstock oil: about 100 to 270 liters / liter, and liquid space velocity: about 0.2 to 2 Adopt 0.0V / H / V. The hydrogen concentration in the hydrogen containing gas may range from about 60-100%. In carrying out the hydrodesulfurization, the catalyst may be used in any form of a fixed bed, a fluidized bed or a moving bed, but it is preferable to adopt the fixed bed in terms of equipment or operation. It is also possible to combine two or more reaction towers for hydrodesulfurization to achieve a high desulfurization rate. Further, since the catalyst of the present invention is rich in macropores, it can be used as a demetallizing catalyst in a card drum for metal removal attached to a main reaction column mainly for desulfurization and denitrification.

【0021】本発明の触媒は、使用に先立ち予備硫化を
行うことが好ましい。予備硫化は、反応塔のその場にお
いて行うことができる。すなわち、焼成した触媒を含硫
黄留出油と、温度;約150〜400℃、圧力(全
圧);約20〜100kg/cm2、液空間速度;約
0.3〜2.0V/H/V及び約50〜1500リット
ル/リットルの水素含有ガスの存在下において接触さ
せ、硫化処理の終了後含硫黄留出油を原料油に切替え原
料油の脱硫に適当な運転条件に設定し運転を開始する。
硫化処理の方法としては、以上の如き方法の他に、硫化
水素その他の硫黄化合物を直接触媒と接触させるか又は
適当な留出油に添加してこれを触媒と接触させることも
できる。
The catalyst of the present invention is preferably presulfidized prior to use. Presulfiding can be carried out in situ in the reaction tower. That is, the calcined catalyst was mixed with sulfur-containing distillate oil, temperature: about 150 to 400 ° C., pressure (total pressure): about 20 to 100 kg / cm 2 , liquid space velocity: about 0.3 to 2.0 V / H / After contacting in the presence of V and about 50-1500 liters / liter of hydrogen-containing gas, after completion of the sulfurization treatment, the sulfur-containing distillate oil is switched to the feedstock and the operation is started by setting appropriate operating conditions for desulfurization of the feedstock. To do.
In addition to the above methods, the sulfurization treatment may be carried out by directly contacting the catalyst with hydrogen sulfide or other sulfur compound, or by adding it to a suitable distillate oil and contacting it with the catalyst.

【0022】[0022]

【発明の効果】本発明の触媒は、その触媒性状として、
前記細孔特性を有することを特徴とするが、本発明の触
媒の最も大きな特徴は、細孔直径が30〜200Åの範
囲に細孔容積分布の第1ピークと、細孔直径が300〜
1500Åの範囲に細孔容積の第2ピークを有すること
である。本発明の触媒と、前記した公知触媒(特公平3
−31496号)と比較した場合、公知触媒では第2ピ
ークを有しないのに対して、本発明触媒では第2ピーク
を有する点に大きな相違があり、そして、細孔直径が1
50〜150000Åの範囲の細孔容積が、公知触媒で
は0.01〜0.03ml/gと低いのに対し、本発明
の触媒の場合は、0.3ml/g以上という高い値を有
する。本発明の触媒は、前記公知触媒と比較して、前記
のような性状の相違を有し、その結果、その触媒性能に
おいて以下に示すような利点を有するものである。 (1)担持された水素化活性金属の均一分散性が高い。
この理由は、本発明で担体として用いるシリカ−アルミ
ナが、大きな比表面積を有するとともに、金属の担持性
にすぐれていることによる。本発明の触媒をX線回折に
より分析すると、担持させた触媒金属成分の結晶は確認
されず、触媒金属成分は非晶質の状態でシリカ−アルミ
ナ表面に均一に分散しているものと判断される。 (2)平均細孔直径が大きいため、細孔入口のコークに
よる閉塞が起りにくく、触媒活性維持能においてすぐれ
ている。 (3)アルミナ単独の担体に比べて、酸量が多く、酸強
度が高いために、水素化分解機能を有し、水素化反応に
対し立体障害となるような構造を有する難脱硫性含硫黄
化合物も、容易に脱硫することができる。
The catalyst of the present invention has the following catalytic properties.
The catalyst of the present invention is characterized by having the above-mentioned pore characteristics, and the greatest feature of the catalyst of the present invention is that the first peak of the pore volume distribution is in the range of 30 to 200Å and the pore diameter is 300 to
It has a second peak of pore volume in the range of 1500Å. The catalyst of the present invention and the above-mentioned known catalyst (Japanese Patent Publication No.
No. 31496), the known catalyst has no second peak, whereas the catalyst of the present invention has a second peak, and the pore diameter is 1
The pore volume in the range of 50 to 150000Å is as low as 0.01 to 0.03 ml / g in the known catalyst, while the catalyst of the present invention has a high value of 0.3 ml / g or more. The catalyst of the present invention has the above-mentioned difference in properties as compared with the above-mentioned known catalyst, and as a result, has the following advantages in its catalytic performance. (1) Uniform dispersibility of the supported hydrogenation active metal is high.
The reason for this is that the silica-alumina used as a carrier in the present invention has a large specific surface area and is excellent in metal-supporting property. When the catalyst of the present invention was analyzed by X-ray diffraction, crystals of the supported catalyst metal component were not confirmed, and it was judged that the catalyst metal component was uniformly dispersed in the silica-alumina surface in an amorphous state. It (2) Since the average pore diameter is large, clogging of the pore inlet due to coke hardly occurs, and the catalyst activity maintaining ability is excellent. (3) A non-desulfurizing sulfur-containing sulfur having a large amount of acid and a high acid strength as compared with a carrier made of alumina alone, having a hydrocracking function and having a structure that causes steric hindrance to the hydrogenation reaction. The compounds can also be easily desulfurized.

【0023】本発明のシリカ−アルミナは、アルミナを
核とし、その表面にシリカが層状に結合した構造を有
し、前記した触媒と同等の細孔特性を有する。このもの
は、水素化脱硫触媒用担体として好適に使用される他、
従来のシリカ−アルミナと同様に、触媒担体、吸着剤、
充填剤等として用いられる。
The silica-alumina of the present invention has a structure in which silica is layered on the surface of which alumina is a core and has pore characteristics equivalent to those of the catalyst described above. This is preferably used as a carrier for hydrodesulfurization catalyst,
Similar to conventional silica-alumina, catalyst carrier, adsorbent,
Used as a filler, etc.

【0024】[0024]

【実施例】次に、本発明を実施例について説明する。 実施例1 純水1.0リットルを約70℃に加熱し、これに水酸化
ナトリウム水溶液(NaOH169g、純水420g)
を添加し、pH約12のアルカリ水を作った。次にこの
アルカリ水に硫酸アルミニウム水溶液(硫酸アルミニウ
ム466g、純水710g)を5秒以内に、加えた後、
水酸化ナトリウム溶液又は硝酸溶液でpHを8.8〜
9.2に調整し、約70℃で約1時間熟成した。これに
より、アルミナ水和物の沈殿(ゲル)を含む水溶液が得
られた。この水溶液に、ケイ酸ナトリウム水溶液(3号
水ガラス69g、純水210g)を加え必要に応じて硝
酸溶液を加えpHを約9とし、温度約70℃で3時間熟
成した。これにより、アルミナ水和物の表面にシリカ水
和物が沈着した沈殿粒子を含むスラリー液が得られた。
このスラリー液を濾過し、濾別したケーキは、濾過した
後の濾液のナトリウム濃度が5ppm以下になるまで炭
酸アンモニウム水溶液で洗浄した。このケーキを、80
℃の混練機中で成形可能な含水量になるまで乾燥しなが
ら混練し、押出し型成形機により、1.5mmφの円柱
状ペレットに成形した。成形されたペレットは、120
℃で16時間乾燥し、さらに600℃で3時間焼成して
担体とした。次いで、この担体に、酸化物として、約2
0wt%のモリブデンが担持されるように、パラモリブ
デン酸アンモニウムの水溶液(モリブデン液)を含浸さ
せ、乾燥し、550℃で焼成した。次に、酸化物として
約5wt%のコバルトが担持されるように、硝酸コバル
ト水溶液(コバルト液)を含浸させ、乾燥し、450℃
で焼成して触媒とした。
EXAMPLES Next, examples of the present invention will be described. Example 1 1.0 liter of pure water was heated to about 70 ° C., and an aqueous sodium hydroxide solution (169 g of NaOH, 420 g of pure water) was added thereto.
Was added to make alkaline water having a pH of about 12. Then, after adding an aluminum sulfate aqueous solution (466 g of aluminum sulfate and 710 g of pure water) to the alkaline water within 5 seconds,
Adjust the pH to 8.8 with sodium hydroxide solution or nitric acid solution.
It was adjusted to 9.2 and aged at about 70 ° C. for about 1 hour. As a result, an aqueous solution containing a precipitate (gel) of alumina hydrate was obtained. An aqueous sodium silicate solution (69 g of No. 3 water glass, 210 g of pure water) was added to this aqueous solution, and a nitric acid solution was added as necessary to adjust the pH to about 9, and the mixture was aged at a temperature of about 70 ° C. for 3 hours. As a result, a slurry liquid containing precipitated particles in which silica hydrate was deposited on the surface of alumina hydrate was obtained.
The slurry solution was filtered, and the filtered cake was washed with an aqueous ammonium carbonate solution until the sodium concentration of the filtrate after filtration was 5 ppm or less. 80 this cake
The mixture was kneaded while being dried in a kneader at 0 ° C. until it had a water content capable of molding, and was molded into a cylindrical pellet of 1.5 mmφ by an extrusion molding machine. The molded pellets are 120
It was dried at 16 ° C. for 16 hours and then calcined at 600 ° C. for 3 hours to obtain a carrier. Then, about 2 as an oxide is added to this carrier.
An aqueous solution of ammonium paramolybdate (molybdenum solution) was impregnated so that 0 wt% of molybdenum was supported, dried, and baked at 550 ° C. Next, an aqueous solution of cobalt nitrate (cobalt solution) is impregnated so that about 5 wt% of cobalt is supported as an oxide, and dried at 450 ° C.
It was then calcined to obtain a catalyst.

【0025】実施例2 実施例1で得た成形後のペレット状担体に、酸化物とし
て約17wt%のモリブデンが担持されるように、モリ
ブデン液の水溶液を含浸させ、乾燥し、550℃で焼成
した。次に酸化物として約3.7wt%のコバルトが担
持されるように、コバルト液を含浸させ、乾燥し、温度
450℃で焼成して触媒とした。
Example 2 The pelletized carrier obtained in Example 1 was impregnated with an aqueous solution of molybdenum so that about 17 wt% of molybdenum was supported as an oxide, dried and calcined at 550 ° C. did. Next, a cobalt solution was impregnated so that about 3.7 wt% of cobalt was supported as an oxide, dried, and calcined at a temperature of 450 ° C. to obtain a catalyst.

【0026】実施例3 実施例1で得た成形後のペレット状担体に、酸化物とし
て約20wt%のモリブデンが担持されるように、モリ
ブデン液を含浸させ、乾燥し、550℃で焼成した。次
に酸化物として約3.5wt%のコバルトが担持される
ように、コバルト液を含浸させ、乾燥し、温度450℃
で焼成して触媒とした。
Example 3 The pelletized carrier obtained in Example 1 was impregnated with a molybdenum solution so that about 20 wt% of molybdenum as an oxide was supported, dried and calcined at 550 ° C. Next, a cobalt solution is impregnated and dried so that about 3.5 wt% of cobalt is supported as an oxide, and the temperature is 450 ° C.
It was then calcined to obtain a catalyst.

【0027】前記のようにして得た各触媒の性状を比較
触媒とともに、表1に示す。なお、表1において示した
符号は次の内容を示す。 A:細孔直径が30〜300Åの範囲にある細孔容積 B:細孔直径が0〜300Åの範囲にある細孔容積 C:細孔直径が300〜1500Åの範囲にある細孔容
積 D:細孔直径が0〜1500Åの範囲にある細孔容積 G:細孔直径が150〜300Åの範囲にある細孔容積 また、表1に示した比較触媒Aは市販の脱硫触媒であ
り、比較触媒Bは、特公平3−31496号公報の記載
に従って得られた触媒である。
The properties of each catalyst obtained as described above are shown in Table 1 together with the comparative catalyst. The symbols shown in Table 1 indicate the following contents. A: Pore volume having a pore diameter in the range of 30 to 300Å B: Pore volume having a pore diameter in the range of 0 to 300Å C: Pore volume having a pore diameter in the range of 300 to 1500Å D: Pore volume with pore diameter in the range of 0 to 1500Å G: Pore volume with pore diameter in the range of 150 to 300Å Further, Comparative catalyst A shown in Table 1 is a commercially available desulfurization catalyst, and comparative catalyst B is a catalyst obtained according to the description in Japanese Examined Patent Publication No. 3-31496.

【0028】実施例1の触媒及び比較触媒A、BをX線
回折装置(XRD)で分析した結果、実施例1の触媒で
は、結晶性CoMoO4(モリブデン酸コバルト)は検
出されないのに対し、比較触媒A及びBでは金属酸化物
の微結晶のピークが検出された。このことにより、本発
明の触媒では、Mo及びCoの分散性がすぐれているこ
とがわかる。
The catalyst of Example 1 and the comparative catalysts A and B were analyzed by an X-ray diffractometer (XRD). As a result, no crystalline CoMoO 4 (cobalt molybdate) was detected in the catalyst of Example 1. In comparative catalysts A and B, peaks of fine crystals of metal oxide were detected. This shows that the catalyst of the present invention has excellent dispersibility of Mo and Co.

【0029】[0029]

【表1】 [Table 1]

【0030】応用例1 実施例1の触媒及び比較触媒A、Bを用いて、接触分解
装置から得られた分解軽油留分の水素化脱硫処理を行っ
た。表2にその水素化脱硫条件を示す。
Application Example 1 Using the catalyst of Example 1 and comparative catalysts A and B, the hydrodesulfurization treatment of the cracked gas oil fraction obtained from the catalytic cracking apparatus was carried out. Table 2 shows the hydrodesulfurization conditions.

【0031】[0031]

【表2】 表3にその水素化脱硫処理の結果を示す。なお、水素化
処理製品油の硫黄レベルは0.04〜0.07wt%で
ある。
[Table 2] Table 3 shows the results of the hydrodesulfurization treatment. The sulfur level of the hydrotreated product oil is 0.04 to 0.07 wt%.

【0032】[0032]

【表3】 [Table 3]

【0033】応用例2 実施例1及び比較触媒A、Bを用いて、直留軽油留分の
水素化脱硫処理を行った。なお、水素化処理製品の硫黄
レベルは0.01〜0.04wt%である。表4にその
水素化脱硫条件を示す。
Application Example 2 Using Example 1 and Comparative Catalysts A and B, hydrodesulfurization treatment of straight-run light oil fraction was performed. The sulfur level of the hydrotreated product is 0.01 to 0.04 wt%. Table 4 shows the hydrodesulfurization conditions.

【0034】[0034]

【表4】 表5にその水素化脱硫処理の結果を示す。なお、水素化
処理製品油の硫黄レベルは0.04〜0.07wt%で
ある。
[Table 4] Table 5 shows the results of the hydrodesulfurization treatment. The sulfur level of the hydrotreated product oil is 0.04 to 0.07 wt%.

【0035】[0035]

【表5】 [Table 5]

【0036】比較例1 実施例1において、アルカリ水に対する硫酸アルミニウ
ム水溶液を添加する時間を70分とした以外は同様にし
て実験を行った。この場合に得られたシリカ−アルミナ
の特性は水素化処理触媒用担体としては比表面積が18
3m2/gと低く不満足のものであった。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that the time for adding the aluminum sulfate aqueous solution to the alkaline water was 70 minutes. The silica-alumina obtained in this case had a specific surface area of 18 as a carrier for hydrotreating catalyst.
It was as low as 3 m 2 / g and was unsatisfactory.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10G 45/04 A 2115−4H 45/12 A 2115−4H (72)発明者 佐伯 和男 埼玉県入間郡大井町西鶴ケ岡1丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 上田 富雄 埼玉県入間郡大井町西鶴ケ岡1丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 林 郁孝 埼玉県入間郡大井町西鶴ケ岡1丁目3番1 号 東燃株式会社総合研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number in the agency FI Technical indication C10G 45/04 A 2115-4H 45/12 A 2115-4H (72) Inventor Kazuo Saeki Iruma, Saitama Prefecture 1-3-1 Nishitsurugaoka, Oi-machi, Tonen Research Institute, Tonen Corporation (72) Inventor Tomio Ueda 1-3-1 Nishi-Tsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Research Institute (72) Inventor Hayashi Ikutaka 1-3-3 Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Prefecture Tonen Corporation Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 核としてのアルミナの表面上にシリカ層
を形成した構造を有し、シリカを10〜20重量%含有
するシリカ−アルミナであって、窒素吸着法により測定
した細孔直径が30〜300Åの範囲に細孔容積分布の
第1ピークを、水銀圧入法により測定した細孔直径が3
00〜1500Åの範囲に細孔容積分布の第2ピークを
有するとともに、第1ピークを含む30〜300Åの範
囲の直径を有する細孔の容積Aが窒素吸着法により測定
した0〜300Åの範囲の直径を有する細孔の容積Bの
80%以上であり、該第2ピークを含む300〜150
0Åの範囲の直径を有する細孔の容積Cが0〜1500
Åの直径を有する細孔容積Dの15〜40%の範囲にあ
り、かつ水銀圧入法により測定した150〜15000
0Åの範囲の直径を有する細孔の容積Eが0.3〜0.
9ml/gの範囲にあり、さらに全表面積が250m2
/g以上であることを特徴とするシリカ−アルミナ。
1. A silica-alumina having a structure in which a silica layer is formed on the surface of alumina as a core and containing 10 to 20% by weight of silica, wherein the pore diameter measured by a nitrogen adsorption method is 30. The first peak of the pore volume distribution in the range of ~ 300 Å, the pore diameter measured by mercury porosimetry is 3
The volume A of the pores having the second peak of the pore volume distribution in the range of 00 to 1500 Å and having the diameter in the range of 30 to 300 Å including the first peak is in the range of 0 to 300 Å measured by the nitrogen adsorption method. The volume B of the pores having a diameter is 80% or more and 300 to 150 including the second peak.
Volume C of pores having a diameter in the range of 0Å is 0 to 1500
150 to 15000, which is in the range of 15 to 40% of the pore volume D having a diameter of Å and measured by the mercury porosimetry.
The volume E of pores having a diameter in the range of 0Å has a value of 0.3 to 0.
It is in the range of 9 ml / g and the total surface area is 250 m 2.
/ G or more, silica-alumina characterized by the above-mentioned.
【請求項2】 核としてのアルミナの表面上にシリカ層
を形成した構造を有し、シリカを10〜20重量%含有
するシリカ−アルミナ含有担体に少なくとも1種の水素
化活性金属成分を担持させた触媒であって、窒素吸着法
により測定した細孔直径が30〜300Åの範囲に細孔
容積分布の第1ピークを、水銀圧入法により測定した細
孔直径が300〜1500Åの範囲に細孔容積分布の第
2ピークを有するとともに、第1ピークを含む30〜3
00Åの範囲の直径を有する細孔の容積Aが窒素吸着法
により測定した0〜300Åの範囲の直径を有する細孔
の容積Bの80%以上であり、該第2ピークを含む30
0〜1500Åの範囲の直径を有する細孔の容積Cが0
〜1500Åの直径を有する細孔容積Dの15〜40%
の範囲にあり、かつ水銀圧入法により測定した150〜
150000Åの範囲の直径を有する細孔の容積Eが
0.3〜0.9ml/gの範囲にあり、さらに全表面積
が250m2/g以上であることを特徴とする水素化処
理用触媒。
2. A silica-alumina-containing carrier having a structure in which a silica layer is formed on the surface of alumina as a core and containing 10 to 20% by weight of silica, and at least one hydrogenation-active metal component is supported on the carrier. The catalyst has a first peak of pore volume distribution in the range of 30 to 300Å as measured by nitrogen adsorption method, and a pore diameter in the range of 300 to 1500Å as measured by mercury porosimetry. 30 to 3 including the first peak while having the second peak of the volume distribution
The volume A of the pores having a diameter in the range of 00Å is 80% or more of the volume B of the pores having a diameter in the range of 0 to 300Å measured by the nitrogen adsorption method, and includes the second peak.
The volume C of pores having a diameter in the range of 0 to 1500Å is 0
15-40% of the pore volume D having a diameter of ~ 1500Å
Range of 150 and measured by mercury porosimetry
A hydrotreating catalyst characterized in that the volume E of pores having a diameter in the range of 150,000 Å is in the range of 0.3 to 0.9 ml / g and the total surface area is 250 m 2 / g or more.
【請求項3】 請求項1のシリカ−アルミナを製造する
方法において、pH7〜13の範囲の水酸化ナトリウム
水溶液に酸性アルミニウム水溶液を45秒以内で添加混
合し、この混合液を60〜80℃に保持してアルミナ水
和物を沈殿させる工程と、このアルミナ水和物の沈殿を
含む水溶液に水溶性ケイ素化合物の水溶液を添加混合
し、pH7〜10の条件下、温度60〜80℃に保持し
てアルミナ水和物沈殿上にシリカ水和物を沈着させる工
程からなることを特徴とするシリカ−アルミナの製造方
法。
3. The method for producing silica-alumina according to claim 1, wherein an acidic aluminum aqueous solution is added to and mixed with an aqueous sodium hydroxide solution having a pH range of 7 to 13 within 45 seconds, and the mixed solution is heated to 60 to 80 ° C. A step of holding and precipitating alumina hydrate, an aqueous solution of the water-soluble silicon compound is added to and mixed with an aqueous solution containing the precipitate of alumina hydrate, and the temperature is kept at 60 to 80 ° C. under the condition of pH 7 to 10. And a step of depositing a silica hydrate on the alumina hydrate precipitate.
JP4303073A 1992-10-14 1992-10-14 Silica-alumina, its production and catalyst for hydrogenation Pending JPH06127931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4303073A JPH06127931A (en) 1992-10-14 1992-10-14 Silica-alumina, its production and catalyst for hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4303073A JPH06127931A (en) 1992-10-14 1992-10-14 Silica-alumina, its production and catalyst for hydrogenation

Publications (1)

Publication Number Publication Date
JPH06127931A true JPH06127931A (en) 1994-05-10

Family

ID=17916572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4303073A Pending JPH06127931A (en) 1992-10-14 1992-10-14 Silica-alumina, its production and catalyst for hydrogenation

Country Status (1)

Country Link
JP (1) JPH06127931A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880562A (en) * 1988-02-26 1989-11-14 Chisso Corporation Liquid crystal compound
WO1999047256A1 (en) * 1998-03-16 1999-09-23 Tonen Corporation Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil
EP0968764A1 (en) * 1997-11-18 2000-01-05 Tonen Corporation Hydrotreating catalyst and processes for hydrotreating hydrocarbon oil with the same
WO2000033957A1 (en) * 1998-12-08 2000-06-15 Japan Energy Corporation Catalyst for hydrofining and method for preparation thereof
JP2006188413A (en) * 2004-12-08 2006-07-20 Nittetsu Mining Co Ltd Method of manufacturing oxide film-coated particulate
JP2008503611A (en) * 2004-06-17 2008-02-07 エクソンモービル リサーチ アンド エンジニアリング カンパニー Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
US7429550B2 (en) 2004-06-07 2008-09-30 Nippon Oil Corporation Hydrogenation catalyst for hydrocarbon oil and process for hydrogenation using the catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880562A (en) * 1988-02-26 1989-11-14 Chisso Corporation Liquid crystal compound
EP0968764A1 (en) * 1997-11-18 2000-01-05 Tonen Corporation Hydrotreating catalyst and processes for hydrotreating hydrocarbon oil with the same
EP0968764A4 (en) * 1997-11-18 2001-10-17 Tonen Corp Hydrotreating catalyst and processes for hydrotreating hydrocarbon oil with the same
WO1999047256A1 (en) * 1998-03-16 1999-09-23 Tonen Corporation Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil
US6306289B1 (en) 1998-03-16 2001-10-23 Tonen Corporation Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil
EP1334769A1 (en) * 1998-03-16 2003-08-13 Tonen Corporation Process and catalyst for hydrotreating hydrocarbon oils
WO2000033957A1 (en) * 1998-12-08 2000-06-15 Japan Energy Corporation Catalyst for hydrofining and method for preparation thereof
US6780817B1 (en) 1998-12-08 2004-08-24 Japan Energy Corporation Catalyst for hydrofining and method for preparation thereof
US7429550B2 (en) 2004-06-07 2008-09-30 Nippon Oil Corporation Hydrogenation catalyst for hydrocarbon oil and process for hydrogenation using the catalyst
JP2008503611A (en) * 2004-06-17 2008-02-07 エクソンモービル リサーチ アンド エンジニアリング カンパニー Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
JP4839311B2 (en) * 2004-06-17 2011-12-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
JP2006188413A (en) * 2004-12-08 2006-07-20 Nittetsu Mining Co Ltd Method of manufacturing oxide film-coated particulate

Similar Documents

Publication Publication Date Title
US4837193A (en) Hydrotreating catalyst and process of manufacture
US4008149A (en) Process of hydro-refining hydrocarbon oils
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
EP1347832B1 (en) Hydroprocessing catalyst and use thereof
US4134856A (en) Catalyst for hydro-refining hydrocarbon oils
US4186078A (en) Catalyst and process for hydrofining petroleum wax
CA2360121C (en) Hydroprocessing catalyst and use thereof
US4139494A (en) Catalyst for hydrofining petroleum wax
CA2449637C (en) Two-stage heavy feed hpc process
WO2004052534A1 (en) Heavy feed hpc process using a mixture of catalysts
WO1999047256A1 (en) Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
US4880524A (en) Process for hydrotreating hydrocarbon feeds
JPH06127931A (en) Silica-alumina, its production and catalyst for hydrogenation
JP3802939B2 (en) Catalyst for hydrotreating
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JPH07196308A (en) Silica-alumina, its production and catalyst for hydrotreating of light hydrocarbon oil
JP4245226B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JPH07194976A (en) Silica-alumina, production thereof and catalyst for hydrotreatment of light hydrocarbon oil
JP3782893B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
JPH08224471A (en) Fire resisting inorganic oxide catalyst carrier and hydrogenation catalyst using the same
JP3782887B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
JPH08182930A (en) Catalyst for hydrogenation refining
JPH0576758A (en) Catalyst for hydrogenation treatment
JPH0513706B2 (en)