JP4564673B2 - Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same - Google Patents

Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same Download PDF

Info

Publication number
JP4564673B2
JP4564673B2 JP2001008541A JP2001008541A JP4564673B2 JP 4564673 B2 JP4564673 B2 JP 4564673B2 JP 2001008541 A JP2001008541 A JP 2001008541A JP 2001008541 A JP2001008541 A JP 2001008541A JP 4564673 B2 JP4564673 B2 JP 4564673B2
Authority
JP
Japan
Prior art keywords
catalyst
compound
reduction
temperature
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001008541A
Other languages
Japanese (ja)
Other versions
JP2002210363A (en
Inventor
智行 乾
敏行 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2001008541A priority Critical patent/JP4564673B2/en
Publication of JP2002210363A publication Critical patent/JP2002210363A/en
Application granted granted Critical
Publication of JP4564673B2 publication Critical patent/JP4564673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として軽質炭化水素からなる原料を水素化処理する触媒、該触媒の製造方法及びこれを用いた軽質炭化水素油の水素化処理方法に関し、特に石油精製分野において低温で水素化処理を行うことを可能にする高活性な水素化処理触媒、該触媒の製造方法及びそれを用いた軽質炭化水素油の水素化処理方法に関するものである。
【0002】
【従来の技術】
石油精製の分野において、水素化処理はきわめて重要な技術であり、改質や精製方法に広く使用されている。たとえば、水素共存下に原料油中の硫黄化合物を反応させて除去する水素化脱硫処理、同様に窒素化合物を除去する水素化脱窒素処理、原料油中の炭化水素を分解して軽質化する水素化分解処理、原料油中の芳香族炭化水素をはじめとする不飽和炭化水素を水素化する水添処理等に利用されている。本発明において水素化処理とはこれら水素化を伴う処理全般を指すものとする。これらの水素化処理においては触媒を用いて高温、高圧下で反応を進行させるが、反応条件を低温、低圧にすることによってプロセスの経済性を向上させるため、触媒の活性が高いことが望まれる。
【0003】
水素化処理に用いられる水素化処理触媒は、通常、金属酸化物等の多孔質で表面積の大きい物質を担体として、水素化活性を有する金属ないし化合物を担持した担持触媒である。一般に、貴金属を用いた触媒は水素化活性が高いが、硫黄分等の物質による被毒を受けやすい。一方、ニッケル、コバルト、モリブデン、タングステン等の金属の硫化物を主体とする硫化物触媒は、貴金属触媒に比べると水素化活性は高くないが、硫黄の被毒に強いことが知られている。水素化処理においては、その目的、原料等に応じて様々な触媒が選択され用いられる。
【0004】
このように現在にいたるまで、水素化処理触媒として多くの種類の触媒が用いられている。しかしながら近年の環境保全に対する要求の高まりを背景として、経済性を向上させる目的および環境に対する負荷を低減する目的で、さらに高活性であり、かつ高い耐硫黄性と長い触媒寿命を兼ね備えた触媒が切望されている現状にある。
【0005】
【発明が解決しようとする課題】
水素化処理触媒として、前述した2種類の触媒、即ちモリブデン、タングステン、ニッケル、コバルト等、周期律表第6族元素または周期律表第8〜10族卑金属元素の化合物を含有する触媒と、ロジウム、パラジウム、白金等の周期律表第8〜10族貴金属元素を含有する触媒を単に混合しただけでは、両者の特長を兼ね備えた高性能の水素化触媒は得られない。
【0006】
高活性の水素化触媒を得るためには、主活性成分である周期律表第6族元素または周期律表第8〜10族卑金属元素の化合物からなる反応活性点の近傍に、選択的に周期律表第8〜10族貴金属元素を存在させることが重要であり、これにより、周期律表第8〜10族貴金属上で水素が活性化され、反応活性点へ水素を効率的にスピルオーバーさせることができる。この水素のスピルオーバーによって反応活性点上の水素が増加して、水素化反応活性の向上とともに、被毒物となる硫黄化合物の水素化促進による耐硫黄性の向上、および活性低下の原因となるコークの水素化促進による長寿命化が図れる。これにより高価な貴金属の使用量を低く抑えながら触媒性能を高めることができる。
【0007】
【課題を解決するための手段】
そこで本発明の発明者らは周期律表第8〜10族卑金属元素化合物からなる反応活性点の近傍に、周期律表第8〜10族貴金属元素を選択的に存在させることが重要であり、これにより高価な貴金属の使用量を低く抑えながら触媒性能を高めることができることに着目し、高性能の水素化処理触媒を得るため鋭意研究を重ねた結果、反応活性点となる触媒の成分が還元を受ける際の挙動が水素化処理の触媒活性と密接な関係を有し、特定の還元特性を有する水素化処理触媒のみが高活性を有することを見出し、またこのような還元特性を有する触媒を得るための方法を見出し、本発明を完成した。
【0008】
すなわち、本発明は周期律表第8〜10族卑金属元素から選ばれる少なくとも一つの元素の化合物(A)と、周期律表第8〜10族貴金属元素から選ばれる少なくとも一つの元素の化合物(B)とを含有し、前記化合物(A)及び化合物(B)は還元処理を行ったものであり、かつ化合物(A)に帰属する昇温還元法の還元ピーク温度が500℃以下であることを特徴とする軽質炭化水素油の水素化処理触媒、該触媒の製造方法及びこれを用いた軽質炭化水素油の水素化処理方法である。このような還元特性を有する触媒は、担体に化合物(A)を担持し還元処理を行った後、化合物(B)の溶液と接触させることにより得られる。
尚、本発明の参考発明として、下記が挙げられる。
周期律表第6族元素から選ばれる少なくとも一つの元素の化合物(A)と、周期律表第8〜10族貴金属元素から選ばれる少なくとも一つの元素の化合物(B)とを含有し、前記化合物(A)及び化合物(B)は還元処理を行ったものであり、かつ化合物(A)に帰属する昇温還元法の還元ピーク温度が500℃以下であることを特徴とする軽質炭化水素油の水素化処理触媒である。
以下、本発明を詳細に説明する。
【0009】
【発明の実施の形態】
本発明の水素化処理触媒は、周期律表第8〜10族卑金属元素から選ばれる少なくとも一つの元素の化合物(A)と、周期律表第8〜10族貴金属元素から選ばれる少なくとも一つの元素の化合物(B)の2成分を必須成分として含有する。ここに周期律表による族番号は1989年IUPAC無機化学命名法改訂版による長周期型周期律表に基づくものである。なお本発明において、ある元素の化合物にはその元素の単体も含むものとする。
【0010】
本発明の参考発明に用いられる周期律表第6族元素とはクロム、モリブデン、タングステンを指すものであり、その中ではモリブデン、タングステンが好ましく、モリブデンがさらに好ましい。
【0011】
周期律表第8〜10族卑金属元素とは鉄、コバルト、ニッケルを指し、その中ではコバルト、ニッケルが好ましい。
【0012】
また触媒の(A)成分としては、周期律表第6族元素のみを用いることは本発明の参考発明であるが、本発明においては、周期律表第8〜10族卑金属元素のみを用いても良いが、両者とも用いても良い。
【0013】
これら元素の化合物(A)の形態は任意であるが、好ましくは硫化物、酸化物、金属であり、さらに好ましくは硫化物、金属である。また触媒中の(A)成分の含有量は任意であるが、酸化物とした場合の重量換算で、触媒全量(担体を含む)に対して1〜50重量%が好ましい。さらに好ましくは2〜30重量%である。なおこの酸化物とは、化学式で表示するとそれぞれFe34、Co34、NiO、CrO3、MoO3、WO3であり、無水物として換算する。
【0014】
周期律表第8〜10族貴金属元素とはルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金を指すが、その中ではルテニウム、ロジウム、パラジウム、白金が好ましい。さらに好ましくはロジウム、パラジウム、白金であり、最も好ましくはロジウムである。これら元素の化合物の形態は任意であるが、好ましくは金属である。また(B)成分として一種類の周期律表第8〜10族貴金属元素を用いても良いが、複数の周期律表第8〜10族貴金属元素を用いることが好ましい。とくにロジウムと、パラジウムおよび/または白金を共存させて用いることが好ましい。触媒中の(B)成分の含有量は任意であるが、金属とした場合の重量換算で、触媒全量(担体を含む)に対して0.01〜5重量%が好ましい。さらに好ましくは0.05〜2重量%である。
【0015】
触媒中の(A)成分と(B)成分との含有割合は、金属として(B)/(A)が10重量%以下、特に5重量%以下であることが好ましい。
【0016】
本発明の水素化処理触媒は、必要に応じ、(A),(B)両成分以外の成分を含有しても良い。その他の成分としては、担体となる成分および非化学量論的組成を有する金属酸化物を好ましく例示できる。非化学量論的組成を有する金属酸化物としては、ランタンおよびランタニドの酸化物が好ましく、ランタン、セリウム、サマリウムの酸化物がさらに好ましい。
【0017】
本発明の水素化処理触媒は担体を含有することが必須ではないが、活性成分の表面積を増大させて効率的に反応を行うことが可能になる点などから担体を含有することが好ましい。担体は任意であり、通常用いられる担体を使用できる。多孔質で表面積の大きなアルミナ、シリカ、チタニア、マグネシア、ジルコニア等の金属酸化物、シリカアルミナ、アルミナボリア等の複合金属酸化物、各種の粘土鉱物、活性炭等が挙げられる。
【0018】
さらに担体はイオン交換能を有する物質を含むことが好ましい。イオン交換能を有する物質としては、ゼオライト、各種のモレキュラーシーブ、シリコアルミノフォスフェートを代表とするメタロアルミノフォスフェート、粘土鉱物等を例示することができる。中でもゼオライト、粘土鉱物が好ましい。好ましいゼオライトとしてはフォージャサイト(Xゼオライト、Yゼオライト、超安定Yゼオライト)、モルデナイト、βゼオライト、ペンタシル型ゼオライト(MFI等)、フェリエライト、Lゼオライト、Aゼオライト等が挙げられる。さらに好ましくは、フォージャサイト、モルデナイト、βゼオライト、MFI、フェリエライト、Lゼオライトである。好ましい粘土鉱物としては、3層構造を有するスメクタイト(モンモリロナイト(ベントナイト、活性白土、酸性白土等を含む)、サポナイト、ヘクトライト、スチブンサイト等)、2層構造を有するカオリナイト、セピオライト等が挙げられる。これらの中では、合成されたスメクタイト(サポナイト、ヘクトライト、スチブンサイト)、セピオライト、特にサポナイト、スチブンサイトが好ましい。
【0019】
また、必要に応じ担体はバインダーを含んでも良い。バインダーの種類は任意であるが、成型性に優れ、調製後の耐熱性が高いものが好ましい。アルミナゾル、ベーマイト、シリカゾル、各種の粘土鉱物などを好適に用いることができる。
【0020】
担体を用いる場合、化合物(A)の担持法は含浸法、共沈法、混練法等、任意であるが、好ましい方法として含浸法(Incipient wetness法、浸漬法等)、イオン交換法、気相担持法(CVD法等)等が挙げられる。担持させる原料化合物の形態は担持法によって異なるが、含浸法、イオン交換法の場合、水溶性の塩化物、硝酸塩、酢酸塩等が好ましく用いられる。
【0021】
化合物(B)の担持法は含浸法、共沈法、混練法等、任意であるが、好ましい方法として含浸法(Incipient wetness法、浸積法等)、イオン交換法、気相担持法(CVD法等)、後で定義するイオン交換金属析出法等が挙げられ、特に好ましい担持法は、イオン交換金属析出法である。担持させる原料化合物の形態は担持法によって異なるが、含浸法、イオン交換法、イオン交換金属析出法の場合、水溶性の塩化物、硝酸塩、酢酸塩、アンミン錯体等が好ましく用いられる。なお、化合物(B)は、その一部をイオン交換金属析出法で担持し、一部を含浸法、イオン交換法などの他の担持法で担持しても良い。
【0022】
(A),(B)両成分の担持順序は任意であり、どちらを先に担持しても良く同時に担持しても良いが、化合物(A)を先に担持し、化合物(B)を後に担持する方が好ましい。
【0023】
各成分を担持した後の触媒は、酸化処理および還元処理を行うことが好ましい。酸化処理には特に制限はなく任意の方法を採用できるが、好ましくは酸素による酸化処理であり、具体的には空気中ないし酸素を含むガス中で加熱する方法である。温度は200〜700℃が好ましく、300〜650℃がさらに好ましい。還元処理には特に制限はなく任意の方法を採用できるが、好ましくは水素による還元処理であり、具体的には水素中ないし水素を含むガス中で加熱する方法である。還元温度は200〜700℃が好ましく、300〜650℃がさらに好ましい。また、還元処理の後、あるいは還元処理の代わりに硫化処理を行っても良い。硫化処理には特に制限はなく任意の方法を採用できるが、好ましくは硫化水素による還元処理であり、具体的には硫化水素中ないし硫化水素を含むガス中で加熱する方法である。硫化水素と水素の混合ガスを用いることが好ましい。硫化温度は200〜700℃が好ましく、300〜650℃がさらに好ましい。しかるに、本発明の化合物(A)及び化合物(B)は還元処理を行ったものである。
【0024】
前述のとおり本発明の主眼は、(A)成分からなる触媒の反応活性点の近傍に選択的に(B)成分の貴金属を存在させ、該貴金属上で水素を活性化させて反応活性点へ水素を効率的にスピルオーバーさせることにより反応活性点上の水素を増加させ、水素化反応活性、耐硫黄性の向上、および長寿命化を図ることであるが、このような触媒性能を有する本発明の水素化処理触媒は、含有する(A)成分化合物に帰属する昇温還元法の還元ピーク温度が500℃以下であることにより特徴づけられている。
【0025】
この昇温還元法は触媒の還元挙動を評価する手法として有効な手段であり、触媒の還元され易さを知ることができる。そしてこの手法により、(A)成分化合物の還元され易さと水素化処理における反応活性との間に相関があり、本発明の触媒の場合、昇温還元法の還元ピーク温度が500℃以下である触媒が高活性であることが見出された。ここに昇温還元法の還元ピーク温度とは、触媒を水素還元雰囲気中で一定の速度で昇温した時に温度を横軸に、熱伝導度検出器からの信号強度を縦軸にして得られる昇温還元曲線におけるピーク温度である。昇温還元法による還元ピーク温度の具体的な測定法は次のとおりである。
【0026】
(1)内径5mm±0.5mmの石英管に、空気中120℃±10℃で8時間以上乾燥した触媒0.15g±0.01gを充填する。触媒はコーツウールで保持する。熱電対を触媒部近傍に設置し触媒部の温度を測定する。
【0027】
(2)乾燥空気気流(流量20ml/分±2ml/分)中で400℃±10℃で2時間以上前処理を行う。
【0028】
(3)乾燥空気気流を水素/アルゴン混合ガス気流(水素50〜70容量%/アルゴン50〜30容量%、流量20ml/分±2ml/分)に切り替える。
【0029】
(4)混合ガス気流(流量20ml/分±2ml/分)中で10℃/分±0.5℃/分の昇温速度に制御して一定昇温速度で1000℃まで昇温する。水素消費に伴う混合ガスの組成変化を熱伝導度検出器により連続的に検出し、その信号をレコーダーを用いて記録させチャートを得る。設定した昇温速度から水素消費に伴う混合ガスの組成変化と温度の相関を得る。
【0030】
得られた昇温還元曲線のチャートの一例を図1に示す。図1の縦軸は熱伝導度検出器からの信号強度であるが、昇温還元法において水素消費に相当する値である。また図1の横軸は時間の経過を示すが、一定の速度で昇温しているのでその時点での触媒部温度に相当する値である。本発明では、信号強度(水素消費量に対応)が最も高いピークを与える時の触媒部温度を還元ピ−ク温度と定義する。
図1において、還元ピーク温度は(▲1▼)では373℃であり(▲2▼)では512℃である。
【0031】
なお、周期律表第8〜10族貴金属元素を含有する触媒では、その含有量等の条件によって周期律表第8〜10族貴金属元素の還元に起因するピークが現れるので、本発明の(A),(B)2成分からなる触媒においては、周期律表第8〜10族貴金属元素の還元に起因するピークが最大となることがある。しかし周期律表第8〜10族貴金属元素の還元に起因するピークは300℃未満に現れるので、本発明では300℃未満に現れるピークは周期律表第8〜10族貴金属元素の還元に起因するピークとみなし、本発明における化合物(A)に帰属する昇温還元法の還元ピーク温度は、300℃以上のピークの内で最大のピークを与える温度と定義する。
【0032】
本発明の水素化処理触媒は、上記測定法により測定された(A)成分化合物に帰属する昇温還元法の還元ピーク温度が500℃以下であることを特徴とするものであるが、好ましくは450℃以下であり、400℃以下がさらに好ましく、特に好ましくは390℃以下であり、最も好ましくは380℃以下である。
【0033】
このような触媒を得るために、本発明の水素化処理触媒は、ここに定義するイオン交換金属析出法で調製することが好ましい。この方法は次の工程よりなる。
(1)担体に、化合物(A)を担持する。
(2)還元処理を行う。
(3)化合物(B)の溶液を接触させる。
【0034】
(1)の工程において、担持法は任意であり、前述した担持法を採用できる。また化合物(A)だけでなく、その他の成分を担持しても良い。またもう一方の触媒成分である化合物(B)の一部を同時に担持しても良い。
【0035】
(2)の工程において、還元処理の方法は任意であり、水素の他、各種の還元剤を用いることができるが、好ましい還元処理は水素による還元処理である。この工程での還元処理温度は化合物(A)の種類によって異なるが、周期律表第8〜10族卑金属では200〜700℃が好ましく、300〜650℃がさらに好ましい。本発明の参考発明に用いられる周期律表第6族元素では、300〜900℃が好ましく、500〜800℃がさらに好ましい。(2)の工程では、(1)の工程で担持した化合物(A)の一部あるいは全部が金属状態に還元されることが重要である。
【0036】
(3)の工程において、(2)の工程で得られた還元処理後の触媒に化合物(B)の溶液を接触させる。接触の方法は任意であるが、(2)の工程で得られた還元処理後の触媒を溶液中に浸す方法、(2)の工程で得られた還元処理後の触媒に溶液を注ぐ方法が好ましく例示できる。(2)の工程で得られた還元処理後の触媒を溶液中に浸す方法では、浸しておく時間は1分〜1日、特に2分〜5時間が好ましい。接触させる温度は0〜100℃、特に10〜80℃が好ましい。用いる溶液の種類は任意であるが、主たる溶媒は水であることが好ましい。また接触させる化合物(B)の形態は任意であるが、主たる溶媒が水である場合、水溶性の塩化物、硝酸塩、酢酸塩、アンミン錯体等が好ましく用いられる。このときの濃度は0.05〜10重量%、特に0.1〜5重量%が好ましい。さらにこの工程の操作は不活性ガス中で行われることが望ましい。不活性ガスとしては、窒素、アルゴン、ヘリウムなどが好ましい。この工程において、金属状態に還元された成分(A)の化合物と化合物(B)が反応し、金属上に周期律表第8〜10族貴金属元素が金属として析出する。この方法をイオン交換金属析出法と呼ぶ所以である。
【0037】
さらにこの後、還元処理を行うことが好ましい。この処理によって、活性点が安定化される。また、還元処理の後、あるいは還元処理の代わりに硫化処理を行っても良い。
【0038】
このイオン交換金属析出法により、周期律表第8〜10族貴金属元素を活性点の近傍に選択的に存在させることができる結果、高価な貴金属の使用量を少なくすることができる。好ましい例として、ロジウムを担持した場合、ロジウムの量は0.01〜2重量%とすることができる。さらに好ましくは0.02〜1重量%である。このロジウムの効果を補強するため、パラジウムおよび/または白金を共存させることが望ましい。パラジウム、白金の担持量は、触媒全量に対して好ましくは0.01〜5重量%、さらに好ましくは0.05〜2重量%である。
【0039】
本発明の触媒により水素化処理される原料油は軽質炭化水素油である。本発明で言う軽質炭化水素油とは、日本工業規格の JIS K2254 石油製品−蒸留試験方法(1990年改正)の常圧法蒸留試験方法により測定された90容量%留出温度が、390℃以下の炭化水素油を指す。この軽質炭化水素油の例は原油を常圧蒸留装置(トッパー)で蒸留した際に留出する留出油留分であり、これにはナフサ、灯油、軽油と一部の重質軽油が含まれる。なお、重質炭化水素油が重質であるために該試験方法の常圧法蒸留試験方法で90容量%留出温度が測定できない場合には、該試験方法の減圧法蒸留試験方法により測定された結果から求められる常圧換算留出温度によって90容量%留出温度を決定するものとする。
【0040】
また本発明の触媒は、水素化脱硫処理、水素化脱窒素処理、水素化分解処理、芳香族炭化水素や不飽和炭化水素の水添処理等、軽質炭化水素油の各種の水素化処理に広範囲に適用できる。
【0041】
【実施例】
以下、本発明を実施例および比較例を用いて詳細に説明するが、本発明は実施例の範囲に限定されるものではない。
【0042】
(触媒調製1)
合成多孔質サポナイト(スメクトンSA、クニミネ工業株式会社)に、まず以下のイオン交換法でコバルトとパラジウムを担持した。120℃で乾燥した多孔質サポナイト10gに対して0.2モル/リットルの硝酸コバルトと0.005モル/リットルの硝酸パラジウム(II)混合水溶液1リットルの割合で混合し80℃以上の温度で1.5時間撹拌した。その後ろ過し、試料10gに対して蒸留水2リットルとエタノール100ミリリットルで洗浄した。120℃で乾燥後、空気中400℃で4時間焼成した。得られた担持触媒を水素65容量%/アルゴン35容量%混合ガス気流中600℃で30分間還元した。その後、不活性ガス中で0.002モル/リットルの塩化ロジウム水溶液に室温で、10分間接触させた(イオン交換金属析出法)。120℃で8時間乾燥後、空気中400℃で4時間焼成し、水素65容量%/アルゴン35容量%混合ガス気流中600℃で30分間還元した。得られた触媒を触媒▲1▼とした。
【0043】
(触媒調製2)
合成多孔質サポナイトに、まず以下のイオン交換法でコバルトとパラジウムを担持した。120℃で乾燥した多孔質サポナイト10gに対して0.2モル/リットルの硝酸コバルトと0.005モル/リットルの硝酸パラジウム(II)混合水溶液1リットルの割合で混合し80℃以上の温度で1.5時間撹拌した。その後ろ過し、試料10gに対して蒸留水2リットルとエタノール100ミリリットルで洗浄した。120℃で乾燥後、空気中400℃で4時間焼成した。得られた担持触媒に、ロジウム担持量が0.1重量%となるようにIncipient wetness法で塩化ロジウム水溶液を含浸した。120℃で8時間乾燥後、空気中400℃で4時間焼成し、水素65容量%/アルゴン35容量%混合ガス気流中600℃で30分間還元した。得られた触媒を触媒▲2▼とした。
触媒調製1,2で製造した触媒▲1▼,▲2▼の金属担持量を表1に示す。
【0044】
[実施例1]
(昇温還元法測定)
触媒▲1▼を用いて昇温還元法の測定を行った。測定には市販の装置(TP−2000、株式会社大倉理研)を用いた。内径5mmの石英管に、空気中120℃で8時間乾燥した触媒0.15gを充填し、コーツウールで保持した。熱電対を触媒部近傍に設置し触媒部の温度を測定した。乾燥空気気流中(流量20ml/分)で400℃で2時間前処理を行った後、乾燥空気気流を水素/アルゴン混合ガス気流(水素65容量%/アルゴン35容量%、流量20ml/分)に切り替え、混合ガス気流中で10℃/分の昇温速度に制御して一定昇温速度で1000℃まで昇温した。水素消費に伴う混合ガスの組成変化を熱伝導度検出器により連続的に検出し、レコーダーを用いてその信号を記録しチャートを得た。結果を図1(▲1▼)に示す。
【0045】
(水素化脱硫実験)
固定床流通式反応装置を用いて触媒▲1▼により水素化脱硫実験を行った。原料油は中東産原油の軽油留分を脱硫した脱硫軽油を用いた。硫黄含有量は452重量ppmであり、90容量%留出温度は360℃であった。触媒▲1▼をリアクターに充填し、水素気流中で180℃に昇温した後、原料油をフィードし反応温度に昇温して反応を開始した。反応条件を表2に示す。反応開始72時間後の生成油を分析して脱硫率を求めた。結果を表1に示す。
【0046】
[比較例1]
触媒▲1▼の代わりに触媒▲2▼を用い、実施例1と同様に昇温還元法の測定を行った。結果を図1(▲2▼)に示す。また触媒▲2▼を用い、実施例1と同様に水素化脱硫実験を行った。結果を表1に示す。
【0047】
[比較例2]
触媒▲1▼の代わりに市販の軽油用水素化脱硫触媒(触媒▲3▼とする)を用い、実施例1と同様に昇温還元法の測定を行った。結果を図1(▲3▼)に示す。また触媒▲3▼を用い、実施例1と同様に水素化脱硫実験を行った。結果を表1に示す。
【0048】
【表1】
触媒の金属担持量

Figure 0004564673
【0049】
【表2】
水素化脱硫実験条件
Figure 0004564673
【0050】
【発明の効果】
本発明によれば、周期律表第8〜10族卑金属元素から選ばれる少なくとも一つの元素の化合物(A)と、周期律表第8〜10族貴金属元素から選ばれる少なくとも一つの元素の化合物(B)とを含有する触媒において、前記化合物(A)及び化合物(B)は還元処理を行ったものであり、化合物(A)に帰属する昇温還元法の還元ピーク温度を500℃以下としたことにより、水素化反応活性の向上、長寿命化が可能となり、また高価な貴金属の使用量を低くして高性能の軽質炭化水素油の水素化処理触媒が提供される。またこのような高性能の水素化処理触媒はイオン交換金属析出法等の方法で容易に製造することができる。
【図面の簡単な説明】
【図1】触媒を水素還元雰囲気中で一定の速度で昇温した時に得られる昇温還元曲線である。横軸:温度
縦軸:熱伝導度検出器からの信号強度
▲1▼:触媒▲1▼の昇温還元曲線
▲2▼:触媒▲2▼の昇温還元曲線
▲3▼:触媒▲3▼の昇温還元曲線[0001]
BACKGROUND OF THE INVENTION
The present invention mainly comprisesLightTECHNICAL FIELD The present invention relates to a catalyst for hydrotreating a hydrocarbon raw material, a method for producing the catalyst, and a hydrotreating method for light hydrocarbon oil using the catalyst, and particularly enables hydrotreating at a low temperature in the field of petroleum refining. The present invention relates to a highly active hydrotreating catalyst, a method for producing the catalyst, and a method for hydrotreating light hydrocarbon oil using the catalyst.
[0002]
[Prior art]
In the field of oil refining, hydroprocessing is an extremely important technology and is widely used for reforming and refining methods. For example, hydrodesulfurization treatment that removes sulfur compounds in feedstock by reacting them in the presence of hydrogen, hydrodenitrogenation treatment that removes nitrogen compounds, and hydrogen that decomposes and lightens hydrocarbons in feedstock It is used for hydrocracking treatment, hydrogenation treatment for hydrogenating unsaturated hydrocarbons such as aromatic hydrocarbons in feedstock. In the present invention, the hydrogenation treatment refers to all treatments involving hydrogenation. In these hydrotreatments, a catalyst is used to advance the reaction at high temperature and high pressure. However, it is desirable that the activity of the catalyst is high in order to improve the economics of the process by reducing the reaction conditions to low temperature and low pressure. .
[0003]
The hydrotreating catalyst used for hydrotreating is usually a supported catalyst carrying a metal or compound having hydrogenation activity using a porous material having a large surface area such as a metal oxide as a carrier. In general, a catalyst using a noble metal has high hydrogenation activity, but is easily poisoned by substances such as sulfur. On the other hand, sulfide catalysts mainly composed of sulfides of metals such as nickel, cobalt, molybdenum and tungsten are known to be resistant to sulfur poisoning, although their hydrogenation activity is not as high as that of noble metal catalysts. In the hydrotreatment, various catalysts are selected and used depending on the purpose, raw materials, and the like.
[0004]
Thus, many types of catalysts have been used as hydroprocessing catalysts up to now. However, against the background of increasing demands for environmental conservation in recent years, a catalyst that is more active and has high sulfur resistance and a long catalyst life is desired for the purpose of improving economy and reducing the burden on the environment. It is in the current situation.
[0005]
[Problems to be solved by the invention]
As the hydrotreating catalyst, the above-mentioned two kinds of catalysts, that is, a catalyst containing a compound of a periodic table group 6 element or a periodic table group 8-10 base metal element such as molybdenum, tungsten, nickel, cobalt, etc., and rhodium Simply mixing a catalyst containing a group 8-10 noble metal element of the periodic table, such as palladium, platinum, etc., a high-performance hydrogenation catalyst having both features cannot be obtained.
[0006]
In order to obtain a highly active hydrogenation catalyst, a periodic cycle is selectively provided in the vicinity of a reaction active point comprising a compound of a periodic table group 6 element or a periodic table group 8-10 base metal element as a main active component. It is important that the group 8-10 noble metal element of the table is present, and thereby hydrogen is activated on the group 8-10 noble metal of the periodic table, and the hydrogen is efficiently spilled over to the reaction active point. Can do. This hydrogen spillover increases the hydrogen on the reaction active site, improving the hydrogenation reaction activity, improving the sulfur resistance by promoting the hydrogenation of sulfur compounds that are poisonous substances, and reducing the activity of coke Longer life can be achieved by promoting hydrogenation. Thereby, the catalyst performance can be enhanced while keeping the amount of expensive noble metal used low.
[0007]
[Means for Solving the Problems]
  Therefore, the inventors of the present inventionZhouIt is important that the group 8-10 noble metal element of the periodic table is selectively present in the vicinity of the reaction active point composed of the group 8-10 base metal element compound in the periodical table, and thereby the amount of expensive noble metal used. As a result of intensive research to obtain a high-performance hydrotreating catalyst, focusing on the fact that the catalyst performance can be improved while keeping the catalyst low, the behavior of the catalyst component that becomes the reaction active site when undergoing reduction is hydrogenated. It has been found that only a hydrotreating catalyst that has a close relationship with the catalytic activity of the treatment and has a specific reduction characteristic has a high activity, and has found a method for obtaining a catalyst having such a reduction characteristic. Completed the invention.
[0008]
  That is, the present inventionZhouA compound (A) of at least one element selected from Group 8 to 10 base metal elements of the periodic table and a compound (B) of at least one element selected from Group 8 to 10 noble metal elements of the periodic table ,The compound (A) and the compound (B) are subjected to reduction treatment,And the reduction peak temperature of the temperature rising reduction method belonging to the compound (A) is 500 ° C. or less, a light hydrocarbon oil hydrotreating catalyst, a process for producing the catalyst, and a light hydrocarbon using the same This is a method for hydrotreating oil. A catalyst having such a reduction characteristic can be obtained by contacting the compound (B) with a solution after carrying the reduction treatment by supporting the compound (A) on a carrier.
  In addition, the following is mentioned as reference invention of this invention.
A compound (A) of at least one element selected from Group 6 elements of the periodic table and a compound (B) of at least one element selected from Group 8 to 10 noble metal elements of the periodic table, (A) and the compound (B) have undergone a reduction treatment, and the reduction peak temperature of the temperature-reduction method attributed to the compound (A) is 500 ° C. or less. It is a hydrotreating catalyst.
  Hereinafter, the present invention will be described in detail.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  Hydrotreating catalyst of the present inventionZhouTwo components of a compound (A) of at least one element selected from group 8 to 10 base metal elements of the periodic table and a compound (B) of at least one element selected from group 8 to 10 noble metal elements of the periodic table Contains as an essential component. The group numbers according to the periodic table are based on the long-period periodic table according to the 1989 IUPAC inorganic chemical nomenclature revised edition. In the present invention, a compound of a certain element includes a simple substance of the element.
[0010]
  The Group 6 element of the periodic table used in the reference invention of the present invention refers to chromium, molybdenum, and tungsten. Among them, molybdenum and tungsten are preferable, and molybdenum is more preferable.
[0011]
A periodic table group 8-10 base metal element refers to iron, cobalt, and nickel, and cobalt and nickel are preferable in it.
[0012]
  As the component (A) of the catalyst, only Group 6 elements of the periodic table are used.Is a reference invention of the present invention, but in the present invention,Although only the group 8-10 base metal elements of the periodic table may be used, both may be used.
[0013]
The form of the compound (A) of these elements is arbitrary, but is preferably a sulfide, an oxide, or a metal, and more preferably a sulfide or a metal. The content of the component (A) in the catalyst is arbitrary, but is preferably 1 to 50% by weight based on the total amount of the catalyst (including the carrier) in terms of weight when an oxide is used. More preferably, it is 2 to 30% by weight. In addition, when this oxide is expressed in chemical formula,ThreeOFour, CoThreeOFour, NiO, CrOThree, MoOThree, WOThreeIt is converted as an anhydride.
[0014]
The group 8-10 noble metal elements in the periodic table refer to ruthenium, rhodium, palladium, osmium, iridium and platinum, among which ruthenium, rhodium, palladium and platinum are preferable. More preferred are rhodium, palladium and platinum, and most preferred is rhodium. Although the form of the compound of these elements is arbitrary, Preferably it is a metal. Moreover, although one kind of periodic table group 8-10 noble metal element may be used as the component (B), it is preferable to use a plurality of group 8 noble metal elements of the periodic table. In particular, it is preferable to use rhodium in combination with palladium and / or platinum. Although content of (B) component in a catalyst is arbitrary, 0.01-5 weight% is preferable with respect to the catalyst whole quantity (a support | carrier is included) in conversion of the weight at the time of setting it as a metal. More preferably, it is 0.05-2 weight%.
[0015]
The content ratio of the component (A) and the component (B) in the catalyst is preferably (B) / (A) of 10% by weight or less, particularly preferably 5% by weight or less as a metal.
[0016]
The hydrotreating catalyst of the present invention may contain components other than both components (A) and (B) as necessary. Preferred examples of the other components include a carrier component and a metal oxide having a non-stoichiometric composition. As the metal oxide having a non-stoichiometric composition, oxides of lanthanum and lanthanide are preferable, and oxides of lanthanum, cerium, and samarium are more preferable.
[0017]
Although it is not essential for the hydrotreating catalyst of the present invention to contain a carrier, it is preferred to contain a carrier because the surface area of the active ingredient can be increased to enable efficient reaction. The carrier is optional, and a commonly used carrier can be used. Examples thereof include porous, large surface area metal oxides such as alumina, silica, titania, magnesia, and zirconia, composite metal oxides such as silica alumina and alumina boria, various clay minerals, and activated carbon.
[0018]
Further, the carrier preferably contains a substance having ion exchange ability. Examples of substances having ion exchange ability include zeolites, various molecular sieves, metalloaluminophosphates typified by silicoaluminophosphate, clay minerals, and the like. Of these, zeolite and clay minerals are preferred. Preferred zeolites include faujasite (X zeolite, Y zeolite, ultrastable Y zeolite), mordenite, β zeolite, pentasil type zeolite (MFI, etc.), ferrierite, L zeolite, A zeolite and the like. More preferred are faujasite, mordenite, β zeolite, MFI, ferrierite, and L zeolite. Preferred clay minerals include smectite having a three-layer structure (montmorillonite (including bentonite, activated clay, acid clay), saponite, hectorite, stevensite, etc.), kaolinite having a two-layer structure, sepiolite, and the like. Among these, synthesized smectite (saponite, hectorite, stevensite) and sepiolite, particularly saponite and stevensite are preferable.
[0019]
Further, the carrier may contain a binder as necessary. Although the kind of binder is arbitrary, the thing excellent in a moldability and high heat resistance after preparation is preferable. Alumina sol, boehmite, silica sol, various clay minerals and the like can be suitably used.
[0020]
When a carrier is used, the loading method of the compound (A) is optional such as impregnation method, coprecipitation method, kneading method, etc., but preferred methods include impregnation method (Incipient wetness method, immersion method, etc.), ion exchange method, gas phase Supporting methods (CVD method etc.) etc. are mentioned. The form of the raw material compound to be loaded varies depending on the loading method, but in the case of the impregnation method and ion exchange method, water-soluble chlorides, nitrates, acetates and the like are preferably used.
[0021]
The loading method of the compound (B) is arbitrary such as impregnation method, coprecipitation method, kneading method, etc., but preferred methods include impregnation method (Incipient wetness method, immersion method, etc.), ion exchange method, vapor phase support method (CVD). And the like, and an ion exchange metal deposition method, which will be defined later, and the like. A particularly preferred supporting method is the ion exchange metal deposition method. The form of the raw material compound to be loaded varies depending on the loading method, but water-soluble chlorides, nitrates, acetates, ammine complexes and the like are preferably used in the impregnation method, ion exchange method, and ion exchange metal deposition method. In addition, a part of the compound (B) may be supported by an ion exchange metal deposition method, and a part of the compound (B) may be supported by another supporting method such as an impregnation method or an ion exchange method.
[0022]
The loading order of both components (A) and (B) is arbitrary, and either may be loaded first or simultaneously, but compound (A) is loaded first, and compound (B) is loaded later. It is preferable to carry it.
[0023]
  The catalyst after supporting each component is preferably subjected to oxidation treatment and reduction treatment. There is no particular limitation on the oxidation treatment, and any method can be adopted. However, oxidation treatment with oxygen is preferable, and specifically, heating in air or a gas containing oxygen is preferable. The temperature is preferably 200 to 700 ° C, more preferably 300 to 650 ° C. There is no particular limitation on the reduction treatment, and any method can be adopted. However, reduction treatment with hydrogen is preferable, and specifically, heating is performed in hydrogen or a gas containing hydrogen. The reduction temperature is preferably 200 to 700 ° C, more preferably 300 to 650 ° C. Further, sulfurization treatment may be performed after the reduction treatment or instead of the reduction treatment. There is no particular limitation on the sulfidation treatment, and any method can be adopted. However, reduction treatment with hydrogen sulfide is preferable, and specifically, heating is performed in hydrogen sulfide or a gas containing hydrogen sulfide. It is preferable to use a mixed gas of hydrogen sulfide and hydrogen. The sulfiding temperature is preferably 200 to 700 ° C, more preferably 300 to 650 ° C.However, the compound (A) and the compound (B) of the present invention are those subjected to reduction treatment.
[0024]
As described above, the main point of the present invention is that the noble metal of the component (B) is selectively present in the vicinity of the reaction active point of the catalyst comprising the component (A), and hydrogen is activated on the noble metal to the reaction active point. By effectively spilling over hydrogen, hydrogen on the reaction active point is increased to improve the hydrogenation reaction activity, sulfur resistance, and extend the life. The hydrotreating catalyst is characterized by the fact that the reduction peak temperature of the temperature-reduction method attributed to the component compound (A) contained is 500 ° C. or lower.
[0025]
This temperature reduction method is an effective means for evaluating the reduction behavior of the catalyst, and it is possible to know the ease of reduction of the catalyst. And by this technique, there is a correlation between the easiness of reduction of the component compound (A) and the reaction activity in the hydrotreatment, and in the case of the catalyst of the present invention, the reduction peak temperature of the temperature rising reduction method is 500 ° C. or less. It has been found that the catalyst is highly active. Here, the reduction peak temperature of the temperature rising reduction method is obtained with the temperature on the horizontal axis and the signal intensity from the thermal conductivity detector on the vertical axis when the catalyst is heated at a constant rate in a hydrogen reduction atmosphere. It is a peak temperature in a temperature reduction curve. A specific method for measuring the reduction peak temperature by the temperature rising reduction method is as follows.
[0026]
(1) Fill a quartz tube having an inner diameter of 5 mm ± 0.5 mm with 0.15 g ± 0.01 g of catalyst dried at 120 ° C. ± 10 ° C. in air for 8 hours or more. The catalyst is retained with coats wool. A thermocouple is installed near the catalyst part and the temperature of the catalyst part is measured.
[0027]
(2) Pre-treat at 400 ° C. ± 10 ° C. for 2 hours or more in a dry air stream (flow rate 20 ml / min ± 2 ml / min).
[0028]
(3) The dry air stream is switched to a hydrogen / argon mixed gas stream (hydrogen 50 to 70 vol% / argon 50 to 30 vol%, flow rate 20 ml / min ± 2 ml / min).
[0029]
(4) In a mixed gas stream (flow rate 20 ml / min ± 2 ml / min), the temperature is raised to 1000 ° C. at a constant temperature rise rate by controlling the temperature rise rate at 10 ° C./min±0.5° C./min. The composition change of the mixed gas accompanying hydrogen consumption is continuously detected by a thermal conductivity detector, and the signal is recorded using a recorder to obtain a chart. A correlation between the composition change of the gas mixture accompanying the consumption of hydrogen and the temperature is obtained from the set temperature rise rate.
[0030]
An example of the chart of the temperature rising reduction curve obtained is shown in FIG. The vertical axis in FIG. 1 represents the signal intensity from the thermal conductivity detector, which is a value corresponding to hydrogen consumption in the temperature-programmed reduction method. Further, the horizontal axis of FIG. 1 shows the passage of time, and since the temperature is increased at a constant speed, it is a value corresponding to the catalyst portion temperature at that time. In the present invention, the catalyst part temperature when the signal intensity (corresponding to hydrogen consumption) gives the highest peak is defined as the reduction peak temperature.
In FIG. 1, the reduction peak temperature is 373 ° C. for (1) and 512 ° C. for (2).
[0031]
In the catalyst containing a group 8-10 noble metal element in the periodic table, a peak due to the reduction of the group 8-10 noble metal element in the periodic table appears depending on the conditions such as the content thereof. ), (B) In the catalyst composed of two components, the peak due to the reduction of the noble metal elements of Groups 8 to 10 of the periodic table may be maximized. However, since the peak resulting from the reduction of the Group 8-10 noble metal element in the periodic table appears below 300 ° C., the peak appearing below 300 ° C. in the present invention is attributed to the reduction of the Group 8-10 noble metal element in the periodic table. It is regarded as a peak, and the reduction peak temperature of the temperature reduction method attributed to the compound (A) in the present invention is defined as a temperature that gives the maximum peak among peaks at 300 ° C. or higher.
[0032]
The hydrotreating catalyst of the present invention is characterized in that the reduction peak temperature of the temperature reduction method attributed to the component compound (A) measured by the above measurement method is 500 ° C. or less, preferably It is 450 ° C. or lower, more preferably 400 ° C. or lower, particularly preferably 390 ° C. or lower, and most preferably 380 ° C. or lower.
[0033]
In order to obtain such a catalyst, the hydrotreating catalyst of the present invention is preferably prepared by an ion exchange metal deposition method as defined herein. This method consists of the following steps.
(1) The compound (A) is supported on a carrier.
(2) Perform reduction treatment.
(3) The compound (B) solution is brought into contact.
[0034]
In the step (1), the supporting method is arbitrary, and the above-described supporting method can be adopted. In addition to the compound (A), other components may be supported. Further, a part of the compound (B) which is the other catalyst component may be supported simultaneously.
[0035]
  In the step (2), the method for the reduction treatment is arbitrary, and various reducing agents can be used in addition to hydrogen, but a preferred reduction treatment is a reduction treatment with hydrogen. Although the reduction treatment temperature in this step varies depending on the type of the compound (A), it is preferably 200 to 700 ° C., more preferably 300 to 650 ° C. in the group 8-10 base metal of the periodic table.Used in the reference invention of the present inventionIn Group 6 element of the periodic table, 300 to 900 ° C is preferable, and 500 to 800 ° C is more preferable. In the step (2), it is important that part or all of the compound (A) supported in the step (1) is reduced to a metal state.
[0036]
In the step (3), the solution of the compound (B) is brought into contact with the reduced catalyst obtained in the step (2). The contact method is arbitrary, but there are a method in which the catalyst after the reduction treatment obtained in the step (2) is immersed in a solution, and a method in which the solution is poured into the catalyst after the reduction treatment obtained in the step (2). Preferred examples can be given. In the method of immersing the reduced catalyst obtained in the step (2) in the solution, the immersion time is preferably 1 minute to 1 day, particularly 2 minutes to 5 hours. The temperature for contact is preferably 0 to 100 ° C, particularly preferably 10 to 80 ° C. Although the kind of solution to be used is arbitrary, it is preferable that the main solvent is water. The form of the compound (B) to be contacted is arbitrary, but when the main solvent is water, a water-soluble chloride, nitrate, acetate, ammine complex or the like is preferably used. The concentration at this time is preferably 0.05 to 10% by weight, particularly preferably 0.1 to 5% by weight. Furthermore, it is desirable that the operation in this step be performed in an inert gas. As the inert gas, nitrogen, argon, helium and the like are preferable. In this step, the compound of the component (A) reduced to the metal state and the compound (B) react, and a noble metal element in Groups 8 to 10 of the periodic table is deposited on the metal as a metal. This is why this method is called an ion exchange metal deposition method.
[0037]
Furthermore, it is preferable to perform a reduction process after this. By this treatment, the active point is stabilized. Further, sulfurization treatment may be performed after the reduction treatment or instead of the reduction treatment.
[0038]
By this ion exchange metal deposition method, the group 8-10 noble metal element in the periodic table can be selectively present in the vicinity of the active point, and as a result, the amount of expensive noble metal used can be reduced. As a preferred example, when rhodium is supported, the amount of rhodium can be 0.01 to 2% by weight. More preferably, it is 0.02 to 1 weight%. In order to reinforce the effect of rhodium, it is desirable to coexist palladium and / or platinum. The supported amount of palladium and platinum is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total amount of the catalyst.
[0039]
The feedstock that is hydrotreated with the catalyst of the present invention is a light hydrocarbon oil. The light hydrocarbon oil referred to in the present invention is a 90 vol% distillation temperature measured by the atmospheric pressure distillation test method of JIS K2254 petroleum product-distillation test method (revised in 1990) of Japanese Industrial Standard. Refers to hydrocarbon oil. Examples of these light hydrocarbon oils are distillate fractions that are distilled when crude oil is distilled with an atmospheric distillation device (topper), including naphtha, kerosene, light oil and some heavy light oils. It is. In addition, when 90 volume% distillation temperature cannot be measured by the atmospheric pressure distillation test method of the test method because the heavy hydrocarbon oil is heavy, it was measured by the vacuum method distillation test method of the test method. The 90 vol% distillation temperature is determined based on the atmospheric pressure conversion distillation temperature obtained from the results.
[0040]
The catalyst of the present invention is widely used in various hydrotreatments of light hydrocarbon oils such as hydrodesulfurization treatment, hydrodenitrogenation treatment, hydrocracking treatment, hydrogenation treatment of aromatic hydrocarbons and unsaturated hydrocarbons. Applicable to.
[0041]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, this invention is not limited to the range of an Example.
[0042]
(Catalyst preparation 1)
First, cobalt and palladium were supported on a synthetic porous saponite (Smecton SA, Kunimine Industries Co., Ltd.) by the following ion exchange method. 10 g of porous saponite dried at 120 ° C. is mixed at a rate of 1 liter of a mixed aqueous solution of 0.2 mol / liter cobalt nitrate and 0.005 mol / liter palladium (II) nitrate, and 1 at a temperature of 80 ° C. or higher. Stir for 5 hours. Thereafter, the mixture was filtered and washed with 2 liters of distilled water and 100 ml of ethanol for 10 g of the sample. After drying at 120 ° C., firing was performed at 400 ° C. in air for 4 hours. The obtained supported catalyst was reduced at 600 ° C. for 30 minutes in a mixed gas stream of 65 volume% hydrogen / 35 volume% argon. Then, it was made to contact with 0.002 mol / liter rhodium chloride aqueous solution for 10 minutes at room temperature in the inert gas (ion exchange metal deposition method). After drying at 120 ° C. for 8 hours, it was calcined in air at 400 ° C. for 4 hours, and reduced at 600 ° C. for 30 minutes in a 65% hydrogen / 35% argon mixed gas stream. The resulting catalyst was designated as catalyst (1).
[0043]
(Catalyst preparation 2)
First, cobalt and palladium were supported on the synthetic porous saponite by the following ion exchange method. 10 g of porous saponite dried at 120 ° C. is mixed at a rate of 1 liter of a mixed aqueous solution of 0.2 mol / liter cobalt nitrate and 0.005 mol / liter palladium (II) nitrate, and 1 at a temperature of 80 ° C. or higher. Stir for 5 hours. Thereafter, the mixture was filtered and washed with 2 liters of distilled water and 100 ml of ethanol for 10 g of the sample. After drying at 120 ° C., firing was performed at 400 ° C. in air for 4 hours. The obtained supported catalyst was impregnated with an aqueous rhodium chloride solution by an incipient wetness method so that the supported amount of rhodium was 0.1% by weight. After drying at 120 ° C. for 8 hours, it was calcined in air at 400 ° C. for 4 hours, and reduced at 600 ° C. for 30 minutes in a 65% hydrogen / 35% argon mixed gas stream. The resulting catalyst was designated as catalyst (2).
Table 1 shows the metal loadings of catalysts (1) and (2) produced in catalyst preparations 1 and 2.
[0044]
[Example 1]
(Temperature reduction method measurement)
The temperature reduction method was measured using the catalyst (1). A commercially available apparatus (TP-2000, Okura Riken Co., Ltd.) was used for the measurement. A quartz tube having an inner diameter of 5 mm was filled with 0.15 g of a catalyst dried in air at 120 ° C. for 8 hours, and held with coats wool. A thermocouple was installed near the catalyst part, and the temperature of the catalyst part was measured. After pretreatment in a dry air stream (flow rate 20 ml / min) at 400 ° C. for 2 hours, the dry air stream is converted into a hydrogen / argon mixed gas stream (65% hydrogen / 35% argon, 20 ml / min flow rate). The temperature was increased to 1000 ° C. at a constant temperature increase rate by controlling the temperature increase rate at 10 ° C./min in the mixed gas stream. The composition change of the mixed gas accompanying hydrogen consumption was continuously detected by a thermal conductivity detector, and the signal was recorded using a recorder to obtain a chart. The results are shown in FIG. 1 ((1)).
[0045]
(Hydrodesulphurization experiment)
A hydrodesulfurization experiment was conducted with catalyst (1) using a fixed bed flow reactor. The raw oil used was desulfurized gas oil obtained by desulfurizing the diesel oil fraction of Middle Eastern crude oil. The sulfur content was 452 ppm by weight and the 90 vol% distillation temperature was 360 ° C. Catalyst (1) was charged into the reactor and heated to 180 ° C. in a hydrogen stream, and then feedstock was fed to raise the temperature to the reaction temperature to initiate the reaction. The reaction conditions are shown in Table 2. The product oil 72 hours after the start of the reaction was analyzed to determine the desulfurization rate. The results are shown in Table 1.
[0046]
[Comparative Example 1]
Using the catalyst (2) instead of the catalyst (1), the temperature reduction method was measured in the same manner as in Example 1. The results are shown in FIG. 1 ((2)). Further, a hydrodesulfurization experiment was conducted in the same manner as in Example 1 using the catalyst (2). The results are shown in Table 1.
[0047]
[Comparative Example 2]
Using a commercially available hydrodesulfurization catalyst for light oil (referred to as catalyst (3)) instead of catalyst (1), the temperature reduction method was measured in the same manner as in Example 1. The results are shown in FIG. 1 ((3)). Further, a hydrodesulfurization experiment was conducted in the same manner as in Example 1 using the catalyst (3). The results are shown in Table 1.
[0048]
[Table 1]
Catalyst metal loading
Figure 0004564673
[0049]
[Table 2]
Hydrodesulfurization experimental conditions
Figure 0004564673
[0050]
【The invention's effect】
  According to the present inventionZhouA compound (A) of at least one element selected from Group 8-10 base metal elements of the periodic table and a compound (B) of at least one element selected from Group 8-10 noble metal elements of the periodic table In the catalyst,The compound (A) and the compound (B) are subjected to reduction treatment,By setting the reduction peak temperature of the temperature reduction method attributed to the compound (A) to 500 ° C. or less, the hydrogenation reaction activity can be improved and the life can be extended, and the amount of expensive noble metal used can be reduced and increased. A performance light hydrocarbon oil hydrotreating catalyst is provided. Further, such a high-performance hydrotreating catalyst can be easily produced by a method such as an ion exchange metal deposition method.
[Brief description of the drawings]
FIG. 1 is a temperature reduction curve obtained when a catalyst is heated at a constant rate in a hydrogen reduction atmosphere. Horizontal axis: Temperature
Vertical axis: signal intensity from thermal conductivity detector
(1): Temperature reduction curve of catalyst (1)
(2): Temperature reduction curve of catalyst (2)
(3): Temperature reduction curve of catalyst (3)

Claims (4)

期律表第8〜10族卑金属元素から選ばれる少なくとも一つの元素の化合物(A)と、周期律表第8〜10族貴金属元素から選ばれる少なくとも一つの元素の化合物(B)とを含有し、前記化合物(A)及び化合物(B)は還元処理を行ったものであり、かつ化合物(A)に帰属する昇温還元法の還元ピーク温度が500℃以下であることを特徴とする軽質炭化水素油の水素化処理触媒。Containing at least one compound of an element with (A), at least one compound of an element selected from periodic table group 8-10 noble metal element and (B) selected from peripheral Kiritsu Table 8-10 base metal element The compound (A) and the compound (B) have been subjected to reduction treatment, and the reduction peak temperature of the temperature rising reduction method belonging to the compound (A) is 500 ° C. or less. Hydrocarbon oil hydrotreating catalyst. 化合物(B)の少なくとも一部がロジウム化合物である請求項1記載の水素化処理触媒。The hydrotreating catalyst according to claim 1, wherein at least a part of the compound (B) is a rhodium compound. 担体に化合物(A)を担持し、還元処理を行った後、化合物(B)の溶液と接触させることを特徴とする請求項1または2に記載の水素化処理触媒の製造方法。The method for producing a hydrotreating catalyst according to claim 1 or 2, wherein the support is loaded with the compound (A), subjected to reduction treatment, and then brought into contact with the solution of the compound (B). 請求項1記載の水素化処理触媒を用いて軽質炭化水素油を水素化することを特徴とする軽質炭化水素油の水素化処理方法。A method for hydrotreating light hydrocarbon oil, comprising hydrotreating light hydrocarbon oil using the hydrotreating catalyst according to claim 1.
JP2001008541A 2001-01-17 2001-01-17 Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same Expired - Fee Related JP4564673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001008541A JP4564673B2 (en) 2001-01-17 2001-01-17 Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008541A JP4564673B2 (en) 2001-01-17 2001-01-17 Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same

Publications (2)

Publication Number Publication Date
JP2002210363A JP2002210363A (en) 2002-07-30
JP4564673B2 true JP4564673B2 (en) 2010-10-20

Family

ID=18876151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008541A Expired - Fee Related JP4564673B2 (en) 2001-01-17 2001-01-17 Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same

Country Status (1)

Country Link
JP (1) JP4564673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435336B2 (en) * 2002-10-10 2008-10-14 China Petroleum & Chenical Corporation Process for carrying out gas-liquid countercurrent processing
JP5979443B2 (en) * 2013-03-22 2016-08-24 コスモ石油株式会社 Method for producing hydrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386241A (en) * 1989-08-28 1991-04-11 Sumitomo Metal Mining Co Ltd Production of hydrogenation catalyst
JPH03281595A (en) * 1990-03-28 1991-12-12 Cosmo Sogo Kenkyusho:Kk Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst
JPH05115781A (en) * 1991-10-24 1993-05-14 Sekiyu Sangyo Kasseika Center Catalyst composition, preparation of the same, and hydrogenating desulfurization method for sulfur-containing hydrocarbon with the same
JPH10503707A (en) * 1994-07-21 1998-04-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalyst, its use and its preparation
JPH11128746A (en) * 1997-08-29 1999-05-18 Inst Fr Petrole New catalyst used in organic compound conversion reaction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386241A (en) * 1989-08-28 1991-04-11 Sumitomo Metal Mining Co Ltd Production of hydrogenation catalyst
JPH03281595A (en) * 1990-03-28 1991-12-12 Cosmo Sogo Kenkyusho:Kk Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst
JPH05115781A (en) * 1991-10-24 1993-05-14 Sekiyu Sangyo Kasseika Center Catalyst composition, preparation of the same, and hydrogenating desulfurization method for sulfur-containing hydrocarbon with the same
JPH10503707A (en) * 1994-07-21 1998-04-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalyst, its use and its preparation
JPH11128746A (en) * 1997-08-29 1999-05-18 Inst Fr Petrole New catalyst used in organic compound conversion reaction

Also Published As

Publication number Publication date
JP2002210363A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
US4719195A (en) Process for presulfurizing a hydrogen treatment catalyst
Fujikawa et al. Aromatic hydrogenation of distillates over SiO2-Al2O3-supported noble metal catalysts
Lin et al. Aromatics reduction over supported platinum catalysts. 2. Improvement in sulfur resistance by addition of palladium to supported platinum catalysts
Ali et al. Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports
JP5498702B2 (en) Selective catalyst with silica support for naphtha hydrodesulfurization
KR0183394B1 (en) Aromatics saturation process for diesel boiling-range hydrocarbons
Ishihara et al. Hydrodesulfurization of sulfur-containing polyaromatic compounds in light gas oil using noble metal catalysts
TW200302130A (en) Arsenic removal catalyst and method for making same
US4992157A (en) Process for improving the color and color stability of hydrocarbon fraction
JPH04222638A (en) Preliminary sulfurization method of catalyst for hydrocarbon treatment
JP4099400B2 (en) Method for producing medicinal white oil using M41S and sulfur sorbent
JPH0631176A (en) Catalyst with support for hydrogenation and hydrogen treatment and its catalyzing method
JP2007009159A (en) Method for producing hydrogenation-purified gas oil, hydrogenation-purified gas oil and gas oil composition
JP3803732B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, production method thereof, and heavy hydrocarbon oil hydrotreating method using the same
JP4564673B2 (en) Light hydrocarbon oil hydrotreating catalyst, method for producing the same, and light hydrocarbon oil hydrotreating method using the same
Hossain Co–Pd/γ‐Al2O3 catalyst for heavy oil upgrading: Desorption kinetics, reducibility and catalytic activity
Ali et al. Hydrogen spillover phenomenon in noble metal modified clay-based hydrocracking catalysts
Hossain et al. Pd–Rh promoted Co/HPS catalysts for heavy oil upgrading
KR0177168B1 (en) Hydrodenitrification process
Hossain Influence of noble metals (Rh, Pd, Pt) on Co-saponite catalysts for HDS and HC of heavy oil
CN110882711B (en) Carbide-based catalyst, preparation method thereof and naphthenic hydrocarbon hydrogenolysis ring-opening method
WO2002045851A1 (en) Encapsulated hydrogenation catalysts with controlled dispersion and activity
Galindo et al. Effect of alumina–titania supports on the activity of Pd, Pt and bimetallic Pd–Pt catalysts for hydrorefining applications
JP4439069B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition
NZ275799A (en) Silicon compound-impregnated hydrotreating catalyst and use in hydrogenation of oils

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees