JPH0328124A - Production of superconducting oxide thin film and zinc oxide thin film - Google Patents

Production of superconducting oxide thin film and zinc oxide thin film

Info

Publication number
JPH0328124A
JPH0328124A JP1261355A JP26135589A JPH0328124A JP H0328124 A JPH0328124 A JP H0328124A JP 1261355 A JP1261355 A JP 1261355A JP 26135589 A JP26135589 A JP 26135589A JP H0328124 A JPH0328124 A JP H0328124A
Authority
JP
Japan
Prior art keywords
thin film
oxide thin
mask
substrate
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1261355A
Other languages
Japanese (ja)
Inventor
Michito Muroi
室井 道人
Yuji Koinuma
鯉沼 裕司
Yuko Okamura
祐子 岡村
Koichi Tsuda
孝一 津田
Kazuo Koe
向江 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1261355A priority Critical patent/JPH0328124A/en
Publication of JPH0328124A publication Critical patent/JPH0328124A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To reduce incidental amount of high energy oxygen ion to a substrate, keep the chemical composition of a crystal to a stoichiometric composition and reduce the lattice defect by providing a mask at a specific position when superconducting oxide thin film containing copper is produced using planer type magnetron sputtering. CONSTITUTION:When the objective superconducting oxide thin film containing copper is produced by planer type magnetron sputtering, a mask 3 crossing with at least a part of sputter grains is provided in the space area formed of erosion area 2 of superconducting oxide target 1, oxide thin film on a substrate 4 and linear locus of sputter grains which starts from erosion area 2 and reaches oxide thin film. Then the superconducting oxide thin film is produced by carrying out planer type magnetron sputtering. Thereby incidental amount of high energy oxygen ion to the substrate 4 is reduced by a mask 3 and the objective superconducting oxide thin film having superconducting characteristics can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はプレーナ型マグネトロンスパッタリングによ
る超電導酸化物薄膜および酸化亜鉛#t膜の製造方法に
係り、特に化学#ll1成や結晶性に優れるこれら薄膜
の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing superconducting oxide thin films and zinc oxide #t films by planar magnetron sputtering, and particularly to methods for producing superconducting oxide thin films and zinc oxide #t films by planar magnetron sputtering. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

酸化物セラミックスは構造材科として用いられるほか電
磁気的,5Y:学的.機械的な機能材料としても注目さ
れるよう1こなってきた。例えば酸化亜鉛は圧電材科や
透明導電材料として、チタン酸ジルコン酸鉛(PLZT
)は電気光学材料として、またY−Ba−Cu−o系複
合酸化物(YBCO)は超電導材科として用いられる。
Oxide ceramics are used as structural materials as well as electromagnetic, 5Y: scientific. It has come to attract attention as a mechanically functional material. For example, zinc oxide is used as a piezoelectric material and as a transparent conductive material.
) is used as an electro-optical material, and Y-Ba-Cu-o complex oxide (YBCO) is used as a superconducting material.

これらの材料は使用に際してI!t膜化されることが多
いがその方法として高融点材料でも適用可能で量産性に
優れるスパッタリングが多用される。特にプレーナ型マ
グネトロンスパッタリングは磁場によってイオン化効率
を上げるため低いガス圧でも逸用可熊であること、二次
電子による膜衝撃が少ないという利点がある。
These materials must be used with I! It is often made into a t-film, and sputtering is often used as the method because it can be applied even to materials with high melting points and is excellent in mass production. In particular, planar magnetron sputtering has the advantage that it can be used even at low gas pressures because it uses a magnetic field to increase ionization efficiency, and that there is little film impact caused by secondary electrons.

〔発明が解決しようとする!!題〕[Invention tries to solve! ! Title]

しかしながら酸化物ターゲ1トのスパッタリングの際に
は酸化物ターゲット中の酸素は大部分が酸素イオンの形
でスパクタされ加速されて高エネルギ粒子となって基板
上の薄膜に入射するため、酸化亜鉛薄膜の場合は結晶の
CII1tl配同性が悪くなって圧電特性が低下したり
、YBCON膜の場合にはBaやCuの原子(就中Cu
の原子)が薄膜から再六パクタされ結晶の化学組底が責
論組成(ストイキオメトリ)からずれて超!導特性が悪
くなるなどといった問題があった。
However, during sputtering of an oxide target, most of the oxygen in the oxide target is sputtered and accelerated in the form of oxygen ions, becoming high-energy particles that impinge on the thin film on the substrate. In the case of , the CII1tl configuration of the crystal deteriorates, resulting in a decrease in piezoelectric properties, and in the case of a YBCON film, Ba and Cu atoms (particularly Cu
atoms) from the thin film and the chemical composition of the crystal deviates from the stoichiometry. There were problems such as poor conduction characteristics.

この発明は上述の点に鑑みてなされその目的は酸化物タ
ーゲットからスパッタされた散索イオンが基板上の薄X
tこ入射しないようlこして結晶化学組成Q結晶性に優
れる薄膜を形成し、これにより電気特性に優れる超電導
酸化物薄膜あるいは酸化亜鉛薄膜を製造する方法を提供
することにある。
This invention was made in view of the above-mentioned points, and its purpose is to prevent scattering ions sputtered from an oxide target from forming a thin X-ray on a substrate.
It is an object of the present invention to provide a method for manufacturing a superconducting oxide thin film or a zinc oxide thin film having excellent electrical properties by forming a thin film having a crystal chemical composition Q and excellent crystallinity by avoiding the incident light.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば 1)プレーナ型マグネトロンスパッタリングによる′A
を含む超電導酸化物薄膜の製造方法にZい゜C1超電導
酸化物ターゲットの二ロージ,ン領域3と、基板4上の
酸化物薄膜と、前記二ロージョン領域から出発して酸化
物薄膜に至るスパッタ粒子の直婦的軌跡とから形成され
る空間領域内に、少なくともその一部と交差するマスク
3を設けてスパノタ+1ングを行うこと,および 2)プレーナ型マグネトロンスパッタリングによる酸化
亜鉛薄膜の製造方法において、酸化物ターゲットのエロ
ージョン領域3と、基板4上の酸化亜鉛薄膜と、前記エ
ロージ,ン領域から出発して酸化亜鉛薄膜に至るスパッ
タ粒子の直線的軌跡とから形成される空間領域内に、少
なくともその一部と交差するマスク3を設けてスパッタ
リングを行うこと、により遅M.サれる。
According to the present invention, the above-mentioned objects are achieved by 1) 'A' by planar magnetron sputtering;
A method for producing a superconducting oxide thin film comprising two regions 3 of a C1 superconducting oxide target, an oxide thin film on a substrate 4, and sputtering starting from the two regions forming the oxide thin film. 2) A method for producing a zinc oxide thin film by planar magnetron sputtering, in which a mask 3 intersecting at least a part of the spatial region formed by the orthogonal trajectory of the particles is provided to perform the spacing. , in a spatial region formed by the erosion region 3 of the oxide target, the zinc oxide thin film on the substrate 4, and the linear trajectory of the sputtered particles starting from the erosion region and ending with the zinc oxide thin film, at least By performing sputtering with a mask 3 that intersects a part of the sputtering, a slow M. I can be killed.

超電導酸化物としては希土類元素,アルカリ土類金属,
w4,酸素からなる複合酸化物、Bl (ビスマス)*
Sr(ストロンチウム)SCa<カルシウム) , C
u <@)からなる複合酸化物、B1(ビスマス) ,
 Pb (鉛) + br (ストロンチウム),Ca
 (カルシウム) , Cu (銅)からなる複合酸化
物、U(タリウム) , Ba (バリウム),Ca(
カルシウム) + Cu (鋼)からなる複合酸化物な
どが用いられる。
Superconducting oxides include rare earth elements, alkaline earth metals,
w4, complex oxide consisting of oxygen, Bl (bismuth)*
Sr (strontium) SCa<calcium), C
Composite oxide consisting of u < @), B1 (bismuth),
Pb (lead) + br (strontium), Ca
(calcium), Cu (copper), U (thallium), Ba (barium), Ca(
A composite oxide consisting of (calcium) + Cu (steel) is used.

スパッタ粒子は畝化物ターゲットからスパグタjング6
こより飛び出る粒子で酸素は王としてイオンでありその
他の元素は原子状である。r1l素イオンは′!!場に
よって刀口速され%高エネルギ粒子となり比較的直線に
近い軌跡をとって運動し、他の元素は刀0速されること
なくスパッタガスと衝突をくり返し乱雑な軌跡の運動を
するものと考えられる。
Sputter particles are sputtered from a ridged target by sputtering6.
Among the particles that fly out from this, oxygen is mainly in the form of ions, and the other elements are in the form of atoms. The r1l elementary ion is '! ! It is thought that the field speeds up the particles, making them high-energy particles that move along relatively straight trajectories, while other elements are not slowed down by the field and repeatedly collide with the sputtering gas, moving along disordered trajectories. .

〔作用〕[Effect]

マスクに衝突した酸素イオンはその進路をさえぎられ基
板に入atることができない。これに対し酸素以外の元
素はスパッタガスによる牧乱を経て基板に入射し博@を
形成する。
Oxygen ions colliding with the mask are blocked in their path and cannot enter the substrate. On the other hand, elements other than oxygen enter the substrate after being disturbed by the sputtering gas and form a square.

〔央施例〕[Central example]

仄にこの発明の央施例を図面に基いて説明する。 A central embodiment of the present invention will be briefly described with reference to the drawings.

(夷施例1) DCマグネトロン型スバ,タ装置を用い、直径lOGの
ZnO焼結体をターゲットとして成膜を行ったっ酸化物
ターゲットは導電性をもたせるため、公知の方法で焼或
した後、水素気流中において800℃で熱処理し、還元
したものを用いた。主なスパッタ条件が第1fiに示さ
れる。この条件では酸化物ターゲ,トの二ロージョン領
域は内径4Q IIm ,外径面@キの同心円で囲まれ
たリング状の形をしている。
(Example 1) A film was formed using a DC magnetron type sintering device using a ZnO sintered body with a diameter of lOG as a target. In order to make the oxide target conductive, it was sintered using a known method. The material was heat treated at 800° C. in a hydrogen stream and reduced. Main sputtering conditions are shown in 1st fi. Under this condition, the two region regions of the oxide target have a ring-like shape surrounded by concentric circles with an inner diameter of 4Q IIm and an outer diameter surface.

基板は10 fi1角の石英板を用い、エロージョン領
域の真上Iこ位置するようIこS枚配置した。また、エ
ロージ,ン領域の形と同じ内径4Q II ,外径65
雪lのリング状のステンレス製マスク(厚さQ. 5 
ra )を作製し、第1図に示すようにエロージ,ン領
域の真上でかつ酸化物ターゲットと基板の中間の位置に
配置した(基板は2枚だけ表示し他の6枚は省略。
The substrate used was a quartz plate with a size of 10 mm square, and 1 square plates were arranged so as to be located directly above the erosion area. In addition, the inner diameter is 4Q II, which is the same as the shape of the erosion area, and the outer diameter is 65.
Snow l ring-shaped stainless steel mask (thickness Q. 5
ra) was fabricated and placed directly above the erosion region and midway between the oxide target and the substrate as shown in Figure 1 (only two substrates are shown and the other six are omitted).

リングの中心に対して対称な位置に配置している。)。It is placed symmetrically with respect to the center of the ring. ).

酸化物ターゲットと基板の距離は401I覆,酸化物タ
ーゲットとマスクの距離は211 mであり、マスクは
ステンレス製の針金で真空容器に固定してある。
The distance between the oxide target and the substrate was 401 m, and the distance between the oxide target and the mask was 211 m, and the mask was fixed to the vacuum container with a stainless steel wire.

即ちマスクのt位はアース電位である。この条件第  
1 表 でマスクを使用する場合と使用しない従来法の両方で或
膜を行い、その特性を比較した。X線回折により結晶構
造を調べたところ、マスクを使用して成膜した薄膵は0
.5〜10Paのいずれのガス圧でもC軸配向をしてい
たが、マスクを使用しない従来法で戒膜した膜は10P
aで成膜したものだけが、C軸配向をしており、他のガ
ス圧では( 100 ) . (101)等、他の配向
を示すピークも観測された。マスクを使用しない従来法
の場合は酸素イオン又はこれが中性化した酸素原子が高
工不ルギで基板に入射するため結晶性が乱ざれたものと
考えられる。ガス圧を高めることにより高エネルギ粒子
のエネルギをスパッタガスとの散乱によって低下させ、
C軸配向良を得ることはできるが、他のスパッタ粒子も
方向性を失い、基板への入射角度の分布が広がるため薄
膜が柱状の構造となり表面は平滑でなくなってしまった
。このようにマスクを酸化物ターゲットの二ロージョン
領域と基板の間に入れることにより、C@配同性,#膜
質ともに優れたZnO薄膜を再現性良く作製することが
可能になった。
That is, the t position of the mask is at ground potential. This condition
In Table 1, a film was prepared using a conventional method both with and without a mask, and its properties were compared. When the crystal structure was examined by X-ray diffraction, it was found that the thin pancreas deposited using a mask was 0.
.. The C-axis was oriented at any gas pressure of 5 to 10 Pa, but the film filmed by the conventional method without using a mask had a 10P orientation.
Only the film formed under a has a C-axis orientation, and at other gas pressures it has a (100). Peaks indicating other orientations such as (101) were also observed. In the case of the conventional method that does not use a mask, oxygen ions or neutralized oxygen atoms are incident on the substrate with high precision, which is thought to disturb the crystallinity. By increasing the gas pressure, the energy of high-energy particles is reduced by scattering with the sputtering gas,
Although a good C-axis orientation could be obtained, other sputtered particles also lost their directionality and the distribution of incident angles on the substrate broadened, resulting in a thin film with a columnar structure and an uneven surface. By inserting the mask between the two region regions of the oxide target and the substrate in this way, it became possible to produce a ZnO thin film with excellent C@ conformation and # film quality with good reproducibility.

(実施9tl2) rfマグネ1ロン型スパッタ装置を用い,直径15αの
YBa2CuaO7−X(YBCO)焼結体を峻化物タ
ーゲットとして成膜を行った。酸化物ターゲ,トは、第
  2  表 Y203 . BaCO3. CuOを原料とし公知の
方味テfi合,仮焼,或形,焼或したものを用いた。或
膜は第2表の条件で行った。この時のエロージョン領域
の内径,外径はそれぞれ55mm, IQQ@lであっ
た。基板は第2図に示すように酸化物ターゲットの中央
真上に1枚配置し、基板上のあらゆる点が酸化物ターゲ
,トのエロージ、ン領域からかくれるようにリング状の
マスクを作製し、酸化物ターゲットと基板の中間の高さ
に挿入した。実施例lの場合と同様にマスクの有無によ
る特性の違いを調べた。
(Execution 9tl2) A film was formed using an RF Magne 1 Ron type sputtering device using a YBa2CuaO7-X (YBCO) sintered body with a diameter of 15α as a sintered target. The oxide targets are listed in Table 2 Y203. BaCO3. CuO was used as a raw material, and the material was prepared using a known technique, calcined, shaped, and fired. Some films were formed under the conditions shown in Table 2. The inner and outer diameters of the erosion area at this time were 55 mm and IQQ@l, respectively. As shown in Figure 2, one substrate was placed directly above the center of the oxide target, and a ring-shaped mask was made so that all points on the substrate were hidden from the erosion area of the oxide target. , inserted at an intermediate height between the oxide target and the substrate. As in Example 1, differences in characteristics depending on the presence or absence of a mask were investigated.

第3図にマスクを設ける本発明の場合(O)と、マスク
のない従来法の場合(−)につき戚膜速[(μfi/h
)のガス圧依存性を示す。2Pa以上ではマスクを設け
ると従来法の約%の或膜迷度であるが、IPa程度以下
になると成膜速度の低下が看しく、0.lPaではほと
んど薄膜が形成されない。これは低いガス圧では、スパ
ッタ粒子のスバyタガスによる散乱がなくなるため、基
板に入射するスパクタ粒子がなくなるためと考えられる
。ZPai度以上になるとスパンタガスによる散乱が増
え薄膜が形成される。
Figure 3 shows the relative film speed [(μfi/h
) shows the gas pressure dependence of At 2 Pa or more, when a mask is provided, the film deviation is about % of that of the conventional method, but at IPa or less, the film formation rate decreases considerably, and 0. At lPa, almost no thin film is formed. This is considered to be because at low gas pressure, scattering of sputtered particles by the sputtered gas disappears, so that no sputtered particles enter the substrate. When the temperature exceeds ZPai degree, scattering by the spanner gas increases and a thin film is formed.

次に、薄膜の組或分析の結果が第4図に示される。促米
法で作製した薄膜(・または▲で示される)は、酸化物
ターグットと比べるとBa , Cu が少ない組成に
なっており、ガス圧が低くなるほどその傾向か著しくな
ることがわかる。それに対し、本発明の方法による薄膜
(●またはΔで示される)はガス圧によらずほぼ酸化物
ターゲットに近い組成になっている。これらの現象は高
エネルギ酸素イオン又は原子が薄膜へ入射してBa ,
 Cuを選択的に再スパッタしたためであると説明する
ことができる。即ち、従来方法では酸化物ターゲットか
ら陰イオンの形でスパッタされた酸素掠子が電界によっ
て710運され、形成中の博旋に高エネルギで入射し、
Ba,Cuを選択的にスパッタして組成変化をおこすが
、ガス圧が低くなるほどスパッタガスによる散乱が減っ
て基板に到達する時のエネルギが高くなるとともにその
数も増え、組或変化が大きくなる。また不発明による方
法では酸化物ターゲットのエロージョン領域から基板に
向う高エネルギ粒子の進路をマスクlこよってさえぎる
ため、基板に入射する酸素は途中でスパクタガスによっ
て散乱を受けたものだけとなり、その数、エネルギとも
マスクが無い従来法に比し大巾に低下し、その結果組成
変化が少なくなる。従来法でもBa,Cuの不足量を補
うようあらかじめ酸化物ターゲットのBa , Cuを
多くすることによりY:Ba:Cu= 1 :2:3の
薄膜を作製することもできるが、この場合の酸化物ター
ゲットの最適組戒を決めるには、試行錯誤的に実験をく
り返す必要があり非常に手間がかかる。
Next, the results of the analysis of the structure of the thin film are shown in FIG. It can be seen that the thin film (indicated by . or ▲) produced by the rice pressing method has a composition with less Ba and Cu than the oxide targut, and this tendency becomes more pronounced as the gas pressure decreases. In contrast, the thin film produced by the method of the present invention (indicated by ● or Δ) has a composition almost similar to that of the oxide target, regardless of the gas pressure. These phenomena occur when high-energy oxygen ions or atoms enter the thin film and cause Ba,
This can be explained as being due to selective re-sputtering of Cu. That is, in the conventional method, oxygen particles sputtered in the form of negative ions from an oxide target are transported by an electric field and are incident with high energy into the molecule being formed.
Ba and Cu are selectively sputtered to cause a change in composition, but as the gas pressure decreases, scattering by the sputtering gas decreases, the energy when reaching the substrate increases, and the number of particles increases, resulting in a larger change in composition. . In addition, in the uninvented method, the path of high-energy particles from the erosion region of the oxide target toward the substrate is blocked by the mask l, so that the only oxygen that enters the substrate is that which has been scattered by spatter gas on the way, and the number of Both energy and energy are greatly reduced compared to the conventional method without a mask, resulting in less compositional changes. Even with the conventional method, a thin film with Y:Ba:Cu=1:2:3 can be fabricated by increasing Ba and Cu in the oxide target in advance to compensate for the shortage of Ba and Cu, but in this case, the oxidation Determining the optimal composition for object targets requires repeated trial-and-error experiments, which is very time-consuming.

次jこY:Ba:Cu==1:2:6とCuを多くした
酸化物ターゲットを用い従来法で作製した薄膜のうち、
組或がY:Ba:Cu=1 :2 :3に最も近かった
ものを選び本発明による方法で作製した薄膜の特性と比
較した。第5図に抵抗の温度変化が示される。本発明に
よる薄膜はアズデボで臨界温度( Tc )は曲[5に
示すように89Kと高い値を示している(ガス圧5 P
aで或膜)が、従来法では曲縁7に示すように53Kと
低く抵抗の絶対値も高かった。900℃の温度でl時間
、酸素中でアニールを行うことによりTcは曲硼6に示
すように77K’!で上昇したが、本発明による薄膜に
は及ばない。また、77K′4Cおける臨界電流( J
c )を測定したところ、本発明による薄膜はアズデボ
でも25 x 10’ A/vrtlという高い値を示
した。この値は500℃,1時間の低温アニールを酸素
中で行うことにより、さらに380X10’!VOrt
l iで改善される。これはデバイス応用を考えた場合
にも十分な値である。以上のように本発明による方法で
は、600℃以下の低温プロセスのみで、高品質のYB
CO薄膜が作製できる。この理由は、本発明の方法では
、高エネルギ酸素イオンのi!A膜への入射が軽減され
るため、格子欠陥の少ない優れた結晶性の薄膜が形成ざ
れるためであると考えられる。
Among the thin films produced by the conventional method using an oxide target with a large amount of Cu (Y:Ba:Cu==1:2:6),
The one whose composition was closest to Y:Ba:Cu=1:2:3 was selected and compared with the characteristics of the thin film produced by the method of the present invention. FIG. 5 shows the change in resistance with temperature. The thin film according to the present invention has a critical temperature (Tc) as high as 89 K as shown in curve [5] (gas pressure 5 P).
In the conventional method, as shown in the curved edge 7, the resistance was as low as 53K, and the absolute value of the resistance was also high. By annealing in oxygen at a temperature of 900°C for 1 hour, Tc is 77K'! as shown in curve 6! However, it is not as high as that of the thin film according to the present invention. Also, the critical current at 77K'4C (J
When c) was measured, the thin film according to the present invention showed a high value of 25 x 10' A/vrtl even in an as-deposited state. This value was further increased to 380X10'! by performing low-temperature annealing at 500℃ for 1 hour in oxygen! VOrt
It is improved by l i. This is a sufficient value when considering device applications. As described above, in the method according to the present invention, high quality YB can be produced using only a low temperature process of 600°C or less.
A CO thin film can be produced. The reason for this is that in the method of the present invention, the i! This is thought to be because the incidence on the A film is reduced, resulting in the formation of an excellent crystalline thin film with few lattice defects.

以上の実施例ではYBCOilgの作製について述べた
が、Yを他の希土類元累で置換したもの,B1−Sr 
−Ca−Cu−Q系、T−6−Ba−Ca−Cu−0系
など銅を含む超電導酸化物薄膜の作製にも不発明が有効
である。またRFマグネトロンスパッタのかわりにDC
マグネトロンスパッタを使ってもよいことは言うまでも
ない。
In the above examples, the production of YBCOilg was described, but one in which Y was replaced with another rare earth element, B1-Sr
The invention is also effective in producing superconducting oxide thin films containing copper, such as -Ca-Cu-Q series and T-6-Ba-Ca-Cu-0 series. Also, instead of RF magnetron sputtering, DC
Needless to say, magnetron sputtering may also be used.

さeに上述した実施例では酸化物ターゲットのエロージ
ョン領域から基板の超電導酸化物薄膜に至るスバクタ粒
子の直線的軌跡によって形成された空間的領域のすべて
と交差するようにマスクを配置したが、二ロージョン領
域の中でもスパツタされる程度に差があること,基板が
エロージョン領域の真上からはずれるに従い高エネルギ
粒子の入射密度が小さくなること8考えると、薄膜材科
(どの程度選択的再スパッタが起こり易いか)、基板の
位置にようては必ずしも上記空間的領域のすべてをさえ
ぎる必要はないと考えられる。
In the example described above, the mask was placed so as to intersect all the spatial regions formed by the linear trajectory of the subactor particles from the erosion region of the oxide target to the superconducting oxide thin film of the substrate. Considering that there are differences in the degree of sputtering within the erosion region, and that the incident density of high-energy particles decreases as the substrate moves away from directly above the erosion region8, it is important to note that thin film materials (to what extent selective re-sputtering occurs) Depending on the position of the substrate, it may not necessarily be necessary to block all of the above-mentioned spatial region.

また、高エネルギ酸素イオンをさえぎるためのマスクは
、実施例1,2で述べたような形状に限定されず、第6
図に示す円筒状のもの,第7図に示す同心円環と円板を
組合わせたもの.第8図に示す矩形板を組合わせたもの
,第9図に示す波形円環を組合わせたものも好適に使用
することができる。
Furthermore, the shape of the mask for blocking high-energy oxygen ions is not limited to those described in Examples 1 and 2, and
The cylindrical one shown in the figure and the combination of concentric rings and disks shown in Fig. 7. A combination of rectangular plates shown in FIG. 8 and a combination of corrugated rings shown in FIG. 9 can also be suitably used.

〔発明の効果〕〔Effect of the invention〕

〔発明の効果〕 1)プレーナ型マグネトロンスパ,タリングによる銅を
含む超電導酸化物薄膜の製造方法において、超電導酸化
物ターゲットのエロージョン領域と、基板上の酸化物薄
膜と、前記二ロージ,ン領域から出発して酸化物薄膜に
至るスパッタ粒子の直線的軌跡とから形成される空間領
域内に、少なくともその一部と交差するマスクを設けて
スパッタリングを行うのでマスクにより高エネルギrR
素イオンの基板への入射量が軽減され、結晶の化学組成
が量論組或となり、あるいは格子欠陥が減少して超電導
特性に優れる超電導酸化物薄膜を製造することが可能と
なる。また 2)プレーナ型マグネトロンスパッタリングによる酸化
亜鉛薄膜の製造方法において、酸化物ターゲットのエロ
ージョン領域と、基板上の酸化亜鉛薄膜と、前記エロー
ジョン領域から出発して酸化亜鉛Ny.に至るスパクタ
粒子の直線的軌跡とから形成される空間領域内に、少な
くともその一部と交差するマスクを設けてスパッタリン
グを行うのでマスクにより高エネルギ酸素イオンの基板
への入射量が軽減し結晶配同性が良くなり圧電特性に優
れる酸化亜鉛薄膜を製造することが可能となる。
[Effects of the Invention] 1) In the method for manufacturing a superconducting oxide thin film containing copper by planar magnetron spacing and tarring, the erosion region of the superconducting oxide target, the oxide thin film on the substrate, and the two-layered region are Sputtering is performed by providing a mask that intersects at least a part of the spatial region formed by the linear trajectory of the sputtered particles starting from the starting point and reaching the oxide thin film.
The amount of elementary ions incident on the substrate is reduced, the chemical composition of the crystal becomes stoichiometric, or lattice defects are reduced, making it possible to produce a superconducting oxide thin film with excellent superconducting properties. 2) In a method for producing a zinc oxide thin film by planar magnetron sputtering, the erosion region of the oxide target, the zinc oxide thin film on the substrate, and the zinc oxide Ny. Since sputtering is performed by providing a mask that intersects at least a part of the spatial region formed by the linear trajectory of the sputter particles leading to the sputtering, the mask reduces the amount of high-energy oxygen ions incident on the substrate and improves the crystal orientation. It becomes possible to produce a zinc oxide thin film with improved homogeneity and excellent piezoelectric properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化亜鉛薄膜の製造方法に係る酸化物ターゲッ
ト,マスク.基板の配置を示す斜視図、第2図は超電導
酸化物薄膜の製造方法に係る酸化物ターゲット.マスク
,基板の配置を示す斜視図、第3図は超電導酸化物薄膜
の製造方法に係る戚膜速度のガス圧依存性を示す線図、
第4図は超電導酸化物薄膜の製造方法に係るストイキオ
メトリのガス圧依存性を示す線図、第5図は超t28@
化物薄膜の製造方法に係る超tS敏化*薄膜の抵抗温度
特性を従来のものと比較して示す線図、第6図はマスク
の異なる実施例を示す断面図、第7図,第8図,第9図
はマスクのさらに異なる夾施例を示し、第7図(alは
平面図,第7図(blは断面図、第8図fatは平面図
、第8図(b)は断面図、第9図は断面図、である。 l・・・酸化物ターゲシと、2・・・エロージョン領域
、第 l 図 第 2 図 力゛スFL (Pa) 第45l
Figure 1 shows the oxide target and mask used in the method for manufacturing zinc oxide thin films. FIG. 2 is a perspective view showing the arrangement of the substrates, and an oxide target related to the method for manufacturing a superconducting oxide thin film. A perspective view showing the arrangement of the mask and the substrate; FIG. 3 is a diagram showing the dependence of film speed on gas pressure in a method for producing a superconducting oxide thin film;
Fig. 4 is a diagram showing the dependence of stoichiometry on gas pressure according to the method for manufacturing superconducting oxide thin films, and Fig. 5 is a diagram showing the dependence of stoichiometry on gas pressure according to the method for producing superconducting oxide thin films.
Diagram showing the resistance-temperature characteristics of ultra-tS sensitized *thin films according to the method for manufacturing compound thin films compared with conventional ones, Figure 6 is a cross-sectional view showing different embodiments of the mask, Figures 7 and 8 , FIG. 9 shows further different embodiments of the mask, FIG. , FIG. 9 is a cross-sectional view. l...Oxide target area, 2...Erosion area, Fig. 2. Force FL (Pa) 45l

Claims (1)

【特許請求の範囲】 1)プレーナ型マグネトロンスパッタリングによる銅を
含む超電導酸化物薄膜の製造方法において、超電導酸化
物ターゲットのエロージョン領域と、基板上の酸化物薄
膜と、前記エロージョン領域がら出発して酸化物薄膜に
至るスパッタ粒子の直線的軌跡とから形成される空間領
域内に、少なくともその一部と交差するマスクを設けて
スパッタリングを行うことを特徴とする超電導酸化物薄
膜の製造方法。 2)プレーナ型マグネトロンスパッタリングによる酸化
亜鉛薄膜の製造方法において、酸化物ターゲットのエロ
ージョン領域と、基板上の酸化亜鉛薄膜と、前記エロー
ジョン領域から出発して酸化亜鉛薄膜に至るスパッタ粒
子の直線的軌跡とから形成される空間領域内に、少なく
ともその一部と交差するマスクを設けてスパッタリング
を行うことを特徴とする酸化亜鉛薄膜の製造方法。
[Claims] 1) A method for producing a superconducting oxide thin film containing copper by planar magnetron sputtering, in which an erosion region of a superconducting oxide target, an oxide thin film on a substrate, and oxidation starting from the erosion region are performed. 1. A method for producing a superconducting oxide thin film, which comprises performing sputtering by providing a mask that intersects at least a portion of a spatial region formed by a linear trajectory of sputtered particles leading to a thin film. 2) In a method for producing a zinc oxide thin film by planar magnetron sputtering, an erosion region of an oxide target, a zinc oxide thin film on a substrate, and a linear trajectory of sputtered particles starting from the erosion region and reaching the zinc oxide thin film. 1. A method for producing a zinc oxide thin film, which comprises performing sputtering by providing a mask that intersects at least a portion of a spatial region formed by the above.
JP1261355A 1989-03-16 1989-10-06 Production of superconducting oxide thin film and zinc oxide thin film Pending JPH0328124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1261355A JPH0328124A (en) 1989-03-16 1989-10-06 Production of superconducting oxide thin film and zinc oxide thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6410989 1989-03-16
JP1-64109 1989-03-16
JP1261355A JPH0328124A (en) 1989-03-16 1989-10-06 Production of superconducting oxide thin film and zinc oxide thin film

Publications (1)

Publication Number Publication Date
JPH0328124A true JPH0328124A (en) 1991-02-06

Family

ID=26405249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1261355A Pending JPH0328124A (en) 1989-03-16 1989-10-06 Production of superconducting oxide thin film and zinc oxide thin film

Country Status (1)

Country Link
JP (1) JPH0328124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077166A (en) * 2012-10-10 2014-05-01 Sumitomo Electric Ind Ltd Substrate with intermediate layer for thin film superconducting wire and manufacturing method of the same, and thin film superconducting wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077166A (en) * 2012-10-10 2014-05-01 Sumitomo Electric Ind Ltd Substrate with intermediate layer for thin film superconducting wire and manufacturing method of the same, and thin film superconducting wire

Similar Documents

Publication Publication Date Title
EP0285030B1 (en) Process for producing superconducting thin films
EP0291044B1 (en) Method and apparatus for sputtering thin film of compound having large area
KR0132061B1 (en) Process for depositing a superconducting thin film
JPH0328124A (en) Production of superconducting oxide thin film and zinc oxide thin film
US4806265A (en) Amorphous ferromagnetic oxides
EP0306286B1 (en) Method and apparatus for manufacturing superconducting ceramics materials
JP2602304B2 (en) Method for producing composite oxide superconducting thin film
JPH02122067A (en) Production of oxide superconducting thin film
JP3163651B2 (en) Superconducting thin film forming method and apparatus
JP2529347B2 (en) Preparation method of superconducting thin film
JP2567446B2 (en) Preparation method of superconducting thin film
JP3018605B2 (en) Superconducting thin film forming method and apparatus
JPH02173258A (en) Method and device for forming thin film
JPH05170448A (en) Production of thin ceramic film
JP2501616B2 (en) Preparation method of superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JP2639510B2 (en) Preparation method of superconducting thin film
JPH03174319A (en) Production of oxide superconducting thin film
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JP2501614B2 (en) Preparation method of superconducting thin film
Hirata et al. Study of the sputtering of one-, two-and three-component targets for the preparation of YBa2Cu3O7 superconducting film
JPH078760B2 (en) Method for manufacturing superconducting ceramic thin film
JPH04323367A (en) Sputtering method for thin oxide superconducting film
JPH01105416A (en) Manufacture of thin film superconductor
JPH013001A (en) Method for manufacturing superconducting ceramic thin films