JP3163651B2 - Superconducting thin film forming method and apparatus - Google Patents

Superconducting thin film forming method and apparatus

Info

Publication number
JP3163651B2
JP3163651B2 JP17444291A JP17444291A JP3163651B2 JP 3163651 B2 JP3163651 B2 JP 3163651B2 JP 17444291 A JP17444291 A JP 17444291A JP 17444291 A JP17444291 A JP 17444291A JP 3163651 B2 JP3163651 B2 JP 3163651B2
Authority
JP
Japan
Prior art keywords
substrate
target
thin film
oxide superconducting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17444291A
Other languages
Japanese (ja)
Other versions
JPH054804A (en
Inventor
久雄 服部
敬三 原田
秀夫 糸▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17444291A priority Critical patent/JP3163651B2/en
Publication of JPH054804A publication Critical patent/JPH054804A/en
Application granted granted Critical
Publication of JP3163651B2 publication Critical patent/JP3163651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超電導薄膜の成膜方法お
よび装置に関するものであり、特に、マグネトロンスパ
ッタリング法によって高温複合酸化物超電導材料を大面
積の薄膜に成膜するための方法および装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a superconducting thin film, and more particularly to a method and an apparatus for forming a high-temperature composite oxide superconducting material on a large-area thin film by a magnetron sputtering method. Things.

【0002】[0002]

【従来の技術】ベドノーツ、ミューラー達は1986年に30
Kで超電導状態を示す複合酸化物超電導材料 (La, Ba)2
CuO4を発見した。1987年にはチュー達によって90K台の
超電導臨界温度Tc を有するYBa2Cu3y が発見され、
1988年には前田達によって 100K以上の臨界温度を示す
Bi系の複合酸化物系超電導材料が発見された。本明細書
では30K以上の超電導臨界温度を示す複合酸化物を高温
複合酸化物超電導材料とよぶことににする。これらの高
温複合酸化物系超電導材料は粉末冶金法により焼結体と
して得られた。しかし、焼結体では超電導特性、特に臨
界電流密度が大きくならないため、これらの材料の薄膜
化方法が研究されている。一般に、これら複合酸化物系
超電導材料の薄膜はSrTiO3やMgOの単結晶基板上に真空
蒸着法、スパッタリング法、MBE法等の各種蒸着法で
成膜されており、現在では、これら複合酸化物超電導材
料を薄膜化する方法は一応知られている。現在では、単
に薄膜化して薄膜の超電導特性を確認するだけではなし
に、薄膜を各種のデバイス、素子、回路構成に応用する
方法が提案されている。従って、これらの研究・開発で
使用可能な特性の保証された酸化物超電導薄膜を安定に
供給することが求められている。さらに、各種の用途に
適した各種寸法の薄膜、特に大面積の複合酸化物超電導
薄膜が求められている。本出願人は、スパッタリング法
で酸化物超電導薄膜を成膜する際に、成膜中にターゲッ
トから放出される2次電子や高エネルギ荷電粒子によっ
て成膜中の薄膜に悪影響を受けないようにするために、
ターゲットと基板とを互いに正面に対向させないように
する方法を既に提案した。しかし、本出願人による上記
方法あるいは従来の成膜方法、例えば最も一般的な成膜
法であるスパッタリング法で、大面積に成膜した酸化物
超電導薄膜は、一つの薄膜内での膜質に分布があるた
め、一つの薄膜内に回路や素子を形成するのが困難であ
った。
2. Description of the Related Art Bednotes and Muellers were 30
Composite oxide superconducting material showing superconducting state at K (La, Ba) 2
I found CuO 4 . In 1987, Chu and others discovered YBa 2 Cu 3 O y having a superconducting critical temperature Tc of the order of 90 K,
In 1988, a critical temperature of over 100K was shown by Tatsu Maeda
Bi-based composite oxide superconducting materials have been discovered. In this specification, a composite oxide exhibiting a superconducting critical temperature of 30 K or more is referred to as a high-temperature composite oxide superconducting material. These high-temperature composite oxide superconducting materials were obtained as sintered bodies by powder metallurgy. However, since the superconducting properties, particularly the critical current density, of the sintered body do not increase, methods for forming thin films of these materials have been studied. Generally, thin films of these composite oxide-based superconducting materials are formed on a single crystal substrate of SrTiO 3 or MgO by various vapor deposition methods such as a vacuum vapor deposition method, a sputtering method, and an MBE method. A method for thinning a superconducting material is known. At present, there have been proposed methods of applying the thin film to various devices, elements, and circuit configurations, rather than merely confirming the superconducting properties of the thin film by making the thin film. Therefore, there is a demand for stable supply of an oxide superconducting thin film having characteristics guaranteed for use in such research and development. Further, there is a demand for thin films of various dimensions suitable for various uses, especially for large-area composite oxide superconducting thin films. The present applicant, when forming an oxide superconducting thin film by a sputtering method, prevents the thin film being formed from being adversely affected by secondary electrons or high energy charged particles emitted from a target during the film formation. for,
A method for preventing the target and the substrate from facing each other in the front has already been proposed. However, the oxide superconducting thin film formed over a large area by the above-described method or the conventional film forming method by the present applicant, for example, the sputtering method which is the most common film forming method, has a distribution in the film quality within one thin film. Therefore, it has been difficult to form circuits and elements in one thin film.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決して大面積の基板全体に特性が均質な超電
導薄膜を効率良く成膜するための新規な方法と、この方
法を実施するための装置とを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a novel method for efficiently depositing a superconducting thin film having uniform properties over a large-area substrate, and a method for this method. And a device for carrying out the operation.

【0004】[0004]

【課題を解決するための手段】本発明は、マグネトロン
スパッタリング法によって基板上に高温複合酸化物超電
導材料の薄膜を大面積に成膜する方法において、上記薄
膜の長手方向の長さ対応した細長いマグネトロン電極上
に、このマグネトロン電極の上記の長手方向の長さにほ
ぼ対応した細長いターゲットを固定し、長手方向に所定
長さを有する細長い基板を、基板の表面がターゲットの
表面に対して一定の角度を成し且つターゲットと基板と
が互いに長手方向に並んだ状態で配置し、スパッタリン
グ時に基板をターゲットの長手方向を横切る方向に移動
させながらターゲットから飛び出したスパッタ粒子を基
板上に堆積させることを特徴とする方法を提供する。
SUMMARY OF THE INVENTION The present invention relates to a method for forming a thin film of a high-temperature composite oxide superconducting material over a large area on a substrate by magnetron sputtering, comprising an elongated magnetron corresponding to the longitudinal length of the thin film. On the electrode, an elongated target substantially corresponding to the above-mentioned longitudinal length of the magnetron electrode is fixed, and an elongated substrate having a predetermined length in the longitudinal direction is fixed at a predetermined angle with respect to the surface of the target. And the target and the substrate are arranged in a state where they are aligned in the longitudinal direction with each other, and sputter particles jumping out of the target are deposited on the substrate while moving the substrate in a direction crossing the longitudinal direction of the target during sputtering. To provide a method.

【0005】本発明はさらに、基板上に高温複合酸化物
超電導材料の薄膜を大面積に成膜するためのマグネトロ
ンスパッタリング装置において、ターゲットホルダを兼
ねたマグネトロン電極が上記薄膜の長手方向の長さに対
応した細長い形状を有し、基板を保持する基板ホルダー
がマグネトロン電極の長手方向の長さに対応した細長い
形状を有し、ターゲットおよび基板はマグネトロン電極
および基板ホルダーに各々対応した細長い形状を有し、
基板の表面はターゲットの表面に対して一定の角度を成
すように配置されており、さらに、スパッタリング時に
基板をターゲットの長手方向を横切る方向に移動させる
手段が設けられていることを特徴とする装置を提供す
る。
The present invention further provides a magnetron sputtering apparatus for forming a large-area thin film of a high-temperature composite oxide superconducting material on a substrate, wherein the magnetron electrode serving also as a target holder has a length in the longitudinal direction of the thin film. The substrate holder holding the substrate has an elongated shape corresponding to the longitudinal length of the magnetron electrode, and the target and the substrate have an elongated shape corresponding to the magnetron electrode and the substrate holder, respectively. ,
Apparatus characterized in that the surface of the substrate is arranged at an angle to the surface of the target, and further, means for moving the substrate in a direction transverse to the longitudinal direction of the target during sputtering is provided. I will provide a.

【0006】本発明の一つの特徴は、スパッタリング法
で薄膜を成膜する際に、成膜中にターゲットから放出さ
れる2次電子や高エネルギ荷電粒子によって成膜中の薄
膜に悪影響を受けないようにするために、ターゲットと
基板とを互いに正面に対向させない点にある。すなわ
ち、ターゲットに対する基板の相対位置は、ターゲット
の表面と基板の表面とが互いに対向しないように、基板
をターゲットに対して70〜90度の範囲の一定の角度を成
すように配置する。
One feature of the present invention is that when a thin film is formed by a sputtering method, the thin film being formed is not adversely affected by secondary electrons or high-energy charged particles emitted from a target during the film formation. In this case, the target and the substrate do not face each other in front. That is, the relative position of the substrate with respect to the target is set such that the substrate forms a certain angle in the range of 70 to 90 degrees with respect to the target so that the surface of the target and the surface of the substrate do not face each other.

【0007】しかし、このように配置した場合には、タ
ーゲットから基板までの距離が基板上の位置によって異
なるため、基板の幅が大きい場合には、膜質に分布がで
き易い。従って、本発明では基板の幅を長手方向長さに
対して狭くする、すなわち、細長い形状、例えば長尺の
長方形とすることによって基板の幅方向の膜質の分布の
ズレを最少にして、基板の全面にほぼ均一な薄膜を成膜
する。基板およびターゲットの形状は特に限定されない
が、一般には四角形、特に細長い長尺の長方形にするの
が好ましい。
However, in such an arrangement, since the distance from the target to the substrate differs depending on the position on the substrate, when the width of the substrate is large, the film quality tends to be distributed. Therefore, in the present invention, the width of the substrate is narrowed with respect to the length in the longitudinal direction, that is, the shape of the substrate is minimized by making the shape of the substrate long and narrow, for example, a long rectangle, thereby minimizing the deviation of the film quality distribution in the width direction of the substrate. A substantially uniform thin film is formed on the entire surface. Although the shape of the substrate and the target is not particularly limited, it is generally preferable that the shape is a quadrangle, particularly an elongated long rectangle.

【0008】本発明の特に好ましい実施例では、スパッ
タリング時に基板をターゲットの長手方向を横切る方向
に移動させることによって、基板上での幅方向のスパッ
タ粒子の分布のズレをさらに補償する。この方法を用い
ることによって、任意の横幅を有する大きな基板上に極
めて大面積の酸化物超電導薄膜を成膜することができ
る。この場合には、基板の幅の寸法に制限がない。
In a particularly preferred embodiment of the present invention, the displacement of the distribution of sputter particles in the width direction on the substrate is further compensated by moving the substrate in a direction transverse to the longitudinal direction of the target during sputtering. By using this method, an extremely large-area oxide superconducting thin film can be formed on a large substrate having an arbitrary width. In this case, there is no limitation on the width of the substrate.

【0009】本発明は公知の任意の高温複合酸化物超伝
導材料に適用することができる。具体的には (La, Ba)2
CuO4系、YBa2Cu3y 系、Bi系、Ta系の高温複合酸化物
超伝導材料を挙げることができる。
The present invention can be applied to any known high-temperature composite oxide superconducting material. Specifically, (La, Ba) 2
High-temperature composite oxide superconducting materials of CuO 4 system, YBa 2 Cu 3 O y system, Bi system, and Ta system can be given.

【0010】本発明で用いられるマグネトロンスパッタ
リング法自体は公知である。成膜条件としては下記の範
囲を用いるのが好ましい: 成膜時のガス圧力: 0.1Torr以上1Torr以下 基板温度 : 550〜750 ℃ 成膜時の印加電力: 3W/cm2以上8W/cm2以下 一般に、これらの範囲を外れた成膜条件で作られた薄膜
は超電導特性が著しく低くなるか、超電導薄膜にならな
い場合もある。
[0010] The magnetron sputtering method used in the present invention is known. It is preferable to use the following ranges as the film forming conditions: Gas pressure during film formation: 0.1 Torr to 1 Torr Substrate temperature: 550 to 750 ° C. Applied power during film formation: 3 W / cm 2 to 8 W / cm 2 In general, a thin film formed under film forming conditions outside these ranges may have extremely low superconducting properties or may not be a superconducting thin film.

【0011】[0011]

【作用】本発明では、長尺のマグネトロン電極上に長尺
のターゲットを取付けてスパッタリングを行うことによ
り、スパッタ粒子の分布の幅を広くし、この幅の広いス
パッタ粒子を基板上に堆積させるので、複合酸化物超電
導材料の幅の広い薄膜を形成することができる。ターゲ
ットおよび基板を長尺の長方形とし、ターゲットの表面
と基板の表面とが互いに直角を成すように配置をするこ
とによって、膜質が均一で長尺な酸化物超電導薄膜を成
膜することが可能になる。また、スパッタ粒子が飛び出
すターゲットの表面に対してほぼ直角な方向に基板を移
動させながら成膜を行うことによって、任意の寸法の基
板上に極めて大きな面積の酸化物超電導薄膜を形成する
ことができる。以下、本発明方法を実施するのに用いら
れる装置の一例を添付の図面を用いて説明する。
According to the present invention, a sputtering target is mounted on a long magnetron electrode to perform sputtering, thereby widening the distribution of sputter particles and depositing the wide sputter particles on a substrate. A wide thin film of the composite oxide superconducting material can be formed. By making the target and the substrate long rectangular, and arranging the target surface and the substrate surface so that they are perpendicular to each other, it is possible to form a long oxide superconducting thin film with uniform film quality. Become. In addition, by forming a film while moving the substrate in a direction substantially perpendicular to the surface of the target from which sputtered particles fly, an oxide superconducting thin film having an extremely large area can be formed on a substrate having an arbitrary size. . Hereinafter, an example of an apparatus used to carry out the method of the present invention will be described with reference to the accompanying drawings.

【0012】図1は本発明方法を実施するのに用いられ
る成膜装置の一実施例の概念図である。図1に示す成膜
装置は真空チャンバー1中に配置されたターゲットホル
ダを兼ねたマグネトロン電極2と、このマグネトロン電
極2の側部に配置されたヒータ3aを内蔵する基板ホル
ダ3とを備えている。真空チャンバー1はその内部を排
気系に連結する排気孔4と、内部にスパッタガスを供給
するガス供給孔5と、基板ホルダ3に保持された基板の
成膜面近傍に酸素ガスを供給するための酸素供給ノズル
6とを備えている。基板ホルダ3の背面にはナット33が
固定されており、このナット33はネジ棒32に螺合してい
る。ネジ棒32は、基板ホルダ3の後方に配置されたスタ
ンド31中に設けた回転機構(図示せず)によって回転で
きるようになっている。従って、このネジ棒32を回転さ
せると基板ホルダ3、従って、基板9は上下に移動す
る。図2はマグネトロン電極2と基板ホルダ3との相対
位置関係を示す斜視図である。図1ではマグネトロン電
極2および基板ホルダ3が紙面に対して直角な方向に長
く延びている。図2に示す実施例ではマグネトロン電極
2は細長い長方形で、このマグネトロン電極2上にはこ
れとほぼ同じ形状の細長いターゲット8が取付けられて
いる。同様に、基板ホルダ3も長方形で、この基板ホル
ダ3上にはこれとほぼ同じ形状の細長い基板9が保持さ
れている。マグネトロン電極2の寸法は例えば 200mm×
70mmにすることができる。
FIG. 1 is a conceptual diagram of one embodiment of a film forming apparatus used to carry out the method of the present invention. The film forming apparatus shown in FIG. 1 includes a magnetron electrode 2 also serving as a target holder disposed in a vacuum chamber 1, and a substrate holder 3 having a built-in heater 3 a disposed on a side of the magnetron electrode 2. . The vacuum chamber 1 has an exhaust hole 4 for connecting the inside thereof to an exhaust system, a gas supply hole 5 for supplying a sputtering gas therein, and an oxygen gas for supplying oxygen gas to the vicinity of the deposition surface of the substrate held by the substrate holder 3. Oxygen supply nozzle 6. A nut 33 is fixed to the back of the substrate holder 3, and the nut 33 is screwed to the screw rod 32. The screw rod 32 can be rotated by a rotating mechanism (not shown) provided in a stand 31 disposed behind the substrate holder 3. Therefore, when the screw rod 32 is rotated, the substrate holder 3 and thus the substrate 9 move up and down. FIG. 2 is a perspective view showing a relative positional relationship between the magnetron electrode 2 and the substrate holder 3. In FIG. 1, the magnetron electrode 2 and the substrate holder 3 extend in a direction perpendicular to the plane of the drawing. In the embodiment shown in FIG. 2, the magnetron electrode 2 is an elongated rectangle, on which an elongated target 8 of substantially the same shape is mounted. Similarly, the substrate holder 3 is also rectangular, on which an elongated substrate 9 of substantially the same shape is held. The size of the magnetron electrode 2 is, for example, 200 mm ×
Can be 70mm.

【0013】スパッタリング時には、マグネトロン電極
2上にターゲット8を固定し、基板ホルダ3に基板9を
固定し、真空チャンバー1内を一旦排気した後、アルゴ
ンガス等の不活性ガスを導入し、ヒータ3aに通電して
基板9を所定温度に加熱した状態で、基板9の成膜面に
向かって酸素供給ノズル6から酸素ガスを吹き付けなが
らターゲット8をスパッタリングして、基板上にターゲ
ット材料を堆積すなわち成膜させる。以下、本発明の実
施例を説明するが、本発明が以下の実施例に限定される
ものではない。
At the time of sputtering, a target 8 is fixed on the magnetron electrode 2, a substrate 9 is fixed on the substrate holder 3, and once the inside of the vacuum chamber 1 is evacuated, an inert gas such as argon gas is introduced, and the heater 3a The target 8 is sputtered while blowing oxygen gas from the oxygen supply nozzle 6 toward the film-forming surface of the substrate 9 in a state where the substrate 9 is heated to a predetermined temperature by energizing the substrate 9 to deposit a target material on the substrate. Film. Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples.

【0014】[0014]

【実施例】実施例1 図1に示す成膜装置を用いてYBa2Cu37-x (x=±
1)の複合酸化物超電導薄膜を成膜した。マグネトロン
電極2上に固定したターゲット8の寸法は 190mm×60mm
であり、基板ホルダ3上に固定した基板は寸法が 180mm
×20mmのMgO単結晶基板で、成膜面は (100) 面にし
た。マグネトロンスパッタリング成膜条件は表1にまと
めて示してある。
EXAMPLE 1 Using a film forming apparatus shown in FIG. 1, YBa 2 Cu 3 O 7-x (x = ±
The composite oxide superconducting thin film of 1) was formed. The size of the target 8 fixed on the magnetron electrode 2 is 190 mm x 60 mm
The size of the substrate fixed on the substrate holder 3 is 180 mm
The film was formed on a (20) plane on a MgO single crystal substrate of × 20 mm. Table 1 summarizes the magnetron sputtering film forming conditions.

【0015】[0015]

【表1】 ターゲット組成 (原子比) : Y:Ba:Cu =1:2:2.8 スパッタリングガス : Ar+O2 2 /(Ar+O2)=20% (体積比) ガス圧力 : 0.5 〔Torr〕 基板温度 : 650 〔℃〕 印加電力 : 600 〔W〕、 4.2 〔W/cm2〕 膜 厚 : 3000 〔Å〕 この成膜条件で成膜した試料の薄膜上の各部の超電導
特性を測定した。測定結果は表2に示してある。なお、
測定位置すなわち測定部分(a) 〜(f) は図3(a)に示し
てある。
[Table 1] Target composition (atomic ratio): Y: Ba: Cu = 1: 2: 2.8 Sputtering gas: Ar + OTwo  OTwo/ (Ar + OTwo) = 20% (volume ratio) Gas pressure: 0.5 [Torr] Substrate temperature: 650 [° C] Applied power: 600 [W], 4.2 [W / cmTwo] Thickness: 3000 [Å] Superconductivity of each part on the thin film of the sample formed under these conditions
The properties were measured. The measurement results are shown in Table 2. In addition,
The measurement positions, that is, the measurement parts (a) to (f) are shown in FIG.
It is.

【0016】[0016]

【表2】 測定位置 臨界温度Tc 臨界電流密度Jc 〔K〕 〔A/cm2〕 a 88 2.3 × 106 b 89 3.5 × 106 c 87 1.9 × 106 d 90 4.0 × 106 e 89 3.4 × 106 f 86 1.8 × 106 (注)臨界温度Tc :試料の電気抵抗が測定限界以下ま
で下がった時の温度 臨界電流密度Jc:77Kにおける臨界電流密度。 表2は、本発明を用いることによって、長尺の基板上に
膜質が均一な細長い複合酸化物超電導薄膜を成膜するこ
とができるということを示している。
[Table 2] Measurement position Critical temperature Tc Critical current density Jc [K] [A / cm 2 ] a 88 2.3 × 10 6 b 89 3.5 × 10 6 c 87 1.9 × 10 6 d 90 4.0 × 10 6 e 89 3.4 × 10 6 f 86 1.8 × 10 6 (Note) Critical temperature Tc: Temperature at which the electrical resistance of the sample falls below the measurement limit. Critical current density Jc: Critical current density at 77K. Table 2 shows that by using the present invention, a long and thin composite oxide superconducting thin film having uniform film quality can be formed on a long substrate.

【0017】実施例2 実施例1と同じ装置および材料を使用し、実施例1と同
じ成膜条件で酸化物超電導薄膜を作製したが、本実施例
では、基板9として寸法が 180mm×60mmのMgO単結晶基
板(成膜面は(100)面)を用い、しかも、基板9を
上下方向に往復移動させながら成膜した。実際には、図
1、図2に示す装置の基板ホルダ3を10mm/秒の移動速
度で上下に往復移動させた。この条件で成膜した試料の
薄膜上の各部の超電導特性は表3に示してある。なお、
測定位置すなわち測定部分は図3(b) に示してある。
Embodiment 2 An oxide superconducting thin film was manufactured using the same apparatus and material as in Embodiment 1 under the same film forming conditions as in Embodiment 1. In this embodiment, a substrate 9 having a size of 180 mm × 60 mm was used. An MgO single crystal substrate (film formation surface was a (100) surface) was used, and a film was formed while reciprocating the substrate 9 in the vertical direction. Actually, the substrate holder 3 of the apparatus shown in FIGS. 1 and 2 was reciprocated up and down at a moving speed of 10 mm / sec. Table 3 shows the superconducting properties of each part on the thin film of the sample formed under these conditions. In addition,
The measurement position, ie, the measurement part, is shown in FIG.

【0018】[0018]

【表3】 測定位置 臨界温度 臨界電流密度 Tc 〔K〕 Jc 〔A/cm2〕 g 86 1.9 × 106 h 88 2.8 × 106 i 89 3.1 × 106 j 85 1.6 × 106 k 88 2.7 × 106 l 87 2.2 × 106 表3の結果は、基板9を上下に往復移動させることによ
って、長尺基板上全体に幅方向でも膜質が均一な複合酸
化物超電導薄膜を成膜できるということを示している。
[Table 3] Measurement position Critical temperature Critical current density Tc [K] Jc [A / cm 2 ] g 86 1.9 × 10 6 h 88 2.8 × 10 6 i 89 3.1 × 10 6 j 85 1.6 × 10 6 k 88 2.7 × 10 6 l 87 2.2 × 10 6 The results in Table 3 indicate that a composite oxide superconducting thin film with uniform film quality in the width direction can be formed on the entire long substrate by reciprocating the substrate 9 up and down. Is shown.

【0019】実施例3 実施例1と同じ装置を用い、同様な操作を行って、YBa
2Cu37-x 薄膜を成膜した。しかし、本実施例ではター
ゲット8の寸法を 140mm×60mmとし、MgO単結晶基板9
(成膜面は100面) の寸法は180mm ×60mmとし、基板
9を上下方向に往復移動させながら成膜した。また、基
板温度を 500℃から 750℃までの温度範囲で50℃毎に変
えて複数の試料を作製した。他の成膜条件は表4にまと
めて示してある。
Example 3 Using the same apparatus as in Example 1, and performing the same operation,
A 2 Cu 3 O 7-x thin film was formed. However, in this embodiment, the size of the target 8 is 140 mm × 60 mm, and the MgO single crystal substrate 9
The dimensions of (the surface on which the film was formed) were 180 mm × 60 mm, and the film was formed while the substrate 9 was reciprocated vertically. In addition, a plurality of samples were prepared by changing the substrate temperature in a temperature range from 500 ° C. to 750 ° C. every 50 ° C. Other film forming conditions are summarized in Table 4.

【0020】[0020]

【表4】 ターゲット組成 (原子比) : Y:Ba:Cu =1:2:2.8 スパッタリングガス : Ar+O2 2 /(Ar+O2) : 20% (体積比) ガス圧力 : 0.5 〔Torr〕 印加電力 : 600 〔W〕、 4.2 〔W/cm2〕 膜 厚 : 3000 〔Å〕 基板移動速度 : 10 [mm/秒 上記成膜条件で成膜した試料の薄膜上の各部分の超電
導特性を測定した。測定結果は表5にまとめて示してあ
る。なお、測定位置は図4に示してある。
[Table 4] Target composition (atomic ratio): Y: Ba: Cu = 1: 2: 2.8 Sputtering gas: Ar + O 2 O 2 / (Ar + O 2 ): 20% (volume ratio) Gas pressure: 0.5 [Torr] Applied power : 600 [W], 4.2 [W / cm 2 ] Film thickness: 3000 [Å] Substrate moving speed: 10 [mm / sec] The superconducting characteristics of each part on the thin film of the sample formed under the above film forming conditions were measured. . The measurement results are summarized in Table 5. The measurement positions are shown in FIG.

【0021】[0021]

【表5】 測定位置 特性 基板温度〔℃〕 550 600 650 700 750 a Tc 72 83 86 84 68 Jc ─ 9.2 ×105 1.9×106 7.1×106 ─ b Tc 69 81 88 82 64 Jc ─ 8.1 ×105 2.8×106 9.1×105 ─ c Tc 70 86 89 83 61 Jc ─ 1.7 ×106 3.1×106 9.3×105 ─ d Tc 67 82 85 83 65 Jc ─ 9.0 ×105 1.6×106 8.1×105 ─ e Tc 74 85 88 81 62 Jc ─ 1.2 ×106 2.7×106 8.9×105 ─ f Tc 71 80 87 80 59 Jc ─ 6.5 ×105 2.2×106 6.2×105 ─ (注) Tc:臨界温度:試料の電気抵抗が測定限界
以下まで下がった温度 単位は絶対温度〔K〕。 Jc:臨界電流密度:77Kにおける臨界電流密度 単位は〔A/cm2〕。
[Table 5] Measurement position characteristics Substrate temperature [° C] 550 600 650 700 750 a Tc 72 83 86 84 68 Jc ─ 9.2 × 10 5 1.9 × 10 6 7.1 × 10 6 b b Tc 69 81 88 82 64 Jc ─ 8.1 × 10 5 2.8 × 10 6 9.1 × 10 5 ─ c Tc 70 86 89 83 61 Jc ─ 1.7 × 10 6 3.1 × 10 6 9.3 × 10 5 d d Tc 67 82 85 83 65 Jc ─ 9.0 × 10 5 1.6 × 10 6 8.1 × 10 5 ─ e Tc 74 85 88 81 62 Jc ─ 1.2 × 10 6 2.7 × 10 6 8.9 × 10 5 f f Tc 71 80 87 80 59 Jc ─ 6.5 × 10 5 2.2 × 10 6 6.2 × 10 5 ─ ( Note) Tc: Critical temperature: Temperature at which the electrical resistance of the sample falls below the measurement limit. The unit is absolute temperature [K]. Jc: Critical current density: Critical current density at 77K The unit is [A / cm 2 ].

【0022】実施例4 実施例3を繰り返したが、基板温度は 650℃に固定し、
成膜時のガス圧力を表6に示すように変えて複数の試料
を成膜した。その他の成膜条件は実施例3と同じ。作製
した試料について測定した超電導特性は表6にまとめて
示してある。なお、測定位置は実施例3と同じ図4であ
る。
Example 4 Example 3 was repeated except that the substrate temperature was fixed at 650 ° C.
A plurality of samples were formed by changing the gas pressure during film formation as shown in Table 6. Other film forming conditions are the same as those of the third embodiment. Table 6 summarizes the measured superconducting properties of the fabricated samples. The measurement position is the same as that of the third embodiment in FIG.

【0023】[0023]

【表6】 測定位置 特性 ガス圧力〔Torr〕 0.05 0.2 0.5 1.0 2.0 a Tc 52 81 86 84 78 Jc ─ 8.9×105 1.9×106 7.2×106 1.2×104 b Tc 48 83 88 87 74 Jc ─ 9.8×105 2.8×106 2.8×106 ─ c Tc 39 84 89 86 71 Jc ─ 1.2×106 3.1×106 2.5×106 ─ d Tc 49 83 85 82 73 Jc ─ 9.1×105 1.6×106 1.0×106 ─ e Tc 50 85 88 84 72 Jc ─ 2.1×106 2.7×106 1.7×106 ─ f Tc 32 83 87 85 76 Jc ─ 1.0×106 2.2×106 2.2×106 [Table 6] Measurement position Characteristics Gas pressure [Torr] 0.05 0.2 0.5 1.0 2.0 a Tc 52 81 86 84 78 Jc ─ 8.9 × 10 5 1.9 × 10 6 7.2 × 10 6 1.2 × 10 4 b Tc 48 83 88 87 74 Jc 9.8 9.8 × 10 5 2.8 × 10 6 2.8 × 10 6 ─ c Tc 39 84 89 86 71 Jc ─ 1.2 × 10 6 3.1 × 10 6 2.5 × 10 6 d d Tc 49 83 85 82 73 Jc ─ 9.1 × 10 5 1.6 × 10 6 1.0 × 10 6 ─ e Tc 50 85 88 84 72 Jc ─ 2.1 × 10 6 2.7 × 10 6 1.7 × 10 6 f f Tc 32 83 87 85 76 Jc ─ 1.0 × 10 6 2.2 × 10 6 2.2 × 10 6

【0024】実施例5 実施例3を繰り返したが、基板温度は 650℃に固定し、
成膜時の印加電力は表7に示すように変えて複数の試料
を作製した。その他の成膜条件は実施例3と同じにし
た。作製した試料について測定した超電導特性は表7に
まとめて示してある。測定位置は実施例3と同じ図4で
ある。
Example 5 Example 3 was repeated except that the substrate temperature was fixed at 650 ° C.
A plurality of samples were prepared by changing the applied power during film formation as shown in Table 7. Other film forming conditions were the same as in Example 3. Table 7 summarizes the measured superconducting properties of the fabricated samples. The measurement position is the same as FIG.

【0025】[0025]

【表7】 測定位置 特性 印加電力〔W〕 300 450 600 800 1000 a Tc 38 81 86 87 81 Jc ─ 8.1×105 1.9×106 2.3×106 6.8×105 b Tc 41 83 88 86 77 Jc ─ 1.2×106 2.8×106 2.1×106 ─ c Tc 37 85 89 88 80 Jc ─ 1.5×106 3.1×106 3.3×106 6.1×105 d Tc 36 84 85 89 78 Jc ─ 1.3×106 1.6×106 3.7×106 1.8×104 e Tc 42 86 88 87 79 Jc ─ 2.0×106 2.7×106 2.9×106 9.8×104 f Tc 50 84 87 88 80 Jc ─ 2.0×106 2.2×106 3.1×106 5.3×105 Table 7 Measurements position characteristic applied power (W) 300 450 600 800 1000 a Tc 38 81 86 87 81 Jc ─ 8.1 × 10 5 1.9 × 10 6 2.3 × 10 6 6.8 × 10 5 b Tc 41 83 88 86 77 Jc ─ 1.2 × 10 6 2.8 × 10 6 2.1 × 10 6 ─ c Tc 37 85 89 88 80 Jc ─ 1.5 × 10 6 3.1 × 10 6 3.3 × 10 6 6.1 × 10 5 d Tc 36 84 85 89 78 Jc ─ 1.3 × 10 6 1.6 × 10 6 3.7 × 10 6 1.8 × 10 4 e Tc 42 86 88 87 79 Jc ─ 2.0 × 10 6 2.7 × 10 6 2.9 × 10 6 9.8 × 10 4 f Tc 50 84 87 88 80 Jc ─ 2.0 × 10 6 2.2 × 10 6 3.1 × 10 6 5.3 × 10 5

【0026】[0026]

【発明の効果】本発明の成膜方法を使用することによっ
て、長尺の基板の全面に膜質が均一な酸化物超電導薄膜
を成膜することができる。本発明の成膜方法を応用する
ことによって大面積の酸化物超電導薄膜を効率良く製造
することが可能になる。
By using the film forming method of the present invention, an oxide superconducting thin film having a uniform film quality can be formed on the entire surface of a long substrate. By applying the film forming method of the present invention, a large-area oxide superconducting thin film can be efficiently manufactured.

【図面の簡単な説明】[Brief description of the drawings]

図1は本発明方法を実施するのに使用可能な成膜装置の
概念図。 図2は図1に示した成膜装置でのターゲットホルダと基
板ホルダとの相対位置関係を示す斜視図。 図3は本発明の一つの実施例で作った試料の測定位置を
示す図。 図4は本発明の他の実施例で作った試料の測定位置を示
す図。
FIG. 1 is a conceptual diagram of a film forming apparatus that can be used to carry out the method of the present invention. FIG. 2 is a perspective view showing a relative positional relationship between a target holder and a substrate holder in the film forming apparatus shown in FIG. FIG. 3 is a diagram showing a measurement position of a sample made in one embodiment of the present invention. FIG. 4 is a diagram showing a measurement position of a sample made in another embodiment of the present invention.

【参照番号】【reference number】

1・・・真空チャンバー、 2・・・マグ
ネトロン電極、 3・・・基板ホルダ、 4・・・排気
孔、 5・・・スパッタガス供給孔、 6・・・酸素
ガス供給孔 8・・・ターゲット、 9・・・基板
DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 2 ... Magnetron electrode, 3 ... Substrate holder, 4 ... Exhaust hole, 5 ... Sputter gas supply hole, 6 ... Oxygen gas supply hole 8 ... Target , 9 ... substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−134825(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 29/22 C23C 14/08,14/35 C01G 1/00 C01B 13/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-134825 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 29/22 C23C 14 / 08,14 / 35 C01G 1/00 C01B 13/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マグネトロンスパッタリング法によって基
板上に高温複合酸化物超電導材料の薄膜を大面積に成膜
する方法において、 上記薄膜の長手方向の長さ対応した細長いマグネトロン
電極上に、このマグネトロン電極の上記の長手方向の長
さにほぼ対応した細長いターゲットを固定し、長手方向
に所定長さを有する細長い基板を、基板の表面がターゲ
ットの表面に対して70〜90度の範囲で一定の角度を成し
且つターゲットと基板とが互いに長手方向に並んだ状態
で配置し、スパッタリング時に基板をターゲットの長手
方向を横切る方向に移動させながらターゲットから飛び
出したスパッタ粒子を基板上に堆積させることを特徴と
する方法。
1. A method for forming a large-area thin film of a high-temperature composite oxide superconducting material on a substrate by a magnetron sputtering method, comprising: forming a thin film of the high-temperature composite oxide superconducting material on an elongated magnetron electrode corresponding to a longitudinal length of the thin film; An elongated target substantially corresponding to the length in the longitudinal direction is fixed, and an elongated substrate having a predetermined length in the longitudinal direction is fixed at an angle of 70 to 90 degrees with respect to the surface of the target with respect to the surface of the target. And the target and the substrate are arranged in a state where they are arranged in the longitudinal direction with respect to each other, and sputter particles jumping from the target are deposited on the substrate while moving the substrate in a direction crossing the longitudinal direction of the target during sputtering. how to.
【請求項2】基板上に高温複合酸化物超電導材料の薄膜
を大面積に成膜するためのマグネトロンスパッタリング
装置において、 ターゲットホルダを兼ねたマグネトロン電極が上記薄膜
の長手方向の長さに対応した細長い形状を有し、基板を
保持する基板ホルダーがマグネトロン電極の長手方向の
長さに対応した細長い形状を有し、ターゲットおよび基
板はマグネトロン電極および基板ホルダーに各々対応し
た細長い形状を有し、基板の表面はターゲットの表面に
対して70〜90度の範囲で一定の角度を成すように配置さ
れており、さらに、スパッタリング時に基板をターゲッ
トの長手方向を横切る方向に移動させる手段が設けられ
ていることを特徴とする装置。
2. A magnetron sputtering apparatus for forming a large-area thin film of a high-temperature composite oxide superconducting material on a substrate, wherein a magnetron electrode serving also as a target holder has an elongated shape corresponding to the longitudinal length of the thin film. Having a shape, the substrate holder holding the substrate has an elongated shape corresponding to the longitudinal length of the magnetron electrode, the target and the substrate have an elongated shape corresponding to the magnetron electrode and the substrate holder, respectively, The surface is arranged so as to form a certain angle with respect to the surface of the target within a range of 70 to 90 degrees, and further, means for moving the substrate in a direction transverse to the longitudinal direction of the target during sputtering is provided. An apparatus characterized by the above.
JP17444291A 1990-06-20 1991-06-19 Superconducting thin film forming method and apparatus Expired - Fee Related JP3163651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17444291A JP3163651B2 (en) 1990-06-20 1991-06-19 Superconducting thin film forming method and apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2-161994 1990-06-20
JP2-161993 1990-06-20
JP16199490 1990-06-20
JP16199390 1990-06-20
JP17444291A JP3163651B2 (en) 1990-06-20 1991-06-19 Superconducting thin film forming method and apparatus

Publications (2)

Publication Number Publication Date
JPH054804A JPH054804A (en) 1993-01-14
JP3163651B2 true JP3163651B2 (en) 2001-05-08

Family

ID=27321935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17444291A Expired - Fee Related JP3163651B2 (en) 1990-06-20 1991-06-19 Superconducting thin film forming method and apparatus

Country Status (1)

Country Link
JP (1) JP3163651B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843873B2 (en) * 2001-07-05 2011-12-21 ソニー株式会社 Oblique deposition apparatus and oblique deposition method
KR100928480B1 (en) * 2001-12-26 2009-11-26 엘지디스플레이 주식회사 Sputter for liquid crystal display device manufacturing and sputtering method using the same

Also Published As

Publication number Publication date
JPH054804A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US4866032A (en) Method and apparatus for producing thin film of high to superconductor compound having large area
KR0132061B1 (en) Process for depositing a superconducting thin film
US5182256A (en) Process and apparatus for preparing superconducting thin films
US5180708A (en) Process and apparatus for preparing superconducting thin films
JP3163651B2 (en) Superconducting thin film forming method and apparatus
US5126318A (en) Sputtering method for forming superconductive films using water vapor addition
EP0306286B1 (en) Method and apparatus for manufacturing superconducting ceramics materials
JP3018605B2 (en) Superconducting thin film forming method and apparatus
JPH05282932A (en) Oxide superconductive conductor and manufacture thereof
JPH02122067A (en) Production of oxide superconducting thin film
JP2529347B2 (en) Preparation method of superconducting thin film
JP2567446B2 (en) Preparation method of superconducting thin film
JP3242142B2 (en) Oxide superconductor and method of manufacturing the same
JPH02173258A (en) Method and device for forming thin film
JP2523785B2 (en) Method for manufacturing superconductor thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JP2611332B2 (en) Manufacturing method of thin film superconductor
JP2501615B2 (en) Preparation method of superconducting thin film
JP2501616B2 (en) Preparation method of superconducting thin film
JP2639510B2 (en) Preparation method of superconducting thin film
EP0462600B1 (en) Process for preparing superconductive thin films
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JP2501614B2 (en) Preparation method of superconducting thin film
JP2736062B2 (en) Method for producing oxide superconductor thin film
JPH02306522A (en) Magnetron sputtering cathode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

LAPS Cancellation because of no payment of annual fees