JPH03281120A - Control method for pressure of chamfering robot - Google Patents

Control method for pressure of chamfering robot

Info

Publication number
JPH03281120A
JPH03281120A JP8223190A JP8223190A JPH03281120A JP H03281120 A JPH03281120 A JP H03281120A JP 8223190 A JP8223190 A JP 8223190A JP 8223190 A JP8223190 A JP 8223190A JP H03281120 A JPH03281120 A JP H03281120A
Authority
JP
Japan
Prior art keywords
robot
pressure
chamfering
leaf spring
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8223190A
Other languages
Japanese (ja)
Inventor
Nobuaki Oki
信昭 大木
Makoto Endo
誠 遠藤
Hidetoshi Kawabuchi
河渕 秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8223190A priority Critical patent/JPH03281120A/en
Publication of JPH03281120A publication Critical patent/JPH03281120A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q9/00Arrangements for supporting or guiding portable metal-working machines or apparatus
    • B23Q9/0064Portable machines cooperating with guide means not supported by the workpiece during working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

PURPOSE:To enable a chamfering of a high accuracy, by detecting the pressure of a cutting tip to the chamfering part of a work by a pressure sensor and controlling a robot with its driving so that the detection signal is set within the specific level range. CONSTITUTION:In the case of performing teaching to a robot, an arm 1 is moved with a inching action, a cemented carbide tip 8 is pressed to the chamfering part of a work and it is adjusted so that a work face becomes optimum. At this time, the deflection quantity of a sheet spring 5 is recorded with its detection by a distortion gage 9, teaching is performed to the robot so that the deflection quantity of the sheet spring 5 becomes equal at the teaching position of the outer chamfering part, then, the pressure of the cemented carbide tip 8 at each chamfering part becomes constant. When the deflection quantity of the sheet spring 5 becomes larger with the increase of the pressure of the cemented carbide tip 8, an ascent signal is input to the input terminal DI1 of a robot controller 12, which ascends the arm 1. In the reverse case to the above, the arm 1 is descended.

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、一定の押圧でワークの面取り加工を行えるよ
うにした面取り加工用ロボットの押圧制御方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a pressure control method for a chamfering robot that can chamfer a workpiece with a constant pressure.

B0発明の概要 本発明は、ロボットの手先フランジに切削用チップを固
着した板ばねを立設固定し、切削用チップをワークの面
取り加工部に押し当て面取り加工す2面取り加工用ロボ
ットにおいて、ロボットで前記切削用チップを前記面取
り加工部に押し付けて面取り加工する際に、板ばねのた
わみ量を歪ゲージで検出し、その検出信号が所定のレベ
ル範囲内に設定されるようにロボットを駆動制御するこ
とにより、常にワークに対する切削用チップの押圧を一
定に保つことが可能となり、ワークの寸法誤差や位置決
め誤差の影響を吸収して高精度の面取り加二Eを行うこ
とかでさるようにしたものである。
B0 Summary of the Invention The present invention provides a robot for two-chamfer processing, in which a leaf spring with a cutting tip fixed to the flange of the robot's hand is erected and fixed, and the cutting tip is pressed against a chamfered part of a workpiece to perform chamfering. When pressing the cutting tip against the chamfering part to perform chamfering, the amount of deflection of the leaf spring is detected by a strain gauge, and the robot is controlled so that the detection signal is set within a predetermined level range. By doing this, it is possible to always keep the pressure of the cutting tip against the workpiece constant, and it is possible to absorb the effects of dimensional errors and positioning errors of the workpiece and perform high-precision chamfering. It is something.

0 従来の技術 機械加工したワークは、エツジやかえり等が形成さ11
ているため、仕−[、げに糸面取り等の作業を行う必要
がある。
0 Workpieces machined using conventional technology may have edges, burrs, etc.11
Therefore, it is necessary to perform work such as chamfering the threads.

従来、aボン1−の手先フランツl、ニエンドミル。Conventionally, abon 1-'s hand Franz l, Niendo mill.

ロータリーバーおよびヤスリ等の切削−[具を取りイ・
1け、tめ作成されたブ〔1グラ13に従ってロボット
を移動座標」−5で動作させ、ワークの而取り加1−を
行っていた。
Cutting with rotary bars and files - [Remove tools]
1, the robot was operated at the movement coordinates 1-5 according to the 1st graph 13 created, and the workpiece was removed and added 1-.

しかしながら、エンドミル ロータリーバーおよびヤス
リ専の切削工具は切削力が比較的大きいたy)、切削速
度や工具の当たり等の不均一がそのまま面取りの仕上げ
粘度に悪影響をlテえて1.まう3、そこで、而取りの
仕1−げ精度を高めるためには、ロボットのティーチン
グやティーチングの修11モを行う必要がある。また、
鋳型の加工誤差を含む同形状の穴部や異形状の穴部の面
取りを高精度に仕1−ぼるためには、各穴部に対して[
1ボットをティーチングさせる必要がある。ごのティー
チング作業は非常に面倒であり、多大な時間を要すると
いう問題があった。
However, since end mill rotary bars and cutting tools exclusively for filing have relatively large cutting forces, unevenness in cutting speed and tool contact can have a negative impact on the finishing viscosity of the chamfer.1. 3. Therefore, in order to improve the accuracy of the target, it is necessary to teach the robot and improve the teaching. Also,
[
It is necessary to teach one bot. The problem is that the teaching work is very troublesome and takes a lot of time.

本出願人はこのような問題を解消するために、先の実願
平1、、−107409号明細書にて、ロボットの手先
フランジに切削用チップを設けた板ばねを立設し、板ば
ねのたわみ量を読み取れるようにゲージを設けて構成し
たロボット用面取り工具を提案した。ごのロボット用面
取り工具は、板ばねでワークの寸法誤差や位置決め誤差
をある程度吸収−4′ることかできるので、精度の良い
而取り加[二を行うことができるとともに、大きさと形
状が路間−ならば同一のプログラムの平行移動等が可能
となり、ティーチング作業時間を大幅に節約することが
できるなどの利点がある。
In order to solve this problem, the present applicant proposed in the previous Utility Application No. 107409 that a leaf spring provided with a cutting tip was installed on the flange of the hand end of the robot, and the leaf spring was We proposed a chamfering tool for robots that is equipped with a gauge so that the amount of deflection can be read. The chamfering tool for robots uses a leaf spring to absorb dimensional errors and positioning errors of the workpiece to some extent. If it is between 1 and 2, it becomes possible to move the same program in parallel, and there are advantages such as the ability to save a large amount of teaching work time.

■〕9発明が解決しようとする課題 j7かしながら、−1−記先願にかかるロボット用面取
りJ−具は、〔1ボツトがワークに切削用チップを押1
.付けたときの板ばねのたわみ量を、ゲージで読み取っ
てティーチングしている。このため、各面取り加工部の
ティーチングポイントでは適正であっても、そのティー
チングポイント間を結んだ経路では必ずしt)i正とな
る保証はなく、かつワークの寸法誤差やワークの位置決
め誤差の影響を受は易い。そこで、精度の良い面取りを
行う場合には、ワークの加工精度を高めるとともに、ワ
ークの取り付は位置を正確に出す必要がある。
■] 9 Problems to be solved by the invention
.. Teaching is done by reading the amount of deflection of the leaf spring when it is attached using a gauge. Therefore, even if the teaching point of each chamfering part is correct, there is no guarantee that the path connecting the teaching points will always be positive, and the influence of workpiece dimensional errors and workpiece positioning errors. It is easy to receive. Therefore, when performing chamfering with high precision, it is necessary to increase the machining precision of the workpiece and to accurately position the workpiece.

本発明は、上記先願技術の有する課題を解決するために
なされたもので、ワーク自体の寸法誤差や位置決め誤差
の影響を吸収し、常に面取り加工部に対する切削用チッ
プの押圧を一定に保つことができる面取り加工用ロボッ
トの押圧制御方法を提供することをlI的とする。
The present invention was made in order to solve the problems of the prior art described above, and it is possible to absorb the effects of dimensional errors and positioning errors of the workpiece itself, and to always keep the pressure of the cutting tip against the chamfered part constant. The purpose of this invention is to provide a press control method for a chamfering robot that can perform the following steps.

81課題を解決するための手段 本発明は萌記目的を達成するために、ロボットの手先フ
ランジに板ばねを立設固定し、その板ばねの自由端に切
削用チップを固着してなる面取り加工用ロボットにおい
て、面記板ばねのたわみ量を歪ゲージで検出し、この検
出信号が所定のレベル範囲内に設定されるように[1ボ
ツドアー12を駆動制御し、ワークの面取り加工部に対
する前記切削用チップの押圧がほぼ一定になるようにす
ることを特徴とする。
81 Means for Solving the Problems In order to achieve the object described above, the present invention provides a chamfering process in which a leaf spring is erected and fixed on the flange of the robot's hand, and a cutting tip is fixed to the free end of the leaf spring. In the robot, the amount of deflection of the surface plate spring is detected by a strain gauge, and the robot tool 12 is driven and controlled so that this detection signal is set within a predetermined level range, and the cutting tool is applied to the chamfered portion of the workpiece. It is characterized in that the pressure applied to the tip is kept almost constant.

F 作用 ワークの面取り加工部に対する切削用チップの押圧を板
ばねと歪ゲージとからなる押圧センサで検出し、この押
圧センサの検出信号が所定のレベル範囲内に設定される
ようにロボットアームを駆動制御することによって、面
取り加工部に対する切削用チップの押圧をほぼ一定に保
つことができる。
F Action The pressure of the cutting tip against the chamfered part of the workpiece is detected by a pressure sensor consisting of a leaf spring and a strain gauge, and the robot arm is driven so that the detection signal of this pressure sensor is set within a predetermined level range. By controlling the pressure of the cutting tip against the chamfered portion, it is possible to maintain a substantially constant pressure.

G、実施例 以下、本発明を第1図および第2図に示ず一実施例に基
づいて説明する。
G. Example Hereinafter, the present invention will be explained based on an example not shown in FIGS. 1 and 2.

第1図は本発明の押圧制御方法を適用した面取7 り加工用ロボットの一実施例を示す概略構成図である。Figure 1 shows chamfering 7 to which the pressure control method of the present invention is applied. 1 is a schematic configuration diagram showing an embodiment of a processing robot.

本図において、lは多関節型ロボットのアームで、その
アームIの手先フランジ2にロボット用面取り工具3が
取り付けられている。
In this figure, l is an arm of an articulated robot, and a robot chamfering tool 3 is attached to the hand flange 2 of arm I.

前記のロボット用面取り工具3は、円板状の工具フラン
ジ4に板ばね5を所定の角度に傾斜させて立設固定し、
この板ばね5の鋭角側で板ばね5と平行になるように支
持板6を工具フランジ4に立設固定し、これらの板ばね
5と支持板4の自由端側にゴム環7を挟持させ、このゴ
ム環7を少なくとも板ばね5または支持板4の一方に固
定し板ばね5の自由端に切削用の超鋼チップ8を設けて
なる。
The robot chamfering tool 3 has a plate spring 5 tilted at a predetermined angle and fixed upright on a disc-shaped tool flange 4.
A support plate 6 is erected and fixed on the tool flange 4 so as to be parallel to the leaf spring 5 on the acute angle side of the leaf spring 5, and a rubber ring 7 is sandwiched between the leaf spring 5 and the free end side of the support plate 4. The rubber ring 7 is fixed to at least one of the leaf spring 5 or the support plate 4, and a carbide steel tip 8 for cutting is provided at the free end of the leaf spring 5.

前記板ばね5のほぼ中央部分の両板面には、充分な可撓
性を有する歪ゲージ9.9が貼着されている。この歪ゲ
ージ9.9は、板ばね5のたわみ量を電気量に変換する
公知の金属線抵抗歪ゲージを用いたものである。この歪
ゲージ9.9の抵抗値の変化をブリッジ等の手段で検出
し、その出力端子にはストレインアンプ10を介して比
較器IIが接続されている。この比較器11は、板ばね
5のたわみ塁に応じた検出信号が第2図に示すように予
め設定された上昇信号出力レベルより高いときに上昇信
号を出力し、下降信号出力レベルより低いときに下降信
号を出力するもので、各信号線はロボットコントローラ
12の入力端子DIl。
Strain gauges 9.9 having sufficient flexibility are attached to both plate surfaces of the leaf spring 5 at approximately the center thereof. This strain gauge 9.9 uses a known metal wire resistance strain gauge that converts the amount of deflection of the leaf spring 5 into an amount of electricity. A change in the resistance value of the strain gauge 9.9 is detected by means such as a bridge, and a comparator II is connected to the output terminal of the strain gauge 9.9 via a strain amplifier 10. This comparator 11 outputs a rising signal when the detection signal corresponding to the deflection base of the leaf spring 5 is higher than a preset rising signal output level as shown in FIG. 2, and when it is lower than a falling signal output level. Each signal line is connected to the input terminal DIl of the robot controller 12.

DI2に接続される。このロボットコントローラ12は
、面取り加工用ロボットを制御するもので、検出信号が
上昇信号出力レベルと下降信号出力レベルとの範囲内に
あるときは、ティーチングされた動作軌路の通りにアー
ム1を動作させ、入力端子DI+またはD■2に上昇信
号または下降信号が入力されたときは、現在の動作に上
昇指令または下降指令を加えて補正する。
Connected to DI2. This robot controller 12 controls the chamfering robot, and when the detection signal is within the range of the rising signal output level and the falling signal output level, it operates the arm 1 according to the taught movement trajectory. When a rise signal or a fall signal is input to the input terminal DI+ or D2, the current operation is corrected by adding a rise command or a fall command.

次に、このように構成された面取り加工用ロボットの動
作を説明する。
Next, the operation of the chamfering robot configured as described above will be explained.

まず、面取り作業を行うためにロボットにティーチング
を行う際には、インヂング動作によりアームIを動かし
、ワークの面取り加工部に超鋼チップ8を押し付け、面
取り加工部への超鋼チップ8の当たりが適正になるよう
に調節する。このとき、板ばね5のたわみ量を歪ゲージ
9.9で検出して記録し、他の面取り加工部のティーチ
ング位置において、板ばね5のたわみ量(超鋼チップ8
の押圧)が等しくなるようにロボットをテイーヂングす
れば、各面取り加工部ての超鋼チップ8の押圧が一定の
ものとなる。
First, when teaching the robot to perform chamfering work, the arm I is moved by an inching motion, and the carbureted steel tip 8 is pressed against the chamfered part of the workpiece, so that the contact of the carbureted steel chip 8 with the chamfered part is ensured. Adjust as appropriate. At this time, the amount of deflection of the leaf spring 5 is detected and recorded by the strain gauge 9.9, and the amount of deflection of the leaf spring 5 (the super steel tip 8
If the robot is steered so that the pressure (pressure) is equal, the pressure of the cemented carbide tip 8 at each chamfered portion will be constant.

とごろが、実際に而取り加工を行うと、ワークの・1法
誤差や位置決め誤差などに、1ってワークの面取り加り
部に対する超鋼チップ8の押圧が変動することかある。
However, when chamfering is actually performed, the pressure of the super steel tip 8 against the chamfered part of the workpiece may vary due to 1-normal error or positioning error of the workpiece.

この超鋼チップ8の押圧が増加して板ばね5のたわみa
tが大きくなると、画歪ゲジ9,9の抵抗値の差が次第
に広がる。このと9\、検出信号が第2図に示すよ・)
に上昇信号出力レベルより高くなると、比較器IOから
上昇信号がロボットコンl−rJ−ラ12の入力端子D
I+に入力される。すると、[lボットコント〔1−ラ
12は、この1−昇信4)に基づいてロボットを駆動制
御してアームIを!−昇させろ。これにより、面取り加
I i’l<に対′4−る超鋼チップ8の押圧が次第に
弱ま1 す、第2図に示すように検出信号のレベルは下降線をた
どる。
As the pressure of this cemented carbide chip 8 increases, the deflection a of the leaf spring 5
As t increases, the difference between the resistance values of the image distortion gauges 9 gradually widens. In this case, the detection signal is shown in Figure 2.)
When the rising signal becomes higher than the output level, the rising signal from the comparator IO is output to the input terminal D of the robot controller l-rJ-ra 12.
Input to I+. Then, [l bot control [1-ra 12 drives and controls the robot based on this 1-shoshin 4) to move arm I! -Let it rise. As a result, the pressure of the cemented carbide chip 8 against the chamfering process Ii'1 gradually weakens, and the level of the detection signal follows a downward line as shown in FIG.

逆に、超鋼チップ8の押圧が減少して板ばね5のたわみ
I−+1が小さくなると、画歪ゲージ9.9の抵抗値の
差が次第に縮まる。このとき、検出信す・が第2図に示
すようにド降信号出力レベルより低くなると、比較器1
0から下降信号がロボットコントローラ12の入力端子
1) I 2に入力される。
Conversely, when the pressing force of the cemented carbide chip 8 decreases and the deflection I-+1 of the leaf spring 5 decreases, the difference in the resistance values of the image distortion gauge 9.9 gradually decreases. At this time, when the detected signal becomes lower than the drop signal output level as shown in Fig. 2, the comparator 1
A descending signal from 0 is input to the input terminal 1) I2 of the robot controller 12.

すると、[7ポツトコントローラ12は、その1ζζ俗
信に基づいてロボットを駆動制御しアーム1を下降させ
る。これにより、而取り加I:部に対する超鋼チップ8
の押圧が次第に強より、第2図に示すように検出信号の
レベルは上昇線をたどる。
Then, the 7-pot controller 12 controls the robot to lower the arm 1 based on the 1ζζ belief. As a result, the super steel tip 8 for the section I:
As the pressure gradually increases, the level of the detection signal follows an increasing line as shown in FIG.

このようにして、検出信号が上昇信号出力レベルと下降
信号出力レベルとの範囲内に設定される]2 と、[7ポソトコント[1−ラ12はティーチングされ
た動作軌路の通りにアーノ、Iを動作させる。
In this way, the detection signal is set within the range of the rising signal output level and the falling signal output level. make it work.

したがって、このような構成によれば、面取り加工部に
対する超鋼チップ8の押圧を板ばね5と歪ゲージ9 つ
とからなる押Flミセンサで検出12、この押圧センサ
の検出信号が所定のレベル範囲内に設定されるようにロ
ボットを駆動制御することにより、面取り加工部に対す
る超鋼チップ8の押圧をほぼ ・定に保つことかできる
ため、高精度の而取り加工を容易に行うことができると
ともに、ワークの寸法誤差や位置決め誤差に対して許容
で八る範囲か広がるため、ティーチング作業を著しく向
−1−さl−ることかできる。(7かも、超鋼チップ8
の押Y(:を自動的にJ^J整4−ることにより、ティ
ーチング゛および加【ニドライ回数が少なくてすむため
、面取り加[′、の作業能率を著しく向にさせることが
できる。
Therefore, according to such a configuration, the pressure of the cemented carbide chip 8 against the chamfered portion is detected by the pressure sensor 12 consisting of the leaf spring 5 and nine strain gauges, and the detection signal of this pressure sensor is within a predetermined level range. By controlling the robot so that the chamfering part is set to , the pressure of the super steel tip 8 against the chamfering part can be maintained at approximately . Since the allowable range for dimensional errors and positioning errors of the workpiece is widened, teaching work can be greatly improved. (Maybe 7, super steel chip 8
By automatically adjusting the press Y(:), the number of times of teaching and drying can be reduced, so the work efficiency of chamfering can be significantly improved.

また、支持板4と板ばね5の間にゴム環7を設けてダン
パとして作用させることにより、而取り工具3に生ずる
ビビリ等の微振動を吸収することができるため、安定し
た面取り作業を行うことができる。
In addition, by providing a rubber ring 7 between the support plate 4 and the leaf spring 5 to act as a damper, it is possible to absorb minute vibrations such as chatter that occur in the removal tool 3, thereby achieving stable chamfering work. be able to.

なお、本発明は−に記実施例に限定されるものではなく
、要旨を変更しない範囲において種々変形して実施する
ことができる。本実施例では、ロボットアームを一トド
方向に駆動制御し、ワークの而取り加工部に対して切削
用チップの押圧を調整できるようにしたが、ロボットア
ームを左右方向jご駆動制御することもできる。
It should be noted that the present invention is not limited to the embodiments described in -, but can be implemented with various modifications without changing the gist. In this embodiment, the robot arm is driven in one direction to adjust the pressure of the cutting tip against the cutting part of the workpiece, but it is also possible to control the robot arm to be driven in the left and right directions. can.

1−1、発明の名称 以上に詳述したように本発明の面取り加工用ロボットの
押圧制御方法によれば、ワークの面取り加工部に対する
切削用チップの押圧を板ばねと歪ゲージとからなる押圧
センサで検出し、この押圧センサの検出信号が所定のレ
ベル範囲内に設定されるようにロボットを駆動制御する
ことで、常にワークに対する切削用チップの押圧を一定
に保つことができるので、高精度の面取り加工を容易に
行うことができるとともに、ティーチング作業性および
而取り加工の作業能率を著しく向」ニさせることができ
る。
1-1. Title of the Invention As detailed above, according to the method for controlling the pressure of a chamfering robot of the present invention, the pressure of the cutting tip against the chamfered portion of the workpiece is controlled by a pressure composed of a leaf spring and a strain gauge. By detecting it with a sensor and controlling the robot so that the detection signal of this pressure sensor is set within a predetermined level range, the pressure of the cutting tip against the workpiece can always be kept constant, resulting in high precision. Chamfering can be easily performed, and teaching workability and chamfering efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の押圧制御方法を適用した面取り加工用
ロボットの一実施例を示す概略構成図、第2図は同実施
例の押圧制御方法を説明するための説明図である。 I・・アーム、2・・・手先フランジ、3・・ロボット
用面取り工具、4・・・工具フランジ、5・・・板ばね
、6・・・支持板、7・・・ゴム環、8・・・超鋼チッ
プ、9・・・歪ゲージ、10・・・ストレインアンプ、
II・・・比較器、I2・・ロボットコントローラ。 ○
FIG. 1 is a schematic configuration diagram showing an embodiment of a chamfering robot to which the pressure control method of the present invention is applied, and FIG. 2 is an explanatory diagram for explaining the pressure control method of the same embodiment. I... Arm, 2... Hand flange, 3... Chamfering tool for robot, 4... Tool flange, 5... Leaf spring, 6... Support plate, 7... Rubber ring, 8... ...Super steel chip, 9...Strain gauge, 10...Strain amplifier,
II...Comparator, I2...Robot controller. ○

Claims (1)

【特許請求の範囲】[Claims] (1)ロボットの手先フランジに板ばねを立設固定し、
その板ばねの自由端に切削用チップを固着してなる面取
り加工用ロボットにおいて、前記板ばねのたわみ量を歪
ゲージで検出し、この検出信号が所定のレベル範囲内に
設定されるように前記ロボットを駆動制御し、ワークの
面取り加工部に対する前記切削用チップの押圧がほぼ一
定になるようにすることを特徴とする面取り加工用ロボ
ットの押圧制御方法。
(1) A leaf spring is fixed upright on the robot's hand flange,
In a chamfering robot in which a cutting tip is fixed to the free end of the leaf spring, the amount of deflection of the leaf spring is detected by a strain gauge, and the deflection of the leaf spring is detected by a strain gauge, and the chamfer is A pressure control method for a chamfering robot, characterized in that the robot is drive-controlled so that the pressure of the cutting tip against a chamfered portion of a workpiece is substantially constant.
JP8223190A 1990-03-29 1990-03-29 Control method for pressure of chamfering robot Pending JPH03281120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8223190A JPH03281120A (en) 1990-03-29 1990-03-29 Control method for pressure of chamfering robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8223190A JPH03281120A (en) 1990-03-29 1990-03-29 Control method for pressure of chamfering robot

Publications (1)

Publication Number Publication Date
JPH03281120A true JPH03281120A (en) 1991-12-11

Family

ID=13768634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8223190A Pending JPH03281120A (en) 1990-03-29 1990-03-29 Control method for pressure of chamfering robot

Country Status (1)

Country Link
JP (1) JPH03281120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148225A (en) * 2019-03-11 2020-09-17 住友重機械工業株式会社 Gear device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148225A (en) * 2019-03-11 2020-09-17 住友重機械工業株式会社 Gear device

Similar Documents

Publication Publication Date Title
US9636827B2 (en) Robot system for performing force control
JPH07186007A (en) Control device for machine tool
CN113199491A (en) Industrial robot constant-force polishing method
JP2017056535A (en) Positioning device and positioning method for processing tool
US20200290207A1 (en) Real-time identification of burr size and location for robotic deburring process
JPH03281120A (en) Control method for pressure of chamfering robot
JPS5981705A (en) Compensating method of nc machine tool
JP2020019126A (en) Automatic deburring and/or edge finishing device, and automation method of deburring and/or edge finishing
JP2771458B2 (en) Industrial robot deflection correction method
JPH1158285A (en) Force control system of hand mechanism
JP2020131375A (en) High accuracy processing system and high accuracy processing method
JP4583616B2 (en) Method and apparatus for controlling welding robot
JPS59142045A (en) Numerically controlled machine tool
JPH03256682A (en) Robot control device
JPS5841995B2 (en) Robot control method
JPS61226254A (en) Controller for deburring robot
JP3171450B2 (en) Robot controller
JP3222612B2 (en) Surface processing method
Hekman Flatness control in grinding by depth of cut manipulation
JPH1158180A (en) Cutting position-correcting device of magnetic bearing spindle
JP2005034961A (en) Numerical control machining device
JP6381689B2 (en) Machining method and machining apparatus for workpiece having curved surface
JPS6239160A (en) Machine tool with nc device
JPH0675815B2 (en) Method for correcting tool locus of numerically controlled machine tool
JPH044405A (en) Numerical controller