JP2020131375A - High accuracy processing system and high accuracy processing method - Google Patents

High accuracy processing system and high accuracy processing method Download PDF

Info

Publication number
JP2020131375A
JP2020131375A JP2019028987A JP2019028987A JP2020131375A JP 2020131375 A JP2020131375 A JP 2020131375A JP 2019028987 A JP2019028987 A JP 2019028987A JP 2019028987 A JP2019028987 A JP 2019028987A JP 2020131375 A JP2020131375 A JP 2020131375A
Authority
JP
Japan
Prior art keywords
precision
cutting
control unit
cutting tool
stylus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019028987A
Other languages
Japanese (ja)
Other versions
JP7115706B2 (en
Inventor
城山 吉隆
Yoshitaka Shiroyama
吉隆 城山
竜也 濱嶋
Tatsuya Hamashima
竜也 濱嶋
和晃 伊藤
Kazuaki Ito
和晃 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Shinmei Industry Co Ltd
Original Assignee
Gifu University NUC
Shinmei Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC, Shinmei Industry Co Ltd filed Critical Gifu University NUC
Priority to JP2019028987A priority Critical patent/JP7115706B2/en
Publication of JP2020131375A publication Critical patent/JP2020131375A/en
Application granted granted Critical
Publication of JP7115706B2 publication Critical patent/JP7115706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Manipulator (AREA)

Abstract

To provide a high accuracy processing system and a high accuracy processing method capable of reliably cutting only an unnecessary protrusion.SOLUTION: A high accuracy processing system includes: a fixing tool 3 for fixing a workpiece 2; a cutting tool 4 for cutting an unnecessary protrusion on a processing surface 2A; a high accuracy type industrial robot 6 for moving the cutting tool according to surface data on a site where high accuracy processing required based on shape data 5 on the workpiece is executed; a stylus 7 that comes in contact with the surface of the workpiece; a movable base 8 for supporting the cutting tool and the stylus; a robot control unit 9 for controlling the position and direction of the movable base; a voice coil motor 10 that enables cutting work by the cutting tool to be performed by detecting a fine action when the stylus 7 is moved along the surface of the workpiece, and executing fine driving of the movable base; and a fine action control unit 11 connected to the voice coil motor for executing the fine driving of the movable base and detecting the fine action.SELECTED DRAWING: Figure 1

Description

本発明は、高精度加工システムおよび高精度加工方法に関する。 The present invention relates to a high precision machining system and a high precision machining method.

従来より、高精度の部品を加工するときには加工後に、加工面に発生する突起(いわゆるバリ)をディスクグラインダーのような研磨機を用いて取り除くことにより、仕上げ加工を行なうことがある。基本的に自動運転によって部品を加工する加工機を用いた加工においても、同様の仕上げ加工を作業者の手作業で行なう必要があった。 Conventionally, when processing a high-precision part, finishing processing may be performed by removing protrusions (so-called burrs) generated on the processed surface using a polishing machine such as a disc grinder. Basically, even in the processing using a processing machine that processes parts by automatic operation, it is necessary to perform the same finishing processing manually by the operator.

例えば、航空機などで使用する部品は、複雑な形状部品を放電精密加工機のような超精密加工機を用いて加工することにより、ミクロンオーダーの超精密加工を行なっていた。このような精密加工機を用いる場合、個々の複雑形状部品のバリ取り用プログラムを作成し、複雑形状部品のミクロンオーダーの超精密バリ取り仕上が必要であった。 For example, parts used in aircraft and the like have been subjected to micron-order ultra-precision machining by processing complex-shaped parts using an ultra-precision processing machine such as a discharge precision processing machine. When such a precision processing machine is used, it is necessary to create a deburring program for individual complex-shaped parts and perform micron-order ultra-precision deburring finish for complex-shaped parts.

特許文献1にはこのような産業用ロボットのアームの先端に取付けた工具により被加工物に生じたバリを取り除くための制御をアームの撓みを補正しながら行なう為の超精密バリ取り仕上げプログラムの一例が示されている。 Patent Document 1 describes an ultra-precision deburring finishing program for performing control for removing burrs generated on a work piece by a tool attached to the tip of an arm of such an industrial robot while correcting the deflection of the arm. An example is shown.

特開8−39465号公報Japanese Unexamined Patent Publication No. 8-39465

しかしながら、従来の仕上加工を行なう場合には、1個の複雑形状部品を仕上げるのに、精密加工を行なうプログラムと精密仕上加工を行なうプログラムの両方をそれぞれセットする必要があり多大の時間がかかるという問題があった。 However, when performing conventional finishing, it takes a lot of time to finish one complex-shaped part because it is necessary to set both a program for performing precision machining and a program for performing precision finishing. There was a problem.

また、複雑形状の被加工部品を仕上加工機の固定治具に固定するときに、どうしても毎回固定する位置が異なってしまうため、毎回バリ取り用の精密加工プログラムを調整し直す必要が生じるという問題も発生する。 In addition, when fixing a part to be machined with a complicated shape to a fixing jig of a finishing machine, the fixing position is inevitably different each time, so that it is necessary to readjust the precision machining program for deburring every time. Also occurs.

本発明は上述の事柄を考慮に入れてなされたものであり、精密加工による仕上加工を行なう被加工物の形状が複雑であったとしても、仕上加工を施す部材の形状に合わせて仕上加工プログラムを入れ直すことなく目的とする不要な突起のみを確実に切削加工することができる高精度加工システムおよび高精度加工方法を提供することを目的とする。 The present invention has been made in consideration of the above-mentioned matters, and even if the shape of the workpiece to be finished by precision machining is complicated, the finishing program is matched to the shape of the member to be finished. It is an object of the present invention to provide a high-precision machining system and a high-precision machining method capable of reliably cutting only the desired unnecessary protrusions without reinserting.

上記問題点を解決するために、第1発明は、加工対象物を支持した状態で固定する固定治具と、この加工対象物の加工面における不要な突起を切削する切削工具と、加工対象物の形状データに基づいて求められる高精密加工を行なう部位の表面データに従って切削工具を移動させる高精度型産業用ロボットと、 加工対象物の表面に当接するスタイラスと、この産業用ロボットに取付けられて切削工具およびスタイラスを支持する可動台と、前記産業用ロボットの各部を駆動制御することにより可動台の位置および方向を制御するロボット制御部と、前記スタイラスを加工対象物に当接させた状態で可動台を前記加工対象物の表面に沿って移動させるときにその微細動作を検出すると共に、可動台を前記加工対象物の表面に沿って移動させるときに可動台の微細駆動を行なうことにより切削工具による切削加工を可能とするボイスコイルモータと、このボイスコイルモータに接続されて可動台の微細駆動および微細動作の検出を行なう微細動作制御部とを備えることを特徴とする高精度加工システム(請求項1)を提供する。 In order to solve the above problems, the first invention comprises a fixing jig for fixing the object to be machined in a supported state, a cutting tool for cutting unnecessary protrusions on the machined surface of the object to be machined, and the object to be machined. A high-precision industrial robot that moves the cutting tool according to the surface data of the part to be subjected to high-precision machining required based on the shape data of the machine, a stylus that contacts the surface of the object to be machined, and attached to this industrial robot. A movable table that supports a cutting tool and a stylus, a robot control unit that controls the position and direction of the movable table by driving and controlling each part of the industrial robot, and a state in which the stylus is in contact with an object to be machined. When the movable table is moved along the surface of the object to be machined, its fine movement is detected, and when the movable table is moved along the surface of the object to be machined, the movable table is finely driven for cutting. A high-precision machining system characterized by including a voice coil motor that enables cutting with a tool and a fine motion control unit that is connected to the voice coil motor to detect fine drive and fine motion of a movable table. 1) is provided.

固定治具によって固定された加工対象物はその位置を固定させた状態で支持される。高精度型産業用ロボットはロボット制御部によって制御されて、加工対象物の形状データに基づいて求められる高精密加工を行なう部位の表面データに従って切削工具およびスタイラスを支持する可動台を移動させることができる。従って、スタイラスを加工対象物に当接させた状態で可動台を加工対象物の表面に沿って移動させるときにボイスコイルモータの出力によって可動台の微細動作を検出することにより、切削の必要性がある突起を検出することができる。 The workpiece fixed by the fixing jig is supported in a state where the position is fixed. The high-precision industrial robot is controlled by the robot control unit, and can move the movable table that supports the cutting tool and stylus according to the surface data of the part to be high-precision machined, which is obtained based on the shape data of the object to be machined. it can. Therefore, it is necessary to cut by detecting the fine movement of the movable table by the output of the voice coil motor when the movable table is moved along the surface of the object to be processed with the stylus in contact with the object to be processed. Can detect certain protrusions.

次いで、ロボット制御部が高精度産業用ロボットを制御して可動台を前記検出した突起の位置に合わせて切削工具を微細動作制御部によって移動させ、突起部分を切削させるべくボイスコイルモータを微細駆動させると共に、切削工具を駆動して突起を切削することができる。切削工具はモータスピンドルであることにより、バリ取り仕り上げを行なうことができる。 Next, the robot control unit controls the high-precision industrial robot, moves the cutting tool according to the position of the detected protrusion, and finely drives the voice coil motor to cut the protrusion. At the same time, the cutting tool can be driven to cut the protrusion. Since the cutting tool is a motor spindle, deburring and finishing can be performed.

スタイラスを当接させた状態でボイスコイルモータによる突起の検出を行なう場合、可動部が軽く、ダイレクトドライブであるため、一般のアクチュエータよりも高速で、かつ電気シグナルに合わせて運動することができる。つまり、スタイラスの微細な動作に追従して高速応答する電気信号を用いて凹凸を検出することができる一方、スタイラスによって切削工具の微細駆動を行なう場合にも応答性が良く、微細加工に適している。 When the protrusion is detected by the voice coil motor with the stylus in contact with the stylus, the movable part is light and the direct drive is used, so that the actuator can move at a higher speed than a general actuator and in accordance with an electric signal. In other words, while it is possible to detect unevenness using an electric signal that follows the fine movement of the stylus and responds at high speed, it also has good responsiveness when the stylus is used to finely drive the cutting tool, making it suitable for fine machining. There is.

前記高精度産業用ロボットは例えば汎用性に優れた6軸ロボットなどの多関節ロボットであるが、直交ロボット、パラレルリンクロボットなどを採用してもよい。可動台はLMガイドなどの直線運動部を用いて支持されることにより、移動方向が直線方向に精度良く規制された台であることが好ましい。 The high-precision industrial robot is an articulated robot such as a 6-axis robot having excellent versatility, but an orthogonal robot, a parallel link robot, or the like may be adopted. It is preferable that the movable table is a table whose moving direction is accurately regulated in the linear direction by being supported by using a linear motion portion such as an LM guide.

第2発明は、前記高精度加工システムを用いて、前記ロボット制御部に、前記加工対象物の表面データに基づいて可動台が加工対象物の表面に沿うように可動台を移動させるロボット動作プログラムを実行させ、前記微細動作制御部に、前記可動台に設けたスタイラスを加工対象物に接触させた状態で可動台を移動させるときに生じるボイスコイルモータの検出電流を用いて加工対象物の加工面の微小凹凸を検出させる検出処理と、この微小凹凸の分布を前記微細動作制御部の記録部に記録させる記録処理と、微小凹凸の分布から仕上げ加工が必要な切削対象の凹凸部を抽出すると共に、ロボット制御部に切削工具を切削対象の位置に移動させる位置情報を転送する移動処理と、産業用ロボットによる切削工具の配置を行なった後に切削工具を駆動して仕上げ加工を行わせる切削処理とからなる一連の処理を実行させる精密仕上加工プログラムを実行させることを特徴とする高精度加工方法(請求項2)を提供する。 The second invention is a robot operation program that uses the high-precision machining system to move the movable table to the robot control unit so that the movable table follows the surface of the processing object based on the surface data of the processing object. Is executed, and the fine motion control unit processes the object to be machined using the detection current of the voice coil motor generated when the movable table is moved while the stylus provided on the movable table is in contact with the object to be machined. A detection process for detecting minute irregularities on a surface, a recording process for recording the distribution of the minute irregularities in the recording unit of the fine operation control unit, and an extraction of irregularities to be cut that require finishing from the distribution of the minute irregularities. At the same time, a movement process that transfers the position information that moves the cutting tool to the position of the cutting target to the robot control unit, and a cutting process that drives the cutting tool to perform finishing after arranging the cutting tool by the industrial robot. The present invention provides a high-precision machining method (claim 2), which comprises executing a precision finishing machining program for executing a series of processes comprising.

ロボット制御部にロボット動作プログラムを実行させた状態で、微細動作制御部に精密仕上加工プログラムを実行させることにより、検出処理によってロボット制御部に加工対象物の表面に沿うように可動台を移動させて表面にスタイラスを当接させて加工面の微小凹凸を触診するかのようにして検出することができ、記録処理によって前記微小凹凸の分布を記録部に記録できる。さらに、移動処理によって微小凹凸の分布から仕上け加工が必要な凹凸部の場所と量を抽出して切削工具を移動させ、切削処理によって切削工具を用いて仕上げ加工を行なうことができる。 With the robot control unit executing the robot operation program, the fine operation control unit executes the precision finishing machining program, and the robot control unit moves the movable table along the surface of the object to be machined by the detection process. The stylus can be brought into contact with the surface to detect the minute irregularities on the processed surface as if they were palpated, and the distribution of the minute irregularities can be recorded on the recording unit by the recording process. Further, the cutting tool can be moved by extracting the location and amount of the uneven portion requiring the finishing process from the distribution of the minute unevenness by the moving process, and the finishing process can be performed by using the cutting tool by the cutting process.

ロボット制御部に実行させるロボット動作プログラムは高精度型産業用ロボットに与えられたティーチペンダンドによって作成されたものであることが考えられる。 It is considered that the robot operation program to be executed by the robot control unit is created by the teach pendant given to the high-precision industrial robot.

上述したように、本発明によれば複雑な形状の被加工物の仕上加工を加工プログラムを入れ直すことなく不要な突起のみを確実かつ効率的に切削加工することができる高精度加工システムおよび高精度加工方法を提供することができる。 As described above, according to the present invention, a high-precision machining system and high-precision machining system capable of reliably and efficiently cutting only unnecessary protrusions without re-entering the machining program for finishing of a workpiece having a complicated shape. A processing method can be provided.

本発明の実施形態に係る高精度加工システムを示す図である。It is a figure which shows the high precision processing system which concerns on embodiment of this invention. 前記高精度加工システムの模式的な構成を示す図である。It is a figure which shows the typical structure of the high precision processing system. 加工対象物の固定治具の構成を示す図である。It is a figure which shows the structure of the fixing jig of the processing object. 高精度加工システムのスタイラスと切削工具の関係を示す図である。It is a figure which shows the relationship between the stylus of a high precision machining system, and a cutting tool. 高精度加工方法の例を示す図である。It is a figure which shows the example of the high precision processing method.

以下、本発明の第1実施形態の高精度加工システム1の構成を図1〜図5に従って説明する。図1,図2に示すように、本発明の高精度加工システム1は加工対象物2を支持した状態で固定する固定治具3と、この加工対象物2の加工面2Aにおける不要な突起を切削する切削工具4と、加工対象物2の形状データ5に基づいて求められる高精密加工を行なう加工面2Aの表面データに従って切削工具4を移動させる高精度型産業用ロボット6と、加工対象物2の表面に当接するスタイラス7と、この産業用ロボット6に取付けられて切削工具4およびスタイラス7を支持する可動台8と、前記産業用ロボット6の各部を駆動制御することにより可動台8の位置および方向を制御するロボット制御部9と、前記スタイラス7を加工対象物2に当接させた状態で可動台8を前記加工対象物2の表面に沿って移動させるときにその微細動作を検出すると共に、可動台8を前記加工対象物2の表面に沿って移動させるときに可動台8の微細駆動を行なうことにより切削工具4による切削加工を可能とするボイスコイルモータ10と、このボイスコイルモータ10に接続されて可動台8の微細駆動および微細動作の検出を行なう微細動作制御部11とを備える。 Hereinafter, the configuration of the high-precision machining system 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5. As shown in FIGS. 1 and 2, the high-precision machining system 1 of the present invention has a fixing jig 3 for fixing the machining object 2 in a supported state and unnecessary protrusions on the machining surface 2A of the machining object 2. A cutting tool 4 to be cut, a high-precision industrial robot 6 that moves the cutting tool 4 according to the surface data of the machining surface 2A that performs high-precision machining obtained based on the shape data 5 of the machining object 2, and a machining object. The stylus 7 that comes into contact with the surface of the industrial robot 2, the movable base 8 that is attached to the industrial robot 6 to support the cutting tool 4 and the stylus 7, and the movable base 8 by driving and controlling each part of the industrial robot 6. When the robot control unit 9 that controls the position and direction and the movable base 8 are moved along the surface of the machining object 2 with the stylus 7 in contact with the machining object 2, the minute movement is detected. A voice coil motor 10 that enables cutting by a cutting tool 4 by finely driving the movable table 8 when moving the movable table 8 along the surface of the object 2 to be machined, and a voice coil thereof. It is provided with a fine motion control unit 11 which is connected to the motor 10 and performs fine drive of the movable base 8 and detection of fine motion.

前記高精度加工システム1を構成する固定治具3および高精度産業用ロボと6は作業者が作業しやすい高さに形成された作業台1A上に固定されている。前記加工対象物2は例えば航空機産業で用いられるタービンブレードなどの高精度加工を必要とするものであり、極端な少量多品種を必要とするものである。そして、前記高精度加工システム1は一次加工において基本的な形状の加工が行われた加工対象物2に、二次加工として高精度加工(バリ取り)を行なうものである。また、固定冶具3は高さ調節可能な基台部12と、この基台部12に支持されて支持部13とを備える。 The fixing jig 3 and the high-precision industrial robot and 6 constituting the high-precision machining system 1 are fixed on a workbench 1A formed at a height that is easy for an operator to work. The processing object 2 requires high-precision processing of, for example, a turbine blade used in the aircraft industry, and requires an extremely small amount and a wide variety of products. Then, the high-precision machining system 1 performs high-precision machining (deburring) as secondary machining on the machining object 2 which has been machined in a basic shape in the primary machining. Further, the fixing jig 3 includes a height-adjustable base portion 12 and a support portion 13 supported by the base portion 12.

図3に示すように、固定冶具3はこの加工対象物2を固定するものであり、加工対象物2の側面に当接する当接板部14と、加工対象物2を置く台部15と、加工対象物2の各部に当接する抑え部材16,17と、加工対象物2に押さえ込む力をかけるクランプ18とを備えることにより、クランプ18のワンタッチ操作によって固定し、また、ワンタッチ操作によって解除可能である。 As shown in FIG. 3, the fixing jig 3 fixes the machining object 2, and includes a contact plate portion 14 that abuts on the side surface of the machining object 2, a base portion 15 on which the machining object 2 is placed, and a base portion 15. By providing holding members 16 and 17 that come into contact with each part of the object to be machined 2 and a clamp 18 that applies a force to press the object to be machined 2, the clamp 18 can be fixed by one-touch operation and can be released by one-touch operation. is there.

図4に示すように、切削工具4はモータスピンドル4Aによって回転駆動されるバリ取り工具4Bからなり、可動台8上に取付けられているので、可動台8の移動に伴って図示上下方向に移動可能に構成されている。また、可動台8は高精度型産業用ロボット6の先端部に設けられるボイスコイルモータ10によって駆動され、例えばLMガイドによって図示略上下方向に直線移動可能に支持されると共に可能な限り軽量化された可動部分8Aを備える。加えて、可動部分8Aにはスタイラス7および切削工具4を備える。 As shown in FIG. 4, the cutting tool 4 includes a deburring tool 4B that is rotationally driven by a motor spindle 4A, and is mounted on the movable base 8. Therefore, the cutting tool 4 moves in the vertical direction shown in the drawing as the movable base 8 moves. It is configured to be possible. Further, the movable base 8 is driven by a voice coil motor 10 provided at the tip of the high-precision industrial robot 6, and is supported by, for example, an LM guide so as to be linearly movable in the substantially vertical direction shown in the drawing, and is made as light as possible. It is provided with a movable portion 8A. In addition, the movable portion 8A is provided with a stylus 7 and a cutting tool 4.

前記高精度型産業用ロボット6は、例えば人の腕に似た自由度を持つと共に精密な作業を行なうことができる垂直多関節ロボットであることが好ましく、かつ、ミクロンオーダーの微細な分解能で制御することができるものである。本実施形態の高精度型産業用ロボット6は5つの回転軸6A〜6E上で回動自在に支持する関節駆動部と、両矢印6F方向に進退可能に支持する進退駆動部とを備え、前記形状データ5の例としてのティーチペンダントからのコマンドに従って各駆動部が制御されることにより、形状データ5に基づいて求められる加工対象物の表面データに従って可動台8を移動させると共に、可動台8の角度をボイスコイルモータ10の駆動によるスタイラス7または切削工具4の移動方向が加工対象物2の表面に略垂直となる角度にさせるものである。 The high-precision industrial robot 6 is preferably a vertical articulated robot having a degree of freedom similar to that of a human arm and capable of performing precise work, and is controlled with a fine resolution on the order of microns. Is something that can be done. The high-precision industrial robot 6 of the present embodiment includes a joint drive unit that rotatably supports on the five rotation axes 6A to 6E, and an advance / retreat drive unit that supports the robot 6 so as to advance and retreat in the direction of the double-headed arrow 6F. By controlling each drive unit according to a command from the teach pendant as an example of the shape data 5, the movable base 8 is moved according to the surface data of the object to be machined obtained based on the shape data 5, and the movable base 8 is moved. The angle is set so that the moving direction of the stylus 7 or the cutting tool 4 driven by the voice coil motor 10 is substantially perpendicular to the surface of the workpiece 2.

ロボット制御部9は前記形状データ5の指示に従って高精度型産業用ロボット6の駆動部を適宜制御することにより可動台8の位置および角度を調節可能とするロボット動作プログラムP1を実行可能とするものであり、本実施形態の高精度加工システム1では、さらに微細動作制御部11からの指示コマンドに従って形状データ5を微細動作制御部11に転送したり、微細動作制御部11からの指示コマンドによって、前記スタイラス7を加工面に当接させたり、切削工具4によって加工面の凸部を切削させるように移動させることができる。なお、スタイラス7の先端部は円形に形成されており、スタイラス7が当接する加工対象物2の表面に傷をつけないように構成されている。 The robot control unit 9 can execute a robot operation program P1 that can adjust the position and angle of the movable base 8 by appropriately controlling the drive unit of the high-precision industrial robot 6 according to the instruction of the shape data 5. In the high-precision machining system 1 of the present embodiment, the shape data 5 is further transferred to the fine motion control unit 11 according to an instruction command from the fine motion control unit 11, or by an instruction command from the fine motion control unit 11. The stylus 7 can be brought into contact with the machined surface, or the convex portion of the machined surface can be moved so as to be cut by the cutting tool 4. The tip of the stylus 7 is formed in a circular shape so as not to damage the surface of the object 2 to be processed with which the stylus 7 comes into contact.

前記ボイスコイルモータ10は可動台8を移動させてスタイラス7を加工面に軽く当接させた状態で可動台8の移動量を検出可能であると共に、回転駆動させた切削工具4を微細駆動して加工面の突起に当接させてこの突起だけを切削可能に構成している。このボイスコイルモータ10は電気信号を印加することにより可動台8の可動部8Aを迅速かつ高精度に移動させることができると共に、可動部8Aの移動量に合せた電気信号を遅れることなく発生させることができる。つまり、アクチュエータとしての動作に加えて位置検出器としての動作も行なわせることができる。 The voice coil motor 10 can detect the amount of movement of the movable base 8 in a state where the movable base 8 is moved and the stylus 7 is lightly brought into contact with the machined surface, and the rotary-driven cutting tool 4 is finely driven. It is configured so that only this protrusion can be cut by contacting it with the protrusion on the machined surface. The voice coil motor 10 can move the movable portion 8A of the movable base 8 quickly and with high accuracy by applying an electric signal, and also generates an electric signal according to the amount of movement of the movable portion 8A without delay. be able to. That is, in addition to the operation as an actuator, the operation as a position detector can also be performed.

前記微細動作制御部11は精密仕上加工プログラムP2を実行することにより、前記形状データ5を用いたロボット動作プログラムP1を実行させたり、ボイスコイルモータ10による微細動作を制御し、また、ボイスコイルモータ10からの信号によって可動台8の移動量を精度良く検出することにより、検出処理、記録処理、移動処理、切削処理を実行可能とするものである。 By executing the precision finishing processing program P2, the fine motion control unit 11 executes the robot motion program P1 using the shape data 5, controls the fine motion by the voice coil motor 10, and also controls the fine motion by the voice coil motor 10. By accurately detecting the movement amount of the movable table 8 by the signal from 10, the detection process, the recording process, the movement process, and the cutting process can be executed.

図5は上記構成の高精度加工システム1を用いた高精度加工方法の例を示す図である。図5に示すように、前記ロボット制御部9に、まず、前記加工対象物2の形状データ5に基づいて可動台8が加工対象物2の表面に沿うように可動台8を移動させるロボット動作プログラムP1を実行させる(ステップS1)。 FIG. 5 is a diagram showing an example of a high-precision machining method using the high-precision machining system 1 having the above configuration. As shown in FIG. 5, the robot control unit 9 first moves the movable table 8 along the surface of the processing object 2 based on the shape data 5 of the processing object 2. The program P1 is executed (step S1).

また、微細動作制御部11に精密仕上加工プログラムP2を実行させて、前記可動台8に設けたスタイラス7を加工対象物2に接触させた状態で可動台8を移動させるときに生じるボイスコイルモータ10の検出電流を用いて加工対象物2の加工面2Aの微小凹凸を検出させる検出処理を実行させる(ステップS2)。 Further, a voice coil motor generated when the fine motion control unit 11 executes the precision finishing processing program P2 to move the movable table 8 in a state where the stylus 7 provided on the movable table 8 is in contact with the object to be processed 2. A detection process for detecting minute irregularities on the machined surface 2A of the machined object 2 is executed using the detection current of 10 (step S2).

このとき、加工対象部2が複雑な形状であっても、前記表面データ5を用いてスタイラス7を選択することにより、スタイラス7の先端部が加工面2Aに当接できるように前記可動台8を加工面2Aに沿って所定の距離を保つように移動させることにより、スタイラス7を用いた触診を行なうことができる。可動台8を加工面2Aに沿って移動させる時に可動台8の可動部8Aの直線移動によって発生する電流値などの電気信号は複雑な形状の微小凹凸であってもこれをフィードバック信号として確実に検出することができる。 At this time, even if the processing target portion 2 has a complicated shape, by selecting the stylus 7 using the surface data 5, the movable base 8 can be brought into contact with the processing surface 2A at the tip of the stylus 7. The stylus 7 can be used for palpation by moving the stylus along the machined surface 2A so as to maintain a predetermined distance. When the movable base 8 is moved along the machining surface 2A, the electric signal such as the current value generated by the linear movement of the movable portion 8A of the movable base 8 is surely used as a feedback signal even if it has a complicated shape. Can be detected.

次に、この微小凹凸の分布を前記微細動作制御部11の記録部11Aに記録させる記録処理を実行させる(ステップS3)。 Next, a recording process for recording the distribution of the minute irregularities in the recording unit 11A of the fine movement control unit 11 is executed (step S3).

前記記録処理によって記録される微小凹凸はミクロンオーダーであり、加工対象物2の固定作業時に僅かな位置ズレが発生することも考えられるが、このような位置ズレは可動台8の移動に対して変動することがない位置ズレとして表れるか、あるいは移動距離に比例して増減するズレ量として表れるので、微小凹凸の分布を記録部生11Aに記録させることにより、加工面2Aに発生しているバリの位置を特定することができる。 The minute irregularities recorded by the recording process are on the order of microns, and it is conceivable that a slight positional deviation may occur during the fixing operation of the workpiece 2, but such a positional deviation is relative to the movement of the movable table 8. Since it appears as a positional deviation that does not fluctuate, or as an amount of deviation that increases or decreases in proportion to the moving distance, burrs generated on the machined surface 2A by recording the distribution of minute irregularities on the recording section student 11A. The position of can be specified.

従って、前記記録部11Aに記録された微小凹凸の分布(触診データ)を解析して、仕上げ加工が必要な切削対象の凹凸部を抽出すると共に、ロボット制御部9に切削工具を切削対象の位置に移動させるバリ取りプログラムを作成して、バリ取り加工対象の位置情報を前記ロボット制御部9に転送する移動処理を実行させることができる(ステップS4)。 Therefore, the distribution (tactile data) of the minute unevenness recorded in the recording unit 11A is analyzed to extract the uneven portion to be cut that requires finishing, and the cutting tool is placed in the robot control unit 9 at the position of the cutting target. A deburring program for moving to the robot control unit 9 can be created to execute a moving process for transferring the position information of the deburring processing target to the robot control unit 9 (step S4).

なお、前記移動処理において仕上加工が必要な切削対象の凹凸部の位置として、例えば許容高さとして50μm以上の凸部をバリとして抽出させることができるが、切削による仕上げ加工を必要とするバリがないことも考えられる。したがって、加工面2Aに切削対象の微小凹凸が存在するかどうかを判定する(ステップS5)。 As the position of the uneven portion to be cut that requires finishing in the moving process, for example, a convex portion having an allowable height of 50 μm or more can be extracted as a burr, but a burr that requires finishing by cutting is present. It is possible that there is no such thing. Therefore, it is determined whether or not the machined surface 2A has minute irregularities to be cut (step S5).

前記ステップS5において、切削対象となるバリがあると判断された場合、産業用ロボットによる切削工具の配置を行なった後に切削工具を駆動して仕上げ加工を行わせる切削処理を実行させる(ステップS6)。 When it is determined in step S5 that there is a burr to be cut, a cutting process is executed in which the cutting tool is driven to perform finishing after the cutting tool is arranged by the industrial robot (step S6). ..

このとき、ロボット制御部9は切削工具4を選択した状態で、微細動作制御部11から受け取ったバリ取り加工対象の位置情報に従って高精度型産業用ロボット6の各部を制御することにより、切削工具4の先端部が加工面2Aと面一になるように、可動台8を加工面2Aに沿って所定の距離を保つように移動させることができる。この切削工具4は切削対象となる凸部のみを切削し、周辺の加工面2Aと面一となるようにするようにするバリ取りプログラムを作成して行なうものであるから、不要な切削加工を行なうことがなく、それだけ仕上げ加工を速やかに行なうことができ、バリが発生していない部分に傷を付けることがないので、仕上がりがより美しくなるという利点がある。 At this time, the robot control unit 9 controls each part of the high-precision industrial robot 6 according to the position information of the deburring target received from the fine motion control unit 11 with the cutting tool 4 selected, thereby performing the cutting tool. The movable base 8 can be moved along the machining surface 2A so as to maintain a predetermined distance so that the tip portion of the 4 is flush with the machining surface 2A. Since this cutting tool 4 cuts only the convex portion to be cut and creates a deburring program so as to be flush with the peripheral machining surface 2A, unnecessary cutting is performed. There is no need to do it, and the finishing process can be performed more quickly, and there is no damage to the part where burrs are not generated, so there is an advantage that the finish becomes more beautiful.

上述のステップS2〜S6の処理を繰り返すことにより、高精度加工方法によるバリ取り加工を極めて容易に行なうことができ、許容高さ以上のバリを確実に取りのぞき、加工面2Aのバリが許容高さ以下になっていることを前記ステップS6において確認してから仕上げ加工を終了することができる。 By repeating the above steps S2 to S6, deburring by a high-precision machining method can be performed extremely easily, burrs above the allowable height can be reliably removed, and burrs on the machined surface 2A have the allowable height. After confirming that the height is less than or equal to that in step S6, the finishing process can be completed.

とりわけ、航空機産業の複雑な形状の加工対象物2のバリ取り作業は、従来は高度な技術を持つ職人が手作業で行なっていたのであるが、本発明の高精度加工システム1および高精度加工方法を用いることにより、職人業を必要とする作業をロボット化することができ、バリ取りの仕上作業の自動化を行なうことができる。また、仕上げ加工作業を24時間365日続けて行なうことも可能となる。 In particular, the deburring work of the processing object 2 having a complicated shape in the aircraft industry has conventionally been performed manually by a craftsman with a high level of technology, but the high-precision processing system 1 and high-precision processing of the present invention have been performed manually. By using the method, it is possible to robotize the work that requires craftsmanship, and it is possible to automate the finishing work of deburring. It is also possible to carry out the finishing work continuously for 24 hours 365 days.

さらに、本発明の高精度加工システム1では、切削工具4や固定治具3を加工対象物2に合せて交換することも可能である。すなわち、異なる部品のバリ取り加工であっても、比較的容易に対応することができ、超高精度加工を行なう高精度加工システムの汎用性が向上する。 Further, in the high-precision machining system 1 of the present invention, the cutting tool 4 and the fixing jig 3 can be replaced according to the machining object 2. That is, even deburring of different parts can be handled relatively easily, and the versatility of the high-precision machining system that performs ultra-high-precision machining is improved.

1 高精度加工システム
2 加工対象物
3 固定治具
4 切削工具
5 形状データ
6 高精度型産業用ロボット
7 スタイラス
8 可動台
9 ロボット制御部
10 ボイスコイルモータ
11 微細動作制御部
P1 ロボット動作プログラム
P2 精密仕上加工プログラム
1 High-precision machining system 2 Machining object 3 Fixing jig 4 Cutting tool 5 Shape data 6 High-precision industrial robot 7 Stylus 8 Movable table 9 Robot control unit 10 Voice coil motor 11 Fine motion control unit P1 Robot motion program P2 Precision Finishing processing program

Claims (2)

加工対象物を支持した状態で固定する固定治具と、
この加工対象物の加工面における不要な突起を切削する切削工具と、
加工対象物の形状データに基づいて求められる高精密加工を行なう部位の表面データに従って切削工具を移動させる高精度型産業用ロボットと、
加工対象物の表面に当接するスタイラスと、
この高精度型産業用ロボットに取付けられて切削工具およびスタイラスを支持する可動台と、
前記高精度型産業用ロボットの各部を駆動制御することにより可動台の位置および方向を制御するロボット制御部と、
前記スタイラスを加工対象物に当接させた状態で可動台を前記加工対象物の表面に沿って移動させるときにその微細動作を検出すると共に、可動台を前記加工対象物の表面に沿って移動させるときに可動台の微細駆動を行なうことにより切削工具による切削加工を可能とするボイスコイルモータと、
このボイスコイルモータに接続されて可動台の微細駆動および微細動作の検出を行なう微細動作制御部とを備えることを特徴とする高精度加工システム。
A fixing jig that supports and fixes the object to be processed,
A cutting tool that cuts unnecessary protrusions on the machined surface of this work object,
A high-precision industrial robot that moves cutting tools according to the surface data of the part to be machined with high precision obtained based on the shape data of the object to be machined.
A stylus that comes into contact with the surface of the object to be processed,
A movable base that is attached to this high-precision industrial robot to support cutting tools and styluses,
A robot control unit that controls the position and direction of the movable base by driving and controlling each part of the high-precision industrial robot,
When the movable table is moved along the surface of the processing object with the stylus in contact with the object to be processed, its fine movement is detected and the movable table is moved along the surface of the object to be processed. A voice coil motor that enables cutting with a cutting tool by finely driving the movable base when making it
A high-precision machining system characterized by being connected to this voice coil motor and provided with a fine motion control unit for finely driving the movable table and detecting fine motions.
請求項1に記載の高精度加工システムを用いて、前記ロボット制御部に、前記加工対象物の表面データに基づいて可動台が加工対象物の表面に沿うように可動台を移動させるロボット動作プログラムを実行させ、
前記微細動作制御部に、前記可動台に設けたスタイラスを加工対象物に接触させた状態で可動台を移動させるときに生じるボイスコイルモータの検出電流を用いて加工対象物の加工面の微小凹凸を検出させる検出処理と、
この微小凹凸の分布を前記微細動作制御部の記録部に記録させる記録処理と、
微小凹凸の分布から仕上げ加工が必要な切削対象の凹凸部を抽出すると共に、ロボット制御部に切削工具を切削対象の位置に移動させる位置情報を転送する移動処理と、
産業用ロボットによる切削工具の配置を行なった後に切削工具を駆動して仕上げ加工を行わせる切削処理とからなる一連の処理を実行させる精密仕上加工プログラムを実行させることを特徴とする高精度加工方法。
A robot operation program that uses the high-precision machining system according to claim 1 to move the movable table to the robot control unit so that the movable table follows the surface of the processing object based on the surface data of the processing object. To execute,
The fine movement control unit uses the detection current of the voice coil motor generated when the stylus provided on the movable table is in contact with the object to be processed and is generated when the movable table is moved. Detection processing to detect
A recording process for recording the distribution of the minute irregularities in the recording unit of the fine movement control unit,
A movement process that extracts the uneven part of the cutting target that requires finishing from the distribution of minute unevenness and transfers the position information that moves the cutting tool to the position of the cutting target to the robot control unit.
A high-precision machining method characterized by executing a precision finishing machining program that executes a series of processes consisting of a cutting process in which a cutting tool is driven to perform finishing after the cutting tool is arranged by an industrial robot. ..
JP2019028987A 2019-02-21 2019-02-21 High-precision machining system and high-precision machining method Active JP7115706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028987A JP7115706B2 (en) 2019-02-21 2019-02-21 High-precision machining system and high-precision machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028987A JP7115706B2 (en) 2019-02-21 2019-02-21 High-precision machining system and high-precision machining method

Publications (2)

Publication Number Publication Date
JP2020131375A true JP2020131375A (en) 2020-08-31
JP7115706B2 JP7115706B2 (en) 2022-08-09

Family

ID=72277326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028987A Active JP7115706B2 (en) 2019-02-21 2019-02-21 High-precision machining system and high-precision machining method

Country Status (1)

Country Link
JP (1) JP7115706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515406A (en) 2016-11-18 2017-03-22 精进电动科技股份有限公司 Coaxial multi-motor driving system and vehicle comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924473A (en) * 1982-07-30 1984-02-08 Toshiba Corp Mechanism for detecting moving speed of magnetic head
JPH054183A (en) * 1991-02-07 1993-01-14 Toyoda Mach Works Ltd Robot control device
JP2000074616A (en) * 1998-09-02 2000-03-14 Mitsutoyo Corp Surface tracking type measuring instrument
JP2001260020A (en) * 2000-03-16 2001-09-25 Canon Inc Pressurizing force variable polishing device
JP2002355730A (en) * 2001-03-27 2002-12-10 Rikogaku Shinkokai Table positioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924473B2 (en) 2011-11-10 2016-05-25 株式会社三洋物産 Game machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924473A (en) * 1982-07-30 1984-02-08 Toshiba Corp Mechanism for detecting moving speed of magnetic head
JPH054183A (en) * 1991-02-07 1993-01-14 Toyoda Mach Works Ltd Robot control device
JP2000074616A (en) * 1998-09-02 2000-03-14 Mitsutoyo Corp Surface tracking type measuring instrument
JP2001260020A (en) * 2000-03-16 2001-09-25 Canon Inc Pressurizing force variable polishing device
JP2002355730A (en) * 2001-03-27 2002-12-10 Rikogaku Shinkokai Table positioning device

Also Published As

Publication number Publication date
JP7115706B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
JP6630073B2 (en) Machining device and machining method
JP5856212B2 (en) Jig and processing system for supporting a workpiece rotatably with respect to a tool of a machine tool
US4993896A (en) Edge contouring system
JP6649348B2 (en) Tool life judgment device
TWI491464B (en) Machine tool for precision micro-milling and/or drilling
EP2584419A2 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
JP2019171503A (en) Robot processing system
US10195706B2 (en) Object fastening device for fastening object to receiving part, machine tool, robot, and method of fastening object to receiving part
JP2014040001A (en) Workpiece processing device and control method for the same
JP7115706B2 (en) High-precision machining system and high-precision machining method
JP2004243394A (en) Jig for welding
CN108115209B (en) Method for machining turbine blade
JP6168396B2 (en) Machine Tools
WO2004028755A1 (en) End effector
JP4486972B2 (en) Processing equipment for processing disc-shaped workpieces
JP5072743B2 (en) Micromachine and micromilling machine
JP3051576B2 (en) Workpiece deformation prevention clamp method
JPH10193239A (en) Working device
JP7103136B2 (en) Machine tools and processing methods
JP6752032B2 (en) Position detection device for movable members of actuators
JP3064043B2 (en) Machining method in which workpiece deformation due to clamp is corrected, and NC machine tool for implementing the method
JPWO2006068083A1 (en) Processing equipment
JP2020019126A (en) Automatic deburring and/or edge finishing device, and automation method of deburring and/or edge finishing
RU2559081C1 (en) Device for automatic machining of thin-wall part
JP5198885B2 (en) Machine tool and workpiece machining method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210913

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7115706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150