JPH03280449A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03280449A
JPH03280449A JP7989890A JP7989890A JPH03280449A JP H03280449 A JPH03280449 A JP H03280449A JP 7989890 A JP7989890 A JP 7989890A JP 7989890 A JP7989890 A JP 7989890A JP H03280449 A JPH03280449 A JP H03280449A
Authority
JP
Japan
Prior art keywords
hole
film
insulating film
interlayer insulating
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7989890A
Other languages
Japanese (ja)
Inventor
Takao Tanigawa
谷川 高穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7989890A priority Critical patent/JPH03280449A/en
Publication of JPH03280449A publication Critical patent/JPH03280449A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make small an opening of a contact hole or a through-hole and to prevent a contact resistance from being increased by a method wherein an interlayer insulating film under the lower part of the bottom of a hole is etched wider than the diameter of the hole up to a lower conductive layer, the hole is penetrated and a conductive member is buried in the interior of the through-hole. CONSTITUTION:A silicon nitride film 4 and an interlayer insulating film 3 are etched by reactive ion etching using a photoresist 5 as a mask in such a way that a lower impurity diffused layer 2 is not exposed. After the photoresist 5 is removed, the film 4 is grown by a CVD method and a silicon nitride film sidewall 6 is formed on the sidewall of a hole by etching back the film 4. The film 3 is subjected to isotropic etching using the film 4 and the sidewall 6 as masks and the isotropic etching is stopped when the layer 2 is exposed. After the film 4 and the sidewall 6 are etched with a hot phosphoric acid, a high- melting point metal film 7, such as a tungsten film or the like, is grown only on the layer 2 and the interior of a contact hole is filled with the film 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野J 本発明は半導体装置の製造方法、特にコンタクトホール
、多層配線のスルーホールなどの接続部を有する装置の
製造方法に関する。 [従来の技術] 従来のコンタクトホールやスルーホールを有する半導体
装置の製造方法を第3図を参照して説明する。半導体基
板l上に不純物拡散層2を形成後、その上にPSG (
りん珪酸ガラス)などの層間絶縁膜3をCVD法で堆積
する。そして、ホトレジスト5を塗布後、開孔部を形成
C第3図(al I Lかマスクパターンとして、反応
性イオンエツチング(RI E)を用い1層間絶縁膜3
にホールを開孔する(第3図(bl ) 。 次にホトレジスト5を除去後、その上をアルミニウム膜
で被覆し、バターニングして配線8を形成する(第3図
1c) ) 。 [発明が解決しようとする課題J 一般に素子の微細化のため配線ピッチを縮小する場合に
、コンタクトホールの開口寸法も小さくしないと、幾多
の不都合が生ずる。すなわち、コンタクトホールを配線
ピッチに比例して縮小しない場合には、配線幅とコンタ
クト間の設計余裕が小さくなる結果、目金せずれや開口
寸法の広がりにより、配線のエツチングの際にコンタク
トホールが露出され、下層の半導体基板がエツチングさ
れてしまうことや、極端な場合にはコンタクトホールが
隣接する配線にかかることも生ずる。 ところで、上述した従来の製造方法でコンタクトホール
の開口寸法を小さくする場合、土層のアルミニウム配線
と下層の不純物拡散層との接触面積が小さくなるのでコ
ンタクト抵抗が増大する。さらに、微細なコンタクトで
は、アルミニウムが蒸着法ではコンタクト内部に十分入
りきらず、途中で断線したり、アルミニウム中に含有さ
れているシリコンが析出してコンタクトポールをふさぎ
、コンタクト抵抗が増大するという欠点がある0以上の
ことは多層配線のスルーホールについても同様である。 本発明の目的は、上記の欠点を除去し、コンタクトホー
ルやスルーホールの開孔を小さくしても、コンタクト抵
抗の増大のないような接続部を有する半導体装置の製造
方法を提供することにある。 [課題を解決するための手段] 本発明によれば、層間絶縁膜を貫通する孔(コンタクト
ホールもしくはスルーホール)を介しての上層および下
層の導電層の接続は、層間絶縁膜を、下層導電層との接
続部位において、下層導電層に達しない深さで孔開けす
る工程と、孔開は後、孔側壁に耐蝕性絶縁膜を形成し、
層間絶縁膜上のホトレジストあるいは前もって形成して
ある耐蝕性絶縁膜との協働により、孔底面を除き、層間
絶縁膜のエツチング保護手段を完成する工程と、等方性
エツチングにより、孔底面下方の層間絶縁膜を孔径より
広く下層導電層までエツチングし、孔を貫通させる工程
と、次にエツチング保護手段を除去して、層間絶縁膜を
露出状態とし、貫通孔内部に導電部材な埋込む工程と、
貫通孔の導電部材に接して上層導電層を形成する工程に
よってなされる。 [作  用  〕 層間絶縁膜内に貫通される孔は、その下層導電層に接す
る部分は孔径より広くなっているので、貫通孔内に埋込
まれた導電部材と下層導電層との接触面積を充分大きく
とれる。したがって貫通孔の径すなわち貫通孔の上部の
上層導電層と接する面積をその分小さくとることができ
る。
"Industrial Application Field J" The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a device having connection parts such as contact holes and through holes for multilayer wiring. A method of manufacturing a semiconductor device having the above structure will be explained with reference to FIG. 3. After forming an impurity diffusion layer 2 on a semiconductor substrate 1, PSG (
An interlayer insulating film 3 made of phosphosilicate glass or the like is deposited by CVD. After coating the photoresist 5, an opening is formed using reactive ion etching (RIE) as a mask pattern.
A hole is formed in the hole (FIG. 3 (bl)). Next, after removing the photoresist 5, it is covered with an aluminum film and patterned to form a wiring 8 (FIG. 3 (c)). [Problem to be Solved by the Invention J] Generally, when the wiring pitch is reduced in order to miniaturize elements, unless the opening size of the contact hole is also reduced, many problems will occur. In other words, if the contact hole is not reduced in proportion to the wiring pitch, the wiring width and the design margin between the contacts will become smaller, resulting in the contact hole becoming smaller when etching the wiring due to misalignment of the metal fittings and widening of the opening size. If exposed, the underlying semiconductor substrate may be etched, or in extreme cases, the contact hole may extend into adjacent wiring. By the way, when the opening size of the contact hole is made smaller using the conventional manufacturing method described above, the contact area between the aluminum wiring in the soil layer and the impurity diffusion layer in the lower layer becomes smaller, so that the contact resistance increases. Furthermore, with fine contacts, the vapor deposition method does not allow enough aluminum to enter the inside of the contact, resulting in wire breakage, and the silicon contained in the aluminum precipitates and blocks the contact pole, increasing contact resistance. The same applies to through holes in multilayer wiring. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for manufacturing a semiconductor device having a connection portion in which the contact resistance does not increase even if the contact holes and through holes are made smaller. . [Means for Solving the Problems] According to the present invention, the connection between the upper and lower conductive layers via the hole (contact hole or through hole) penetrating the interlayer insulating film connects the interlayer insulating film to the lower conductive layer. A process of drilling a hole at a depth that does not reach the lower conductive layer at the connection site with the layer, and after forming the hole, a corrosion-resistant insulating film is formed on the side wall of the hole,
A process of removing the bottom of the hole and completing the etching protection means for the interlayer insulating film by cooperating with the photoresist on the interlayer insulating film or a corrosion-resistant insulating film formed in advance, and isotropic etching to remove the bottom of the hole. A step of etching the interlayer insulating film to a lower conductive layer wider than the hole diameter to penetrate the hole, and a step of removing the etching protection means to expose the interlayer insulating film and embedding a conductive member inside the through hole. ,
This is done by forming an upper conductive layer in contact with the conductive member in the through hole. [Function] Since the hole penetrated into the interlayer insulating film is wider than the diameter of the hole in contact with the lower conductive layer, the contact area between the conductive member embedded in the through hole and the lower conductive layer is reduced. It can be made large enough. Therefore, the diameter of the through hole, that is, the area of the upper part of the through hole in contact with the upper conductive layer can be made correspondingly smaller.

【実施例】【Example】

以下1本発明の実施例について図面を参照して説明する
。第1図は本発明の第1実施例の主要工程を示す縦断面
図である。 半導体基板1に不純物拡散層2を形成後、1) S G
などの層間絶U膜3をCVD法で成長し、その上にシリ
コン窒化膜4をCVD法で成長する(第1図(a))。 次に、ホトレジスト5を塗布し、コンタクトホールを開
口するためのバターニングを行なう(第1図(b))。 次いで、ホトレジスト5をマスクとしてシリコン窒化膜
4および層間絶縁膜3を反応性イオンエツチング(RI
 E)でエツチングする。エツチング時間は下層の不純
物拡散層2が露出しないよう短めに設定する。具体的に
はシリコン窒化膜4および層間絶縁膜3の膜厚とそれぞ
れの膜のエツチングレートから計算により求めた不純物
拡散層2が露出されるまでに要するエツチング時間の例
えば50%程度の短い時間で、エツチングを終了させる
(第1図(C))。 次に、ホトレジスト5を除去後、CVD法によりシリコ
ン窒化膜を成長し、さらに反応性イオンエツチング(R
I E)によるシリコン窒化膜のエッチバックにより、
コンタクトホール側壁にシリコン窒化膜のサイドウオー
ル6を形成する(第1図(d) ) 。 次いで、シリコン窒化膜4および窒化膜サイドウオール
6をマスクとして、層間絶縁膜3を例えば弗化水素酸(
旺)溶液により等方性エツチングし、不純物拡散層2が
露出するところで停止する(第1図(e))。 次に、シリコン窒化膜4および窒化膜サイドウオール6
を熱リン酸によりエツチングした後に、例えばタングス
テン(W)などの高融点金属7を例えばシラン(SiH
−)還元法を用いた選択CVD法により、不純物拡散層
2上にのみ成長させコンタクトホール内部を埋めこむ。 なお、埋めごみの方法としては他に、不純物拡散層2上
にのみ選択的に不純物をドーピングしながら多結晶シリ
コンを成長させる方法や、多結晶シリコンをCVD法に
より成長後、リン(P)やボロン(B)などの不純物を
拡散し、さらに反応性イオンエツチング(RI E)に
よりエッチバックする方法がある0次いでアルミニウム
層をスパッタ蒸着し、パターニングしてアルミニウム配
Iji1gとする。 次に本発明の第2実施例につき、第2図を参照して説明
する。第2図は主要工程を示す縦断面図である。 ホトレジスト5をマスクとして、層間絶縁膜3を反応性
イオンエツチング(RI E)によりエツチングし、不
純物拡散層2が露出しない時点でエツチングを停止する
工程までは第1実施例と同様にして行なう(第2図fa
Hbl)、次に、半導体装置全体にプラズマCVDなと
の低温プロセスにてシリコン窒化膜4を成長しく第2図
fcl ) 、その後、反応性イオンエツチング(RI
 E)によりシリコン窒化膜4をエッチバックしコンタ
クトホール側壁にシリコン窒化膜サイドウオール6を形
成する(第2図fdl ) 。 次に、ホトレジスト5および窒化膜サイドウオール6を
マスクとして、層間絶縁膜3を弗化水素酸f)(Fl溶
液により等方性エツチングし、不純物拡散層2が露出す
るところで停止する(第2図(e))。 次いで、第1実施例と同様にしてタングステン(W)な
どの高融点金属7や多結晶シリコンをコンタクトホール
内部に埋めこみ、さらにアルミニウム配!I8を形成す
る(第2図(f))。 〔発明の効果] 以上説明したように本発明は、コンタクトホールの下部
のみを等方性エツチングによりマスク寸法よりも広げる
ことにより、層間絶縁層−Fの配線と下層の不純物拡散
層の接触面積が増加し、コンタクト抵抗を下げることが
できるとともに、コンタクト上部の開口寸法は小さくで
きるので、コンタクト部の配線ピッチを小さ(でき、素
子の微細化に効果がある。さらに、コンタクトホール内
部を高融点金属あるいは多結晶シリコンで埋めることに
より、コンタクトホール開口部の段差による配線の断線
や、配線がアルミニウムの場合のシリコンの析出による
コンタクト抵抗の増大を防ぐことができる効果がある。 なお、多層配線のスルーホールについてもコンタクトホ
ールと全(同一の効果がある。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing the main steps of a first embodiment of the present invention. After forming the impurity diffusion layer 2 on the semiconductor substrate 1, 1) S G
An interlayer insulating U film 3 such as the above is grown by the CVD method, and a silicon nitride film 4 is grown thereon by the CVD method (FIG. 1(a)). Next, a photoresist 5 is applied and patterning is performed to open a contact hole (FIG. 1(b)). Next, using the photoresist 5 as a mask, the silicon nitride film 4 and the interlayer insulating film 3 are subjected to reactive ion etching (RI).
Etching with E). The etching time is set short so that the underlying impurity diffusion layer 2 is not exposed. Specifically, the etching time is as short as, for example, about 50% of the etching time required to expose the impurity diffusion layer 2, which is calculated from the thickness of the silicon nitride film 4 and the interlayer insulating film 3 and the etching rate of each film. , the etching is completed (FIG. 1(C)). Next, after removing the photoresist 5, a silicon nitride film is grown by the CVD method, and then reactive ion etching (R
By etching back the silicon nitride film using IE),
A side wall 6 of a silicon nitride film is formed on the side wall of the contact hole (FIG. 1(d)). Next, using the silicon nitride film 4 and the nitride film sidewall 6 as masks, the interlayer insulating film 3 is treated with, for example, hydrofluoric acid (
(b) Isotropic etching is performed using a solution, and the etching is stopped when the impurity diffusion layer 2 is exposed (FIG. 1(e)). Next, silicon nitride film 4 and nitride film sidewall 6
After etching with hot phosphoric acid, the high melting point metal 7, such as tungsten (W), is etched with, for example, silane (SiH).
-) Grow only on the impurity diffusion layer 2 and fill the inside of the contact hole by a selective CVD method using a reduction method. In addition, other methods for filling in the waste include growing polycrystalline silicon while selectively doping impurities only on the impurity diffusion layer 2, and growing polycrystalline silicon by CVD and then adding phosphorus (P) or There is a method of diffusing impurities such as boron (B) and further etching back by reactive ion etching (RIE). Next, an aluminum layer is sputter deposited and patterned to form an aluminum layer Iji1g. Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a longitudinal sectional view showing the main steps. Using the photoresist 5 as a mask, the interlayer insulating film 3 is etched by reactive ion etching (RIE), and the etching is stopped when the impurity diffusion layer 2 is not exposed. 2 figure fa
Next, a silicon nitride film 4 is grown over the entire semiconductor device using a low-temperature process such as plasma CVD.
E) etches back the silicon nitride film 4 to form a silicon nitride film sidewall 6 on the side wall of the contact hole (FIG. 2 fdl). Next, using the photoresist 5 and the nitride film sidewall 6 as a mask, the interlayer insulating film 3 is isotropically etched with a hydrofluoric acid (F) (Fl) solution, stopping when the impurity diffusion layer 2 is exposed (Fig. 2). (e)).Next, in the same manner as in the first embodiment, a high melting point metal 7 such as tungsten (W) and polycrystalline silicon are buried inside the contact hole, and an aluminum interconnection I8 is further formed (FIG. 2(f)). )). [Effects of the Invention] As explained above, the present invention allows only the lower part of the contact hole to be made wider than the mask dimension by isotropic etching, thereby increasing the distance between the wiring of the interlayer insulating layer -F and the underlying impurity diffusion layer. The contact area increases and contact resistance can be lowered, and the opening size at the top of the contact can be made smaller, so the wiring pitch of the contact part can be reduced (which is effective in miniaturizing the element. Furthermore, the inside of the contact hole can be reduced). Filling with a high-melting point metal or polycrystalline silicon has the effect of preventing wire breakage due to a step difference in the contact hole opening, and an increase in contact resistance due to silicon precipitation when the wire is aluminum. Through-holes for wiring also have the same effect as contact holes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の主要工程を示す縦断面図
、第2図は第2実施例の主要工程を示す縦断面図、第3
図は従来の方法を示す縦断面図である。 l・・・半導体基板、  2・・・不純物拡散層。 3・・・層間絶縁膜、  4・・・シリコン窒化膜、5
・・・ホトレジスト、 6・・・シリコン窒化膜サイドウオール、7・・・タン
グステン、 8・・・アルミニウム配線。
FIG. 1 is a longitudinal sectional view showing the main steps of the first embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing the main steps of the second embodiment, and FIG.
The figure is a longitudinal sectional view showing a conventional method. l... Semiconductor substrate, 2... Impurity diffusion layer. 3... Interlayer insulating film, 4... Silicon nitride film, 5
... Photoresist, 6... Silicon nitride film side wall, 7... Tungsten, 8... Aluminum wiring.

Claims (1)

【特許請求の範囲】  半導体基板の拡散領域もしくは絶縁膜上の配線が、層
間絶縁膜を貫通するコンタクトホールもしくはスルーホ
ールによって、上層の導電層と接続されている半導体装
置の製造方法において、 a、層間絶縁膜を、下層導電層との接続部位において、
下層導電層に達しない深さで孔開けする工程と、 b、孔開け後、孔側壁に耐蝕性絶縁膜を形成し、層間絶
縁膜上のホトレジストあるいは前もって形成してある耐
蝕性絶縁膜との協働により、孔底面を除き、層間絶縁膜
のエッチング保護手段を完成する工程と、 c、等方性エッチングにより、孔底面下方の層間絶縁膜
を孔径より広く下層導電層までエッチングし、孔を貫通
させる工程と、 d、次にエッチング保護手段を除去して、層間絶縁膜を
露出状態とし、貫通孔内部に導電部材を埋込む工程と、 e、貫通孔の導電部材に接して上層導電層を形成する工
程とを含むことを特徴とする半導体装置の製造方法。
[Scope of Claims] A method for manufacturing a semiconductor device in which a diffusion region of a semiconductor substrate or wiring on an insulating film is connected to an upper conductive layer by a contact hole or a through hole penetrating an interlayer insulating film, comprising: a. At the connection part of the interlayer insulating film with the lower conductive layer,
(b) After drilling, a corrosion-resistant insulating film is formed on the side wall of the hole, and a photoresist on the interlayer insulating film or a corrosion-resistant insulating film formed in advance is formed. c. By isotropic etching, the interlayer insulating film below the hole bottom is etched wider than the hole diameter to the lower conductive layer, and the hole is closed. (d) Next, removing the etching protection means to expose the interlayer insulating film, and embedding a conductive member inside the through hole; (e) Inserting the upper conductive layer in contact with the conductive member in the through hole. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
JP7989890A 1990-03-28 1990-03-28 Manufacture of semiconductor device Pending JPH03280449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7989890A JPH03280449A (en) 1990-03-28 1990-03-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7989890A JPH03280449A (en) 1990-03-28 1990-03-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03280449A true JPH03280449A (en) 1991-12-11

Family

ID=13703100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7989890A Pending JPH03280449A (en) 1990-03-28 1990-03-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03280449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100254566B1 (en) * 1997-04-09 2000-05-01 윤종용 Method of fabricating contact hole in semiconductor device
JP2009032794A (en) * 2007-07-25 2009-02-12 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
US7910485B2 (en) * 2007-03-30 2011-03-22 Hynix Semiconductor Inc. Method for forming contact hole using dry and wet etching processes in semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100254566B1 (en) * 1997-04-09 2000-05-01 윤종용 Method of fabricating contact hole in semiconductor device
US7910485B2 (en) * 2007-03-30 2011-03-22 Hynix Semiconductor Inc. Method for forming contact hole using dry and wet etching processes in semiconductor device
JP2009032794A (en) * 2007-07-25 2009-02-12 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5243220A (en) Semiconductor device having miniaturized contact electrode and wiring structure
US6294451B1 (en) Semiconductor device and method for manufacturing the same
KR970018088A (en) Semiconductor structures and improved methods for fabricating them
US5985746A (en) Process for forming self-aligned conductive plugs in multiple insulation levels in integrated circuit structures and resulting product
JPH04277623A (en) Manufacture of semiconductor device
KR100283109B1 (en) Metal wiring formation method of semiconductor device
KR950012918B1 (en) Contact filling method using secondary deposition of selective tungsten thin film
US5985766A (en) Semiconductor processing methods of forming a contact opening
JPH03280449A (en) Manufacture of semiconductor device
JP2812288B2 (en) Method for manufacturing semiconductor device
KR100294973B1 (en) Plug Formation Method of Semiconductor Device
JPH02151034A (en) Manufacture of semiconductor device
JP2982282B2 (en) Semiconductor device and manufacturing method thereof
JPH0363220B2 (en)
KR970011056B1 (en) Semiconductor device and its manufacture
JPH08203997A (en) Metal wiring formation of semiconductor element
JPH08130195A (en) Semiconductor device and manufacture thereof
JP2817230B2 (en) Method for manufacturing semiconductor device
JPS6230494B2 (en)
JPH02156537A (en) Manufacture of semiconductor device
JPH08330252A (en) Manufacture of semiconductor device
KR100244706B1 (en) Semiconductor device and its manufacturing method
JPH05218209A (en) Semiconductor device and manufacture thereof
JPH04296030A (en) Manufacture of semiconductor device
JPH1197536A (en) Semiconductor device and its manufacture