JPH03280024A - Optical pulse signal delay device - Google Patents

Optical pulse signal delay device

Info

Publication number
JPH03280024A
JPH03280024A JP8283290A JP8283290A JPH03280024A JP H03280024 A JPH03280024 A JP H03280024A JP 8283290 A JP8283290 A JP 8283290A JP 8283290 A JP8283290 A JP 8283290A JP H03280024 A JPH03280024 A JP H03280024A
Authority
JP
Japan
Prior art keywords
optical
delay
input
pulse signal
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8283290A
Other languages
Japanese (ja)
Inventor
Isuke Hirano
平野 伊助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP8283290A priority Critical patent/JPH03280024A/en
Publication of JPH03280024A publication Critical patent/JPH03280024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To delay an optical pulse signal by a set time and to compensate the loss of an optical signal by providing an optical switch which can switch the optical path between an input and an output terminal, an optical fiber for delay, an optical amplifying element which is interposed halfway, and a timing control part which sets a delay time. CONSTITUTION:The delay device is equipped with the optical switch 23 which can switch the optical path between the input and output terminals, the optical fiber 36 for delay which is coupled between the input and output terminals, the optical amplifying element 32 which is interposed halfway, and the timing control part 26 which sets the delay time by outputting the switching control signal for the optical switch 23. Namely, the input optical pulse signal passes through the delay fiber 36 and returns to the other light input terminal. Namely, when the optical path is switched again right before the light returns, optical pulses are confined to the delay fiber and in the case of the lapse by the number of times of confinment set by a timing control part 26, the optical pulses are outputted from the light output terminal. The loss of light in the period is compensated by an optical amplifying element 32. Consequently, an optional delay time can be set by the simple constitution and the device which is free from the loss of the optical signal at the time of delay is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は光パルス信号を設定時間だけ遅延するとともに
、光信号の損失を補償するようにした光パルス信号遅延
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical pulse signal delay device that delays an optical pulse signal by a set time and compensates for loss of the optical signal.

「従来の技術」 従来、光パルス信号波形を測定するには、第6図または
第7図に示すような装置が用いられていた。なお、図中
、細い実線は光信号、太い実線は電気信号の糸路とする
。これらの装置において。
"Prior Art" Conventionally, an apparatus as shown in FIG. 6 or 7 has been used to measure an optical pulse signal waveform. In the figure, thin solid lines represent optical signals, and thick solid lines represent electrical signal paths. In these devices.

入力した光パルス信号は、カプラー(1)で一部を分離
して一方は光パルス信号のまま、また他方はトリガー用
電気パルス信号に変換して光パルス測定量(4)に入力
する。このうち、他方の光パルス信号は受光素子(2)
で電気パルス信号に変換し、さらにトリガ回路(3)で
波形整形と増幅をしてトリガー用電気パルス信号として
光パルス測定器(4)に入力する。このとき受光素子(
2)とトリガ回路(3)で信号の遅延が生ずる。この遅
延時間を補償するには、従来は前記カプラー(1)で分
離した一方の一部の光パルス信号を第6図のように、光
遅延路としての光ファイバ(5)に導入し、この光ファ
イバ(5)の長さを可変することによって光パルス測定
器(4)への入力タイミングを調整していた。
A part of the input optical pulse signal is separated by a coupler (1), one part remains as an optical pulse signal, and the other part is converted into an electric pulse signal for triggering and inputted into the optical pulse measurement quantity (4). Of these, the other optical pulse signal is sent to the light receiving element (2).
The signal is converted into an electric pulse signal by the trigger circuit (3), and further waveform-shaped and amplified by the trigger circuit (3), and then input to the optical pulse measuring device (4) as a trigger electric pulse signal. At this time, the light receiving element (
2) and the trigger circuit (3), a signal delay occurs. In order to compensate for this delay time, conventionally, a part of the optical pulse signal separated by the coupler (1) is introduced into an optical fiber (5) as an optical delay path, as shown in FIG. The input timing to the optical pulse measuring device (4) was adjusted by varying the length of the optical fiber (5).

また、第7図のように、ビームスプリッタ(1a)の一
方の一部の光パルス信号を光遅延路としてのプリズム(
6)に導入し、このプリズム(6)の位置を可変するこ
とによって調整していた。
Further, as shown in FIG. 7, a part of the optical pulse signal on one side of the beam splitter (1a) is transmitted through a prism (
6) and was adjusted by varying the position of this prism (6).

さらに、これら第6図と第7図を併用したものも存在し
ていた。
Furthermore, there were also devices that used both FIGS. 6 and 7.

なお、微細な調整は電気的な遅延で行う場合もあった。Note that fine adjustments were sometimes made using electrical delays.

また、連続した光信号の遅延装置として第8図ないし第
10図に示すようなものがあった(特開昭53−203
48号)、これは、第8図に示すように、光βエレメン
ト(7)を直列に複数個連結し、各光βエレメント(7
)間は最短の光線路(8)と充分長い光遅延線路(9)
とで結合する。ここで、(10)は入力端子、(11)
は出力端子、(12)は光吸収体、(13)は制御端子
である。
Additionally, there were delay devices for continuous optical signals as shown in Figures 8 to 10 (Japanese Unexamined Patent Publication No. 53-203
48), which connects a plurality of optical β elements (7) in series, as shown in FIG.
) is the shortest optical line (8) and a sufficiently long optical delay line (9)
Combine with. Here, (10) is an input terminal, (11)
is an output terminal, (12) is a light absorber, and (13) is a control terminal.

前記光βエレメント(7)は第9図に示すように、2つ
の入力端子(a) (b)と2つの出力端子(c)(d
)をもった光スイッチで、制御端子(13)に印加する
制御信号によって、(a)に示すa−+C,b−4dと
、(b)に示すa−+d、b−+cの2つの状態に切換
えられる。具体的には第10図に示すような電圧制御光
方向性結合器からなり、電気光学結晶基板(14)上に
光学的特性の等しい2本の光導線路(15) (16)
を形成し、これらの中間に互いに接近して結合域となし
、この結合域の中央に制御電極(17)、面外側に電極
(18) (19)を配置したものである。このような
構成により、所定の光βエレメント(7)・・・を切換
えると最短の光線路(8)と充分長い光遅延線路(9)
との組合せにより目的の遅延時間が得られるものである
As shown in FIG. 9, the optical β element (7) has two input terminals (a) (b) and two output terminals (c) (d).
), the two states of a-+C, b-4d shown in (a) and a-+d, b-+c shown in (b) are determined by the control signal applied to the control terminal (13). can be switched to Specifically, it consists of a voltage-controlled optical directional coupler as shown in Figure 10, with two optical guide lines (15) (16) having the same optical characteristics on an electro-optic crystal substrate (14).
are formed and close to each other in the middle to form a coupling region, and a control electrode (17) is arranged in the center of this coupling region, and electrodes (18) and (19) are arranged on the outside of the plane. With such a configuration, by switching the predetermined optical β elements (7)..., the shortest optical path (8) and the sufficiently long optical delay line (9) are created.
In combination with this, the desired delay time can be obtained.

[発明が解決しようとする課題」 第6図に示すように光遅延路として光ファイバやミラー
を用いたものでは、遅延時間が光ファイバの長さで固定
され、また、装置も大がかりになる。
[Problems to be Solved by the Invention] As shown in FIG. 6, in the case where an optical fiber or mirror is used as an optical delay path, the delay time is fixed by the length of the optical fiber, and the apparatus becomes large-scale.

第7図に示すように、プリズムを用いたものでは、遅延
時間がプリズムの移動距離によるため、所定以上の大き
な遅延時間が得られない、何故なら、移動距離を大きく
とれるような装置がないばかりか、光の強度分布、形状
を変えずに長距離を移動するのは困難であるからである
As shown in Fig. 7, in the case of using a prism, the delay time depends on the distance the prism moves, so it is not possible to obtain a delay time longer than a predetermined value.This is because there is no device that can increase the movement distance. Another reason is that it is difficult to travel long distances without changing the intensity distribution or shape of light.

第8図に示すものは、装置がさらに大がかりとなって光
パルス信号用としては極めて不向きである。
The device shown in FIG. 8 requires a larger device and is extremely unsuitable for use with optical pulse signals.

本発明は光パルス信号に、簡単な構成で任意の遅延時間
の設定を可能にするとともに、遅延時の光信号の損失の
ないものを得ることを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to set an arbitrary delay time to an optical pulse signal with a simple configuration, and to obtain an optical pulse signal without loss of the optical signal during the delay.

「課題を解決するための手段」 本発明は少なくとも2つの光入力端子と少なくとも2つ
の光出力端子を有し、これら入出力端子間の光路を切換
え可能な光スイッチと、この光スイッチの少なくとも1
つの入出力端子間に結合された遅延用光ファイバと、こ
の遅延用光ファイバの途中に挿入された光増幅素子と、
前記光スイッチの切換え制御信号を出力して遅延時間を
設定するタイミング制御部とを具備してなるものである
"Means for Solving the Problems" The present invention provides an optical switch having at least two optical input terminals and at least two optical output terminals and capable of switching the optical path between these input and output terminals, and at least one of the optical switches.
a delay optical fiber coupled between two input/output terminals, an optical amplification element inserted in the middle of this delay optical fiber,
and a timing control section that outputs a switching control signal for the optical switch and sets a delay time.

「作用」 光導波路型光スイッチの一方の光入出力端子に光パルス
信号が入力する直前に光路を切換えておくと、入力した
光パルス信号は遅延ファイバの中を通り、他の光入力端
子へ戻る。この戻る直前に再び光路を切換える。すると
、光路の切換えられている間、光パルスは遅延ファイバ
の中に閉じ込められる。閉じ込められている間に、光ス
イッチの入出力部分、光ファイバーでの伝送時、光ファ
イバーと他の素子との結合部分、集光レンズなどで光の
損失が生じるが、光増幅素子で補償される。
"Operation" If the optical path is switched just before an optical pulse signal is input to one optical input/output terminal of an optical waveguide type optical switch, the input optical pulse signal will pass through the delay fiber and go to the other optical input terminal. return. Immediately before this return, the optical path is switched again. The optical pulse is then confined within the delay fiber while the optical path is being switched. While confined, light loss occurs at the input and output parts of optical switches, during transmission through optical fibers, at coupling parts between optical fibers and other elements, and at condensing lenses, but this is compensated for by optical amplification elements.

タイミング制御部で設定された閉じ込め回数(遅延時間
)だけ経過すると、光パルスは所定の遅延時間をもって
光出力端子より出力する。
When the number of times of confinement (delay time) set by the timing control section has elapsed, the optical pulse is output from the optical output terminal with a predetermined delay time.

「実施例」 以下1本発明の一実施例を第1図に基き説明する。"Example" An embodiment of the present invention will be described below with reference to FIG.

(20)は測定すべき光パルス信号の入力端子で、この
入力端子(20)は光パルス信号を2つに分割するカプ
ラー(21)に結合されている。このカプラー(21)
の一方の出力である被測定対象の光パルス信号側には補
償用光遅延路(22)を介して光導波路型光スイッチ(
23)が結合されている。他方の出力である光導波路型
光スイッチ動作信号側には光パルス信号を電気信号に変
換する受光素子(24)、増幅器(25)、タイミング
制御部(26)が結合されている。
(20) is an input terminal for the optical pulse signal to be measured, and this input terminal (20) is coupled to a coupler (21) that divides the optical pulse signal into two. This coupler (21)
An optical waveguide type optical switch (
23) are combined. A light receiving element (24) for converting an optical pulse signal into an electrical signal, an amplifier (25), and a timing control section (26) are coupled to the other output, the optical waveguide type optical switch operation signal side.

このタイミング制御部(26)の一方の出力側は、導波
路駆動パルスタイミング信号発生器(27)、導波路駆
動パルス発生器(28)を介して前記光導波路型光スイ
ッチ(23)に結合されている。また、前記タイミング
制御部(26)の他方の出力側は光増幅素子駆動パルス
タイミング発生器(29)、光増幅素子駆動パルス発生
器(30)を介して、光遅延路(31)の光増幅素子(
32)に結合されている。なお、(38)は光信号出力
端子である。前記光導波路型光スイッチ(23)は第2
図に示すように、2つの光入力端子(a)(b)と2つ
の光出力端子(c) (d)を有し、かつ、2つの導波
路(33) (33)は中央で交差し、この交差部(3
4)には平行電極(35) (35)が配置されている
。また、他方の光入力端子(b)と一方の光出力端子(
C)間には、遅延用光ファイバ(36a)、集光レンズ
(37a)、光増幅素子(32)、集光レンズ(37b
)および遅延用光ファイバ(36b)がループになって
結合された光遅延路(31)が設けられている。この光
遅延路(31)に用いられている光増幅素子(32)と
しては。
One output side of this timing control section (26) is coupled to the optical waveguide type optical switch (23) via a waveguide drive pulse timing signal generator (27) and a waveguide drive pulse generator (28). ing. The other output side of the timing control section (26) is connected to the optical delay path (31) for optical amplification through an optical amplification element driving pulse timing generator (29) and an optical amplification element driving pulse generator (30). element(
32). Note that (38) is an optical signal output terminal. The optical waveguide type optical switch (23)
As shown in the figure, it has two optical input terminals (a) and (b) and two optical output terminals (c) and (d), and two waveguides (33) (33) intersect at the center. , this intersection (3
4), parallel electrodes (35) (35) are arranged. In addition, the other optical input terminal (b) and one optical output terminal (
C) A delay optical fiber (36a), a condenser lens (37a), an optical amplification element (32), a condenser lens (37b)
) and a delay optical fiber (36b) are connected in a loop to form an optical delay path (31). The optical amplification element (32) used in this optical delay path (31) is as follows.

入力光を、外部からの電気信号に依存した増幅度で増幅
して、光出力することができるようにしたもの、例えば
半導体レーザの両端面に反射防止膜を施し、両端面での
反射を抑えた非共振型の進行波型光増幅器(Trave
ling−111avs type opticalム
mp1ifier、 T W A )、通常の半導体レ
ーザを発振閾値以下にバイアスして光増幅器として用い
るファブリペロ−型光増幅器(Fabry Perot
 type optical^−plifier、 F
 P A)、ファイバ中の誘導ラマン散乱を利用したフ
ァイバラマン増幅器、DFBレーザを用いたもの、注入
同期型増幅器などを用いることができるが、光増幅器の
小型化や、制御の容易さから半導体光増幅器が有利であ
る。
A device that can amplify input light with a degree of amplification that depends on an external electrical signal and output it as light.For example, an anti-reflection coating is applied to both end faces of a semiconductor laser to suppress reflections on both end faces. A non-resonant traveling wave optical amplifier (Trave
ling-111avs type optical amplifier, TWA), Fabry-Perot optical amplifier (Fabry-Perot optical amplifier), which biases a normal semiconductor laser below its oscillation threshold and uses it as an optical amplifier.
type optical^-plifier, F
P A), fiber Raman amplifiers that utilize stimulated Raman scattering in fibers, those that use DFB lasers, injection-locked amplifiers, etc. can be used, but semiconductor optical An amplifier is advantageous.

中でもTWAは、電気信号に対する高速応答、高速光信
号の増幅が可能で、共振器による波長選択性がないため
、数+nmに亘る広い利得帯域幅(°約50n園)を持
ち、増幅器の温度や、入射光の波長が変化しても利得の
変化が小さく、安定した利得が得られるという大きな利
点を有する。また、光増幅器としての重要な基本特性で
ある利得飽和や雑音の面でも優れた特性を持っている。
Among them, TWA is capable of high-speed response to electrical signals and amplification of high-speed optical signals, and because it does not have wavelength selectivity due to a resonator, it has a wide gain bandwidth of several + nanometers (about 50nm), and is sensitive to amplifier temperature and This has the great advantage that even if the wavelength of the incident light changes, the change in gain is small and a stable gain can be obtained. It also has excellent characteristics in terms of gain saturation and noise, which are important basic characteristics for an optical amplifier.

これに対してFPAは、製作が容易であると共に、両端
面間の多重反射を利用して信号利得を得るため、低注入
電流でも閾値付近で高利得が得易いという利点を有する
On the other hand, FPA has the advantage that it is easy to manufacture and can easily obtain a high gain near the threshold even with a low injection current because it obtains signal gain by utilizing multiple reflections between both end faces.

さらに、半導体光増幅器では、その注入電流を変えるこ
とで容易に利得が変えられるため、注入電流のオン、オ
フにより光スイッチとして用いることもできる。
Furthermore, since the gain of a semiconductor optical amplifier can be easily changed by changing its injection current, it can also be used as an optical switch by turning on and off the injection current.

以上のような構成における動作を第4図の波形図に基き
説明する。
The operation of the above configuration will be explained based on the waveform diagram of FIG. 4.

第4図(a)のように、t0時に光入力端子(20)に
光パルス信号が入力したものとする。この光パルス信号
はカプラー(21)で2つに分割される。
As shown in FIG. 4(a), it is assumed that an optical pulse signal is input to the optical input terminal (20) at time t0. This optical pulse signal is split into two by a coupler (21).

ここで、カプラー(21)で(b)のように18時間だ
け遅れた一方の光パルス信号はさらに補償用遅延路(2
2)によって後述する電子回路における遅延と略同じ時
間(T2)だけ遅らせられてt5時に光スイッチ(23
)の一方の入力端子(a)に入力する。
Here, one optical pulse signal delayed by 18 hours as shown in (b) at the coupler (21) is further transmitted to the compensation delay path (21).
2), the optical switch (23
) to one input terminal (a).

つぎに、カプラー(21)で(C)のようにT1時間だ
け遅れた他の光トリガー信号は受光素子(24)に送ら
れ、電気的パルス信号として出力する。この電気的パル
ス信号は増幅器(25)で増幅され、タイミング制御部
(26)を経て導波路駆動パルスタイミング信号発生器
(26)からは(d)に示すように、t1時に導波路駆
動電気トリガー信号が出力し、さらに導波路駆動パルス
発生器(28)からt4時に導波路駆動電気パルス信号
が出力する。このパルス信号は受光素子(24)から導
波路駆動パルス発生器(28)に至る電子回路で所定時
間遅延して出力し、光導波型光スイッチ(23)の電極
(35) (35)間に電界をかける。すると、この光
スイッチ(23)には電極(35)(35)に沿って負
の屈折率障壁を形成してパルス信号は全反射し、今まで
の入出力端子(a)→(d)、(b)→(c)間の光路
が(a)→(c)、(b)→(d)間の光路に切換わる
Next, another optical trigger signal delayed by T1 time as shown in (C) by the coupler (21) is sent to the light receiving element (24) and output as an electrical pulse signal. This electrical pulse signal is amplified by an amplifier (25), passes through a timing control section (26), and is output from a waveguide driving pulse timing signal generator (26) as shown in (d) at time t1, a waveguide driving electrical trigger. A signal is output, and further a waveguide drive electric pulse signal is output from the waveguide drive pulse generator (28) at time t4. This pulse signal is delayed by a predetermined time in an electronic circuit from the light receiving element (24) to the waveguide driving pulse generator (28), and is output between the electrodes (35) (35) of the optical waveguide switch (23). Apply an electric field. Then, a negative refractive index barrier is formed along the electrodes (35) (35) in this optical switch (23), and the pulse signal is totally reflected, and the input/output terminals (a) → (d), The optical path from (b) to (c) is switched to the optical path from (a) to (c) and from (b) to (d).

すると、前記(b)の光パルス信号は光スイッチ(23
)の切換わっているときに入力するので、一方の出力端
子(C)、光ファイバ(36a)を経て(h)に示すよ
うに、やや遅延したt、時に光増幅素子(32)に送ら
れる。
Then, the optical pulse signal of (b) is transmitted to the optical switch (23
) is being switched, so it is sent to one output terminal (C), via the optical fiber (36a), and then to the optical amplification element (32) with a slight delay, as shown in (h). .

また、タイミング制御部(26)からのタイミング信号
で、光増幅素子駆動パルスタイミング発生器(29)か
らは(f)に示すようにt、時に光増幅素子駆動電気ト
リガー信号が出力し、さらにやや遅延したt1時に光増
幅素子駆動電気パルス発生器(30)から電気パルス信
号が出力して光増幅素子(32)が動作し、入力した光
信号を(h)のt1時のパルスのように増幅する。
In addition, according to the timing signal from the timing control section (26), the optical amplifying element driving pulse timing generator (29) outputs an optical amplifying element driving electric trigger signal at times t as shown in (f), and furthermore, a little more. At the delayed time t1, an electric pulse signal is output from the optical amplification element driving electric pulse generator (30), the optical amplification element (32) operates, and the input optical signal is amplified like the pulse at t1 in (h). do.

一度遅延路(31)に入力した光パルス信号は入力して
いる間に光スイッチ(23)への電気信号がなくなるた
め、他方の光入力端子(b)→一方の光出力端子(c)
→遅延路(31)の閉回路に閉じ込められてこの閉回路
中を何回も循環する。
Once the optical pulse signal is input to the delay path (31), the electrical signal to the optical switch (23) disappears while it is being input, so the other optical input terminal (b) → one optical output terminal (c)
→ It is confined in the closed circuit of the delay path (31) and circulates through this closed circuit many times.

閉回路中を循環している間は(f) (g)に示すよう
に、それぞれ電気トリガー信号と電気パルス信号が出力
して光増幅素子(32)がその都度作動して(h)のよ
うに増幅する。この増幅度は次第に大きくなり途中で飽
和するようにしてもよいし、常に同一増幅度で増幅する
ようにしてもよい。
While circulating in the closed circuit, an electric trigger signal and an electric pulse signal are output as shown in (f) and (g), and the optical amplification element (32) is activated each time, as shown in (h). amplify. This amplification degree may gradually increase and be saturated in the middle, or it may be always amplified at the same amplification degree.

前記導波路駆動パルス発生器(28)からは(d)の後
半ように、タイミング制御部(26)で設定された遅延
時間、すなわち、光遅延路(31)で循環した遅延時間
分だけ遅れて再び導波路駆動電気パルス信号が送られて
(e)の後半ように光スイッチ(23)は切換わり、増
幅された光パルス信号は他方の光入力端子(b)から他
方の光出力端子(d)を経て外部に出力する。
As shown in the second half of (d), the waveguide driving pulse generator (28) is delayed by the delay time set by the timing controller (26), that is, by the delay time circulated in the optical delay path (31). The waveguide driving electric pulse signal is sent again, the optical switch (23) is switched as shown in the second half of (e), and the amplified optical pulse signal is transferred from the other optical input terminal (b) to the other optical output terminal (d). ) and output to the outside.

以上の遅延時間tは t=N−n−jl/C で与えられる。ここで、N:閉回路の光パルス信号の循
環する回数、n:光ファイバ(36a) (36b)の
屈折率、Q:遅延路(31)の長さ、C:光速とする。
The above delay time t is given by t=N-n-jl/C. Here, N: the number of times the optical pulse signal circulates in the closed circuit, n: the refractive index of the optical fibers (36a) (36b), Q: the length of the delay path (31), and C: the speed of light.

なお、第4図において、光パルス信号の時間幅(τ1)
は閉回路を1回通過する単位遅延時間よりも充分短かい
ことが必要である。また、光スイッチ(23)の電気信
号の時間幅(τ2)は単位遅延時間以下であることが必
要である。ただし光パルス信号の導入時はその後縁の立
下り時を、また導出時はその前縁の立上りを規制さえす
れば、パルス幅は大きくても問題はない。
In addition, in Fig. 4, the time width (τ1) of the optical pulse signal
must be sufficiently shorter than the unit delay time for passing through the closed circuit once. Further, the time width (τ2) of the electrical signal of the optical switch (23) needs to be equal to or less than the unit delay time. However, there is no problem even if the pulse width is large, as long as the falling edge of the optical pulse signal is controlled when it is introduced, and the rising edge of the leading edge is controlled when it is extracted.

前記実施例では、第3図において、他方の光入力端子(
b)と一方の光出力端子(c)を光遅延路(3)で結合
して閉回路としたため、第4図(e)のように、光スイ
ッチ(23)は閉じ込める時と出力時との2回のパルス
で遅延時間を制御した。しかし、これに限られるもので
はない0例えば、他方の光入力端子(b)と他方の光出
力端子(d)とを光遅延回路(31)で結合した場合に
は、光パルス信号が1回巡回する毎にタイミングを合せ
て全反射するように光スイッチ(23)を切換えるよう
にしてもよい。
In the embodiment described above, in FIG. 3, the other optical input terminal (
b) and one of the optical output terminals (c) are connected through the optical delay path (3) to form a closed circuit, so the optical switch (23) has two connections between confinement and output, as shown in Figure 4(e). The delay time was controlled by two pulses. However, the invention is not limited to this. For example, when the other optical input terminal (b) and the other optical output terminal (d) are coupled by an optical delay circuit (31), the optical pulse signal is transmitted once. The optical switch (23) may be switched to perform total reflection at the same timing every time the light goes around.

前記実施例では1個の光スイッチ(23)と1閉回路の
光遅延M(31)とを用いたが、これに限られるもので
はない0例えば第5図に示すように、同一基板(39)
または同一素子内に、第1光スイツチ(23a)、光増
幅素子(32)と直列に、第2、第3・・・の光スイッ
チ(23b) (23c)・・・を縦に接続し、また、
第1光スイツチ(23a)の入力側(b)と第2光スイ
ツチ(23b)の出力側(d)間には第1の遅延路(3
1a)を結合し、また、第1−光スイッチ(23a)の
入力側(b)と第3光スイツチ(23c)の出力側(d
)間には第2の遅延路(31b)を結合し、さらに、第
1光スイツチ(23a)の入力側(b)と第3光スイツ
チ(23c)の出力側(c)間には第3の光遅延路(3
1c)を結合して、長さの異なる第1、第2、第3の閉
回路を形成する。そして第1.第2.第3光スイツチ(
23a) (23b) (23c)の切換タイミングを
制御することによって任意の組合せの遅延時間とするこ
ともできる。
In the above embodiment, one optical switch (23) and one closed circuit optical delay M (31) were used, but the invention is not limited to this.For example, as shown in FIG. )
Or, in the same element, second, third, etc. optical switches (23b) (23c) are vertically connected in series with the first optical switch (23a) and the optical amplification element (32), Also,
Between the input side (b) of the first optical switch (23a) and the output side (d) of the second optical switch (23b), there is a first delay path (3
1a), and the input side (b) of the first optical switch (23a) and the output side (d) of the third optical switch (23c).
), and a third delay path (31b) is connected between the input side (b) of the first optical switch (23a) and the output side (c) of the third optical switch (23c). optical delay path (3
1c) to form first, second and third closed circuits of different lengths. And the first. Second. Third light switch (
By controlling the switching timing of 23a), (23b), and (23c), any combination of delay times can be achieved.

「発明の効果」 本発明は上述のように構成したので、つぎのような効果
を有する。
"Effects of the Invention" Since the present invention is configured as described above, it has the following effects.

(1)光増幅素子によって導波路の入出力、光ファイバ
での伝送、光ファイバと他の素子との結合、集光レンズ
などによって生じる光損失が補償でき。
(1) Optical amplification elements can compensate for optical losses caused by waveguide input/output, optical fiber transmission, coupling between optical fibers and other elements, condensing lenses, etc.

したがって長時間の光遅延が可能である。Therefore, long optical delays are possible.

(2)光ファイバの遅延時間を単位として任意の光遅延
ができる。
(2) Arbitrary optical delay can be achieved using the optical fiber delay time as a unit.

(3)単位遅延時間は光ファイバー長、導波路長。(3) Unit delay time is optical fiber length and waveguide length.

集光レンズ長、光増幅素子長の設定により自由に設定で
きる。
It can be freely set by setting the condenser lens length and optical amplification element length.

(4)光導波路型光スイッチ、光ファイバ、光増幅素子
で構成することにより、装置が小型でしかも極めて軽量
化ができる。
(4) By configuring the device using an optical waveguide type optical switch, an optical fiber, and an optical amplification element, the device can be made small and extremely lightweight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光パルス信号遅延装置の一実施例
を示すブロック図、第2図は光導波路型光スイッチの説
明図、第3図は光遅延路の説明図。 第4図は波形図、第5図は本発明の他の実施例の説明図
、第6図、第7図および第8図はそれぞれ異なる従来例
の説明図、第9図は光βエレメントの説明図、第10図
は電圧制御光方向性結合器の説明図である。 (1)・・・カプラー、(1a)・・・ビームスプリッ
タ、(2)・・・受光素子、(3)・・・トリガ回路、
(4)・・・光パルス測定器、(5)・・・光ファイバ
、(6)・・・プリズム、(7)・・・光βエレメント
、(8)・・・光線路、(9)・・・光遅延線路。 (10)・・・入力端子、(11)・・・出力端子、(
12)・・・光吸収体、(13)・・・制御端子、(1
4)・・・電気光学結晶基板、(15) (16)・・
・光導線路、(17)・・・制御電極、 (18)(1
9)・・・電極、(20)・・・入力端子、(21)・
・・カプラー、(22)・・・補償用光遅延路、(23
)・・・光導波路型光スイッチ、(23a) (23b
) (23c) ・・・光スイッチ、(24)−・・受
光素子、(25)・・・増幅器、(26)・・・タイミ
ング制御部、(27)・・・導波路駆動パルスタイミン
グ信号発生器、(28)・・・導波路駆動パルス発生器
、(29)・・・光増幅素子駆動パルスタイミング発生
器、(30)・・・光増幅素子駆動パルス発生器、(3
1)・・・光遅延路、(31a)・・・第1の遅延路、
(31b)・・・第2の遅延路、(31c)・・・第3
の光遅延路、(32)・・・光増幅素子、(33) (
33)・・・導波路。 (34)−・・交差部、(35) (35)−・・平行
電極、 (36a)(36b)・・・遅延用光ファイバ
、(37a) (37b)・・・集光レンズ、(38)
・・・光信号出力端子、 (39)・・・同一基板、 
(a)(b)・・・光入力端子、 (c)(d)・・・
光出力端子。
FIG. 1 is a block diagram showing an embodiment of an optical pulse signal delay device according to the present invention, FIG. 2 is an explanatory diagram of an optical waveguide type optical switch, and FIG. 3 is an explanatory diagram of an optical delay path. FIG. 4 is a waveform diagram, FIG. 5 is an explanatory diagram of another embodiment of the present invention, FIGS. 6, 7, and 8 are explanatory diagrams of different conventional examples, and FIG. 9 is an illustration of an optical β element. An explanatory diagram, FIG. 10, is an explanatory diagram of a voltage-controlled optical directional coupler. (1) Coupler, (1a) Beam splitter, (2) Light receiving element, (3) Trigger circuit,
(4)... Optical pulse measuring device, (5)... Optical fiber, (6)... Prism, (7)... Optical β element, (8)... Optical line, (9) ...Optical delay line. (10)...Input terminal, (11)...Output terminal, (
12)...Light absorber, (13)...Control terminal, (1
4)... Electro-optic crystal substrate, (15) (16)...
・Optical guide line, (17)...control electrode, (18) (1
9)...electrode, (20)...input terminal, (21)...
・Coupler, (22) ・Compensation optical delay path, (23
)...Optical waveguide type optical switch, (23a) (23b
) (23c)... Optical switch, (24)... Light receiving element, (25)... Amplifier, (26)... Timing control section, (27)... Waveguide drive pulse timing signal generation (28)... Waveguide drive pulse generator, (29)... Optical amplification element drive pulse timing generator, (30)... Optical amplification element drive pulse generator, (3
1)... Optical delay path, (31a)... First delay path,
(31b)...second delay path, (31c)...third delay path
optical delay path, (32)...optical amplification element, (33) (
33)...Waveguide. (34)--Intersection, (35) (35)--Parallel electrode, (36a) (36b)--Delay optical fiber, (37a) (37b)--Condensing lens, (38 )
... Optical signal output terminal, (39) ... Same board,
(a) (b)... Optical input terminal, (c) (d)...
Optical output terminal.

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも2つの光入力端子と少なくとも2つの
光出力端子を有し、これら入出力端子間の光路を切換え
可能な光スイッチと、この光スイッチの少なくとも1つ
の入出力端子間に結合された遅延用光ファイバと、この
遅延用光ファイバの途中に挿入された光増幅素子と、前
記光スイッチの切換え制御信号を出力して遅延時間を設
定するタイミング制御部とを具備してなることを特徴と
する光パルス信号遅延装置。
(1) An optical switch having at least two optical input terminals and at least two optical output terminals and capable of switching the optical path between these input and output terminals, and at least one input and output terminal of this optical switch coupled It is characterized by comprising a delay optical fiber, an optical amplification element inserted in the middle of the delay optical fiber, and a timing control section that outputs a switching control signal for the optical switch to set a delay time. Optical pulse signal delay device.
(2)光スイッチは、電極に電界をかけたとき負の屈折
率障壁を形成して全反射することで光路を切換える全反
射型からなる光導波路型光スイッチであって、光パルス
信号を該装置に導入するときと導出するときに動作させ
るようにした請求項(1)記載の光パルス信号遅延装置
(2) An optical switch is a total reflection type optical waveguide type optical switch that switches the optical path by forming a negative refractive index barrier and total reflection when an electric field is applied to an electrode, and it converts optical pulse signals into The optical pulse signal delay device according to claim 1, wherein the optical pulse signal delay device is operated when being introduced into the device and when being led out.
(3)遅延用光ファイバは光増幅素子とともに遅延路を
形成し、この遅延路の長さの調整で単位遅延時間を決定
するようにした請求項(1)または(2)記載の光パル
ス信号遅延装置。
(3) The optical pulse signal according to claim (1) or (2), wherein the delay optical fiber forms a delay path together with an optical amplification element, and the unit delay time is determined by adjusting the length of this delay path. delay device.
(4)光増幅素子と遅延用光ファイバとが結合される光
パルス入出力側に集光レンズを介在してなる請求項(1
)、(2)または(3)記載の光パルス信号遅延装置。
(4) Claim (1) in which a condensing lens is interposed on the optical pulse input/output side where the optical amplification element and the delay optical fiber are coupled.
), (2) or (3).
JP8283290A 1990-03-29 1990-03-29 Optical pulse signal delay device Pending JPH03280024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8283290A JPH03280024A (en) 1990-03-29 1990-03-29 Optical pulse signal delay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8283290A JPH03280024A (en) 1990-03-29 1990-03-29 Optical pulse signal delay device

Publications (1)

Publication Number Publication Date
JPH03280024A true JPH03280024A (en) 1991-12-11

Family

ID=13785380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8283290A Pending JPH03280024A (en) 1990-03-29 1990-03-29 Optical pulse signal delay device

Country Status (1)

Country Link
JP (1) JPH03280024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026023A (en) * 2008-07-16 2010-02-04 Yokogawa Electric Corp Optical buffer device
KR101114355B1 (en) * 2009-09-18 2012-02-13 주식회사 엘지화학 Novel use of lipolytic enzyme for formation of anti-fingerprint coating, method of forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and product comprising the substrate
KR101114356B1 (en) * 2009-09-18 2012-02-13 주식회사 엘지화학 Porous structure for forming anti-fingerprint coating, method of forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and product comprising the substrate
WO2019003667A1 (en) * 2017-06-28 2019-01-03 沖電気工業株式会社 Optical-fibre sensor device, and optical-fibre sensor system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026023A (en) * 2008-07-16 2010-02-04 Yokogawa Electric Corp Optical buffer device
KR101114355B1 (en) * 2009-09-18 2012-02-13 주식회사 엘지화학 Novel use of lipolytic enzyme for formation of anti-fingerprint coating, method of forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and product comprising the substrate
KR101114356B1 (en) * 2009-09-18 2012-02-13 주식회사 엘지화학 Porous structure for forming anti-fingerprint coating, method of forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and product comprising the substrate
US8932717B2 (en) 2009-09-18 2015-01-13 Lg Chem, Ltd. Lipolytic enzyme for formation of anti-fingerprint coating, method of forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and product comprising the substrate
WO2019003667A1 (en) * 2017-06-28 2019-01-03 沖電気工業株式会社 Optical-fibre sensor device, and optical-fibre sensor system
JP2019007930A (en) * 2017-06-28 2019-01-17 沖電気工業株式会社 Optical fiber sensor device and optical fiber sensor system

Similar Documents

Publication Publication Date Title
JP2944748B2 (en) Optical device
US10790909B1 (en) Efficient multi-channel coherent optical system
US6990281B2 (en) All optical logic gates
US5377284A (en) Interferometric optical switch
US6788839B2 (en) Time slot tunable all-optical packet data routing switch
US20030190109A1 (en) Time slot tunable all-optical packet data demultiplexer
JPH01298824A (en) Optical waveform shaping device
JPH03280024A (en) Optical pulse signal delay device
US6804433B2 (en) Optical pulse pattern generator
JPH11344631A (en) Optical device
JPH06504407A (en) interferometer
KR100350231B1 (en) Gain control in semiconductor optical amlifier using an optical fiber grating
JPH07307512A (en) Optically pumped ultrahigh-speed laser of forced mode locking type
US20030007213A1 (en) OTDM device
US7362928B2 (en) Optical switch and gate apparatus and method
CN108767646B (en) Multi-path laser self-mixing optical switch
US7203396B2 (en) All optical chopping using logic gates apparatus and method
JPH03221929A (en) Optical pulse signal delaying device
JPH06308560A (en) Optical semiconductor element utilizing polarization
JP3209300B2 (en) Optical circuit for dispersion compensation
JPS63157133A (en) Multiplexing circuit and separating circuit for optical pulse
CN115832869A (en) Integrated external cavity laser and use method
JPH06308561A (en) Optical element utilizing polarization
JPS6344780A (en) Spectral line width alteration device of laser beam source
JPH03148890A (en) Constituting method for single-mode light-pulse light source