JPS6344780A - Spectral line width alteration device of laser beam source - Google Patents

Spectral line width alteration device of laser beam source

Info

Publication number
JPS6344780A
JPS6344780A JP18921486A JP18921486A JPS6344780A JP S6344780 A JPS6344780 A JP S6344780A JP 18921486 A JP18921486 A JP 18921486A JP 18921486 A JP18921486 A JP 18921486A JP S6344780 A JPS6344780 A JP S6344780A
Authority
JP
Japan
Prior art keywords
line width
laser beams
spectral line
pzt
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18921486A
Other languages
Japanese (ja)
Inventor
Masuo Suyama
寿山 益夫
Shigefumi Masuda
増田 重史
Hiroshi Onaka
寛 尾中
Hideo Kuwabara
秀夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18921486A priority Critical patent/JPS6344780A/en
Publication of JPS6344780A publication Critical patent/JPS6344780A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate spectral line width control by adjusting or controlling spectral line widths of laser beams through an alteration of fitness of a tuning plate which is installed in an external resonator. CONSTITUTION:A semiconductor laser diode 5 is driven by a laser driving power source 6. A tuning plate 2 is composed so that it can be rotated around a pivot 10 with the aid of PZT 9. Output laser beams of the semiconductor laser diode 5 are branched by a photocoupler 13 and a spectral amplitude of the laser beams is detected by a line width detecting device 15 from beat signals generated by a delay self homodyng system beat signal generating device 14 that receives the branched laser beams. Since a PZT voltage developed depending on the above detecting result returns to PZT 9, its voltage easily controls the spectral line widths of the output laser beams.

Description

【発明の詳細な説明】 〔概 要〕 レーザ光源の外部共振器のレーザ光路内にチューニング
プレートを設け、そのフィネスを変更することによりレ
ーザ光源から出力されるレーザ光のスペクトル線幅を制
御するようにした。
[Detailed Description of the Invention] [Summary] A tuning plate is provided in the laser optical path of an external resonator of a laser light source, and by changing the finesse of the tuning plate, the spectral line width of the laser light output from the laser light source is controlled. I made it.

〔産業上の利用分野〕[Industrial application field]

本発明はレーザ光源のスペクトル線幅変更装置に関し、
更に詳しく言えば、レーザ光のスペクトル線幅制御にチ
ューニングプレートのフィネスを係わりしめるようにし
たレーザ光源のスペクトル線幅変更装置に関する。
The present invention relates to a spectral linewidth changing device for a laser light source,
More specifically, the present invention relates to a spectral linewidth changing device for a laser light source in which the finesse of a tuning plate is involved in controlling the spectral linewidth of a laser beam.

通信の分野においてはそこで取り扱う情報量の急激な増
大9通信速度の向上環に対処するべく、従来の電気通信
方式を補完乃至はこれに代わるものとして光通信方式の
開発が活発に行なわれている。この光通信方式では光源
を不可欠とするが、その光源の代表的なものとして半導
体レーザがある。この半導体レーザは誘導放出を利用す
るため、現在使用可能な半導体レーザでは、そのレーザ
光のスペクトルに不回避的な広がりが生ずる。一方、現
在開発中にあるコヒーレント通信方式、とりわけ時間的
コヒーレンスを利用した通信方式ではレーザ光のスペク
トル線幅が狭いほど、そこに含まれる他の成分による通
信情報への影響が現れにくくなり、その通信に好結果を
7すので、その狭スペクトル線幅化が要求されている。
In the field of communications, in order to cope with the rapid increase in the amount of information handled9 and the increasing communication speed, optical communication systems are being actively developed as a complement to or an alternative to conventional telecommunications systems. . This optical communication system requires a light source, and a typical example of such a light source is a semiconductor laser. Since this semiconductor laser utilizes stimulated emission, currently available semiconductor lasers inevitably broaden the spectrum of their laser light. On the other hand, in coherent communication systems currently under development, especially communication systems that utilize temporal coherence, the narrower the spectral linewidth of laser light, the less likely it is that other components contained therein will affect communication information. Narrowing the spectral linewidth is required to achieve good results in communications.

〔従来の技術〕[Conventional technology]

従来におけるレーザ光のスペクトル線幅制御手段は第6
図に示すものが知られている。
Conventional means for controlling the spectral line width of laser light is the sixth
The one shown in the figure is known.

レーザダイオード50から出力されたレーザ光はGRT
N52.ビームスブリツタ54.フアラデーアイソレー
タ56を経て方向性結合器58で2つの光ファイバ型リ
ング共振器60.62へ分けられる。
The laser light output from the laser diode 50 is a GRT
N52. Beam blitter 54. It passes through a Faraday isolator 56 and is divided into two optical fiber type ring resonators 60 and 62 by a directional coupler 58.

光フアイバ型リング共振器60は方向性結合器64、位
相変調器66及び発振器68から成るものであって、入
力されて来たレーザ光のスペクトル線幅に対し予め決め
られたスペクトル線幅を中心にして尖鋭特性を呈するよ
うに調整構成されているものである。
The optical fiber ring resonator 60 is composed of a directional coupler 64, a phase modulator 66, and an oscillator 68, and is centered at a predetermined spectral linewidth with respect to the spectral linewidth of the input laser beam. It is configured to be adjusted so that it exhibits sharp characteristics.

従って、入力レーザ光のスペクトル線幅が光フアイバ型
リング共振器60に設定されているスペクトル線幅から
外れた度合に応じて決まる光出力が光検出器70にて検
出される。その検出信号が反転増幅器72、ピーク値保
持回路74.差動増幅器76、積分器78、そしてハ、
ファ増幅器80を介して、半導体レーザ50の外部共振
器を構成するミラー82の位置を変えるべくPZT板8
4に印加される如きフィードバック制御系により、レー
ザ光のスペクトル線幅制御を行なうようにし7ている。
Therefore, the photodetector 70 detects a light output determined according to the degree to which the spectral linewidth of the input laser beam deviates from the spectral linewidth set in the optical fiber ring resonator 60. The detection signal is sent to the inverting amplifier 72, the peak value holding circuit 74. differential amplifier 76, integrator 78, and c.
Through the amplifier 80, the PZT plate 8 is used to change the position of the mirror 82 that constitutes the external resonator of the semiconductor laser 50.
The spectral line width of the laser beam is controlled by a feedback control system such as that applied to the laser beam 7.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来手段は、上述のところから明らかな如く、レー
ザ光のスペクトル線幅の制御に光フアイバ型リング共振
器60のピーク値を用いるため、半導体レーザの光出力
変動、振動等による光学系のずれに起因する光出力変動
によってスペクトル線幅の制御にその影響が現れ易い構
成となっている。又、その線幅制御の容易性に欠ける。
As is clear from the above, this conventional means uses the peak value of the optical fiber ring resonator 60 to control the spectral linewidth of the laser beam. The configuration is such that the control of the spectral linewidth is likely to be affected by fluctuations in the optical output caused by this. Furthermore, it is difficult to easily control the line width.

本発明は、斯かる問題点に鑑みて創作されたもので、新
たな自然法則を利用した線幅変更手段を有するレーザ光
源のスペクトル線幅変更装置を提供することを目的とす
る。
The present invention was created in view of such problems, and an object of the present invention is to provide a spectral linewidth changing device for a laser light source that has a linewidth changing means that utilizes a new law of nature.

C問題点を解決するための手段〕 第1図は本発明の原理構成図を示す。本発明は、第1図
に示す如く、レーザ光源4の外部共振器1(7)L/−
ザ光路内にチューニングプレート2を設け、そのフィネ
スをフィネス変更手段3により変えて出力レーザ光のス
ペクトル線幅の調整乃至制御を行なうように構成したも
のである。
Means for Solving Problem C] FIG. 1 shows a diagram of the principle configuration of the present invention. As shown in FIG. 1, the present invention provides an external resonator 1 (7) L/-
A tuning plate 2 is provided in the optical path, and the finesse of the tuning plate 2 is changed by a finesse changing means 3 to adjust or control the spectral line width of the output laser beam.

〔作 用〕[For production]

本発明によれば、レーザ光源の出力レーザ光のスペクト
ル線幅をチューニングプレート2のフィネスを変えるこ
とにより調整乃至制御することができる。
According to the present invention, the spectral linewidth of the output laser light from the laser light source can be adjusted or controlled by changing the finesse of the tuning plate 2.

〔実施例〕〔Example〕

第2図は本発明の一実施例を示す。この図において、5
は半導体レーザダイオードで、これはレーザ駆動電源6
にて駆動される。7.8はコリメートレンズである。2
はチューニングプレートで、これは、例えばPZT9に
よりピボット10の回りに回転し得るように構成されて
いる。11はグレーティングで、これは半導体レーザダ
イオード5からのレーザ光を波長選択的に半導体レーザ
ダイオード5へ帰還させるものである。
FIG. 2 shows an embodiment of the invention. In this figure, 5
is a semiconductor laser diode, which is a laser drive power supply 6
It is driven by. 7.8 is a collimating lens. 2
is a tuning plate, which is configured to be rotatable around a pivot 10 by, for example, PZT9. Reference numeral 11 denotes a grating, which returns the laser light from the semiconductor laser diode 5 to the semiconductor laser diode 5 in a wavelength-selective manner.

これら半導体レーザダイオード5とグレーティング11
との間に外部共振器が形成されるが、その分解能ΔvE
cは で与えられる。但し、上式において、K、は半導体レー
ザダイオード5の端面で構成されるファブリ・ペロー共
振器の分解能の裾の広がり倍率、K2はチューニングプ
レート2のフィネスの裾の広がり倍率、FSR3Lは半
導体レーザダイオード5の自由空間波長、Qtcは外部
共振器のフィネス、Q、Uはチューニングプレート2の
フィネス、そしてQ、Lは半導体レーザダイオード5の
フィネスである。
These semiconductor laser diodes 5 and grating 11
An external resonator is formed between the
c is given by. However, in the above equation, K is the magnification of the resolution tail of the Fabry-Perot cavity formed by the end face of the semiconductor laser diode 5, K2 is the finesse tail broadening magnification of the tuning plate 2, and FSR3L is the semiconductor laser diode. 5, Qtc is the finesse of the external cavity, Q, U are the finesse of the tuning plate 2, and Q, L are the finesse of the semiconductor laser diode 5.

上式はレーザ光のスペクトル線幅がチューニングプレー
ト5のフィネスに反比例していることを示している。従
って、チューニングプレート5のフィネスを変えること
によって、レーザ光のスペクトル線幅を変えることが可
能になる。
The above equation shows that the spectral linewidth of the laser beam is inversely proportional to the finesse of the tuning plate 5. Therefore, by changing the finesse of the tuning plate 5, it is possible to change the spectral line width of the laser beam.

そのフィネス制御手段は、第2図では、光カプラー13
.遅延自己ホモダイン式ビート信号発生装互14.線幅
検出装置15そして線幅検出装置15からPZT電圧を
受けるPZT9から成るフィードバック系にて構成され
るが、この系によれば半導体レーザダイオード5の出力
レーザ光が光カプラ−13で分岐され、その分岐レーザ
光を受光する遅延自己ホモダイン式ビート信号発生装置
14で発生されたビート信号から出力レーザ光のスペク
トル振幅が線幅検出装置15で、検出され、その検出結
果に応したPZT電圧がPZT9へ帰還されるから、上
述した出力レーザ光のスペクトル線幅制御を為している
ことになる。
The finesse control means is the optical coupler 13 in FIG.
.. Delayed self-homodyne beat signal generator 14. It is composed of a feedback system consisting of a line width detection device 15 and a PZT 9 that receives a PZT voltage from the line width detection device 15. According to this system, the output laser light of the semiconductor laser diode 5 is split by an optical coupler 13, The spectral amplitude of the output laser beam is detected by the line width detector 15 from the beat signal generated by the delayed self-homodyne beat signal generator 14 that receives the branched laser beam, and the PZT voltage corresponding to the detection result is detected by the PZT 9. Since the spectral line width of the output laser beam described above is controlled.

第3図は遅延自己ホモダイン式ビート信号発生装Zを示
し、これは2個の四端子方向性結合器20.22及び光
遅延線24から成り、第1の四端子方向性結合器20の
一方の方向性結合端子対の入力端子に入力半導体レーザ
光が入力されると、その第1の四端子方向性結合器20
の一方の方向性結合端子対の出力端子から出力されたレ
ーザ光は第2の四端子方向性結合器22内の、ダミー終
端されている方向性結合端子対以外のもう1つの方向性
結合端子対を介して光遅延線24に入力され、この光遅
延線24において第1の四端子方向性結合器20におけ
る光スペクトル間の相関性を除き得るだけ遅延された後
、第1の西端子方向性結合器20の他方の方向性結合端
子対の入力端子に入力され、そしてその出力端子に光学
的に結合された光検出器26の出力が増幅器28で増幅
されることによりスペクトル線幅成分についてのビート
信号が得られる。
FIG. 3 shows a delayed self-homodyne beat signal generator Z, which consists of two four-terminal directional couplers 20, 22 and an optical delay line 24, one of the first four-terminal directional couplers 20. When the input semiconductor laser light is input to the input terminal of the directional coupling terminal pair, the first four-terminal directional coupler 20
The laser beam output from the output terminal of one of the directional coupling terminal pairs is transmitted to another directional coupling terminal other than the dummy-terminated directional coupling terminal pair in the second four-terminal directional coupler 22. The signal is input to the optical delay line 24 via the optical delay line 24, and is delayed in the optical delay line 24 as much as possible to remove the correlation between the optical spectra in the first four-terminal directional coupler 20. The output of the photodetector 26, which is input to the input terminal of the other directional coupling terminal pair of the directional coupler 20 and optically coupled to its output terminal, is amplified by the amplifier 28 to obtain information about the spectral linewidth component. beat signal is obtained.

又、第2の四端子方向性結合器22の他方の方向性結合
端子対のダミー終端側とは反対側の端子から大力レーザ
光成分が出力される。
Further, a high-power laser beam component is output from the terminal on the opposite side to the dummy termination side of the other directional coupling terminal pair of the second four-terminal directional coupler 22.

第4図は線幅検出値215の構成例を示す。第4図装置
はスペクトルアナライザ30.半値検出器32.基準電
圧発生器34及びPZT駆動用比較器36から成り、ビ
ート信号のスペクトル分布をスペクトルアナライザ30
で分析し、その分布の半値幅を半値検出器32で検出し
てその値と基準値とをPZT駆動用比較器36で比較し
て上述PZT9へ印加すべきPZT電圧電圧線幅検出値
を発生するものである。
FIG. 4 shows a configuration example of the line width detection value 215. The device shown in FIG. 4 is a spectrum analyzer 30. Half value detector 32. It consists of a reference voltage generator 34 and a PZT driving comparator 36, and the spectral distribution of the beat signal is measured by a spectrum analyzer 30.
The half value width of the distribution is detected by the half value detector 32, and this value is compared with the reference value by the PZT driving comparator 36 to generate the PZT voltage voltage line width detection value to be applied to the above-mentioned PZT9. It is something to do.

第5図は上述フィネス制御手段をオープンループとした
他の実施例を示さんとするものであり、その構成要素中
第2図実施例の構成要素と同一の構成要素には同一の参
照番号を付してその説明を省略する。40はP Z T
 ?!!I御装置である。この実施例はPZTfi+制
御装置40にてPZT9を制御して出力レーザ光のスペ
クトル線幅を可変にしようとするものである。
FIG. 5 shows another embodiment in which the finesse control means described above is an open loop, and the same reference numerals are given to the same components as those in the embodiment of FIG. 2. The explanation will be omitted. 40 is PZT
? ! ! It is an I-controlled device. In this embodiment, the PZTfi+control device 40 controls the PZT9 to make the spectral line width of the output laser beam variable.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、レーザ光のスペクト
ル線幅の調整乃至制御を外部共振器内に設けられたチュ
ーニングプレートのフィネスの変更により行なうことが
できる。従って、スペクトル線幅の制御が容易になる。
As described above, according to the present invention, the spectral line width of laser light can be adjusted or controlled by changing the finesse of the tuning plate provided within the external resonator. Therefore, the spectral linewidth can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構成図、 第2図は本発明の一実施例を示す図、 第3図は遅延自己ホモダイン式ビート信号発生装置の構
成例を示す図、 第4図は線幅検出装置の構成例を示す図、第5図は本発
明の他の実施例を示す図、第6図は従来のスペクトル線
幅制御構成図である。 第1図及び第2図において、 1は外部共振器、 2はチューニングプレート、 3はフィネス変更手段である。 本発明の原理構成図 第1図 本発明の一実施例 I[2図 線幅検出装置の構成例 第4図 遅延自己ホモダイン式ビート信号発生装置の構成例11
13  図 本発明の他の実施例 第5図 従来のスペクトル線幅制御構成図 第 6 図
Figure 1 is a diagram showing the principle configuration of the present invention. Figure 2 is a diagram showing an embodiment of the present invention. Figure 3 is a diagram showing an example of the configuration of a delayed self-homodyne beat signal generator. Figure 4 is a line width diagram. FIG. 5 is a diagram showing another embodiment of the present invention, and FIG. 6 is a diagram showing a conventional spectral linewidth control configuration. In FIGS. 1 and 2, 1 is an external resonator, 2 is a tuning plate, and 3 is a finesse changing means. Principle configuration diagram of the present invention Fig. 1 Embodiment I of the present invention Fig. 2 Configuration example of a line width detection device Fig. 4 Configuration example 11 of a delayed self-homodyne beat signal generation device
Figure 13 Another embodiment of the present invention Figure 5 Conventional spectrum linewidth control configuration diagram Figure 6

Claims (1)

【特許請求の範囲】 外部共振器(1)を有するレーザ光源において、前記外
部共振器(1)のレーザ光路内に設けられたチューニン
グプレート(2)と、 該チューニングプレート(2)のフィネスを変更するた
めのフィネス変更手段(3)とを設けたことを特徴とす
るレーザ光源のスペクトル線幅変更装置。
[Claims] In a laser light source having an external resonator (1), a tuning plate (2) provided in the laser optical path of the external resonator (1), and changing the finesse of the tuning plate (2). A spectral linewidth changing device for a laser light source, characterized in that it is provided with a finesse changing means (3) for changing the finesse.
JP18921486A 1986-08-12 1986-08-12 Spectral line width alteration device of laser beam source Pending JPS6344780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18921486A JPS6344780A (en) 1986-08-12 1986-08-12 Spectral line width alteration device of laser beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18921486A JPS6344780A (en) 1986-08-12 1986-08-12 Spectral line width alteration device of laser beam source

Publications (1)

Publication Number Publication Date
JPS6344780A true JPS6344780A (en) 1988-02-25

Family

ID=16237461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18921486A Pending JPS6344780A (en) 1986-08-12 1986-08-12 Spectral line width alteration device of laser beam source

Country Status (1)

Country Link
JP (1) JPS6344780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952643A2 (en) * 1998-04-23 1999-10-27 Ando Electric Co., Ltd. External cavity type wavelength-tunable light source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291082A (en) * 1986-04-04 1987-12-17 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Tunable solid state laser and material of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291082A (en) * 1986-04-04 1987-12-17 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Tunable solid state laser and material of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952643A2 (en) * 1998-04-23 1999-10-27 Ando Electric Co., Ltd. External cavity type wavelength-tunable light source
EP0952643A3 (en) * 1998-04-23 2000-04-26 Ando Electric Co., Ltd. External cavity type wavelength-tunable light source

Similar Documents

Publication Publication Date Title
US5243610A (en) Optical fiber dispersion-compensating device
US5073331A (en) Modulation method for use in a semiconductor laser and an apparatus therefor
JPH079386B2 (en) Optical fiber dispersion characteristics measurement method
GB2369486A (en) A mode locked laser
US6034976A (en) Method and apparatus for laser frequency stabilization
JPS6344780A (en) Spectral line width alteration device of laser beam source
JP2937418B2 (en) Semiconductor laser device
JPS5821832B2 (en) Hand tie laser touch
JPH02244782A (en) Frequency stabilized semiconductor laser driver
JP3092757B2 (en) Optical pulse laser frequency division synchronization signal generator
KR940010168B1 (en) Laser frequency controlling apparatus and method the same
JPH0218526A (en) System and equipment for optical transmission
JPH03280024A (en) Optical pulse signal delay device
JP3055735B2 (en) Passive mode-locked semiconductor laser device
JPS6344133A (en) Delayed self-homodyne type spectral line width detector
JPH0876071A (en) Bias voltage control circuit for light external modulator
JPH01194484A (en) Stabilizing method for oscillation frequency of laser device
JPH10123578A (en) Stabilized white pulse light source
JPH06214200A (en) Phase control method for optical fiber
JP2900529B2 (en) Apparatus for measuring high frequency response characteristics of semiconductor laser
KR100279062B1 (en) Optical fiber loop short-wavelength pulsed laser apparatus and method of controlling width and repeatability of pulse using the same
JP2002016317A (en) Semiconductor laser light source and measuring apparatus using the same
JPH0327859B2 (en)
JPS61212931A (en) Phase shift modulation light transmitter
JPH02260480A (en) Semiconductor laser device