JPH03148890A - Constituting method for single-mode light-pulse light source - Google Patents
Constituting method for single-mode light-pulse light sourceInfo
- Publication number
- JPH03148890A JPH03148890A JP28738289A JP28738289A JPH03148890A JP H03148890 A JPH03148890 A JP H03148890A JP 28738289 A JP28738289 A JP 28738289A JP 28738289 A JP28738289 A JP 28738289A JP H03148890 A JPH03148890 A JP H03148890A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- light
- laser
- output
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- 239000004065 semiconductor Substances 0.000 claims abstract description 28
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- 230000003287 optical effect Effects 0.000 claims description 22
- 230000003111 delayed effect Effects 0.000 claims 1
- 230000010355 oscillation Effects 0.000 abstract description 8
- 239000013307 optical fiber Substances 0.000 abstract description 6
- 239000000835 fiber Substances 0.000 abstract description 5
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高速光伝送や波長分散測定等に用いられる単
一モード光パルス光源構成法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for configuring a single mode optical pulse light source used for high-speed optical transmission, wavelength dispersion measurement, and the like.
(従来の技術)
単一モード強度変調光源が必要とされる分野には次のよ
うなものがある。(Prior Art) Fields in which a single mode intensity modulated light source is required include the following.
(1)超高速(高ビツトレート)/長距離光伝送(2)
高精度波長分散測定
上記2分野に共通しているのは、光伝送媒体の波長によ
る群遅延の違い(波長分散)のために、多縦モードレー
ザを用いる場合は、伝送能力、測定精度が著しく制限さ
れることである。従来、単一モード強度変調光源は、フ
ァブリ−・ベロー共振器構造の代わりに半導体結晶内に
周期的屈折率変化を組み込む、いわゆるDFB (分
布帰還形)構造、DBR(分布ブラック反射形)構造を
導入して実現されてきた。これらによって安定な単一モ
ード発振が得られる反面、波長の同調範囲も狭くなった
。(1) Ultra high speed (high bit rate)/long distance optical transmission (2)
High-precision chromatic dispersion measurement What the above two fields have in common is that due to the difference in group delay (chromatic dispersion) depending on the wavelength of the optical transmission medium, when using a multi-longitudinal mode laser, the transmission capacity and measurement accuracy are significantly reduced. It is to be restricted. Conventionally, single-mode intensity modulated light sources have adopted the so-called DFB (distributed feedback) structure or DBR (distributed black reflection) structure, which incorporates periodic refractive index changes within the semiconductor crystal instead of the Fabry-Bello resonator structure. It has been implemented and realized. Although stable single-mode oscillation can be obtained by these methods, the wavelength tuning range has also become narrower.
従って、波長分散を一定の波長域にわたって測定しよう
とする場合は、DFBレーザを複数個用意する必要が生
じる不便さがあった。Therefore, when attempting to measure chromatic dispersion over a certain wavelength range, it is inconvenient that it is necessary to prepare a plurality of DFB lasers.
また、最近注目されている光ファイバ光増幅器の一種で
あるErドーブ光フアイバは、1.54μmに利得の最
大があり、1.55μm用に製作されている市販形OF
Bレーデでは、その利得中心に合わせることが困難であ
った。In addition, Er-doped optical fiber, which is a type of optical fiber optical amplifier that has been attracting attention recently, has a maximum gain at 1.54 μm, and commercially available OFFs manufactured for 1.55 μm
With B-Rade, it was difficult to adjust to the gain center.
(発明が解決しようとする課題)
本発明は、半導体レーザの発振波長を、選択素子を用い
ることにより変えることができる単一モード光源を実現
するための光パルス光源構成法を提供することにある。(Problems to be Solved by the Invention) An object of the present invention is to provide a method for configuring an optical pulse light source for realizing a single mode light source that can change the oscillation wavelength of a semiconductor laser by using a selection element. .
(課題を解決するための手段)
本発明の単一モード光パルス光源構成法は、多縦モード
で発振するファブリ−・ペロー型半導体レーザの周期的
に変調された出力の一部を、変調周期に同期させて帰還
することにし、その帰還路中に単一モードだけを選択す
るような光学素子を挿入して単一モード発振を実現する
。(Means for Solving the Problems) The single mode optical pulse light source configuration method of the present invention converts a part of the periodically modulated output of a Fabry-Perot semiconductor laser that oscillates in multiple longitudinal modes into a modulation period The feedback path is synchronized with , and an optical element that selects only a single mode is inserted in the feedback path to achieve single mode oscillation.
波長選択光学素子によって選択された波長成分が、半導
体レーデに帰還されるので、その縦モードのみが励振さ
れる。一つのモードの発振が成長すると、レーザ固有の
非線形効果により他の縦モードは抑圧される。Since the wavelength component selected by the wavelength selection optical element is fed back to the semiconductor radar, only its longitudinal mode is excited. When the oscillation of one mode grows, other longitudinal modes are suppressed due to the nonlinear effect inherent in lasers.
(実施例)
第1図は本発明の一実施例を示す図であって、市販の半
導体レーザ・モジュールと呼ばれる半導体部品を用いた
。これは半導体レーザと出力用ファイバを一体に組み込
んだもので、出力用端面でないもう一方の半導体レーザ
端面からの光を受光する光出力モニタ用光ダイオードや
、半導体レーザの温度を制御するための冷却素子を含み
、半導体レーザは気密封止しであるのが普通である。(Example) FIG. 1 is a diagram showing an example of the present invention, in which a commercially available semiconductor component called a semiconductor laser module was used. This integrates a semiconductor laser and an output fiber, and includes a photodiode for monitoring optical output that receives light from the other end face of the semiconductor laser that is not the output end face, and a cooling device for controlling the temperature of the semiconductor laser. The semiconductor laser is usually hermetically sealed.
1.55μm用に製作された半導体レーザを、例えばE
rファイバの最大利得波長である1、54μmで単一モ
ード発振させようとする場合は、半導体レーザを0℃近
辺まで冷却する必要があり、気密封止されていることが
レーザ端面上への水滴の凝結を避けるために望まれる。For example, a semiconductor laser manufactured for 1.55 μm is
When attempting to oscillate in a single mode at 1.54 μm, which is the maximum gain wavelength of the r-fiber, the semiconductor laser must be cooled to around 0°C, and being hermetically sealed is important to prevent water droplets from forming on the laser end face. desired to avoid condensation.
従って逆に、室温発振波長近傍で単一モードを得ようと
する場合は、特に気密封止されている必要はない。Therefore, on the contrary, when trying to obtain a single mode near the room temperature oscillation wavelength, there is no particular need for hermetically sealing.
第1図により、この実施例の動作を説明する。The operation of this embodiment will be explained with reference to FIG.
信号発生器1からの信号に同期してパルス発生器2は、
半導体レーザ変調のための電気パルスを発生する。この
信号は直流電流源3からのバイアス電流に重畳され、フ
ァブリ−・ペロー型半導体レーザ4に入力される。バイ
アス電流はレーザのしきい値電流よりやや低めに調節す
る。半導体レーザ4からの出力光パルスは、光カプラ5
で分岐される。およそ1対1の分岐比で十分動作する。In synchronization with the signal from the signal generator 1, the pulse generator 2
Generates electrical pulses for semiconductor laser modulation. This signal is superimposed on the bias current from the DC current source 3 and is input to the Fabry-Perot semiconductor laser 4 . The bias current is adjusted to be slightly lower than the threshold current of the laser. The output optical pulse from the semiconductor laser 4 is sent to the optical coupler 5.
It is branched at. A branching ratio of approximately 1:1 works well.
帰還用出力は遅延単一モード光ファイバ6、偏光制御用
素子7を介して、ファイバから−たん出射される。この
出力光はコリメートレンズ8で平行ビームに変換され、
適当な角度を有する回折格子9で反射され、ちときた光
路を逆に進んで半導体レーザ4に帰還される。レーザ出
射から帰還までの時間は、レーザ変調周期の整数倍でな
ければならない。許容誤差は、およそパルス幅程度であ
る。The feedback output is emitted from the fiber via the delay single mode optical fiber 6 and the polarization control element 7. This output light is converted into a parallel beam by the collimating lens 8,
The light is reflected by the diffraction grating 9 having an appropriate angle, travels in the opposite direction along the predetermined optical path, and is returned to the semiconductor laser 4. The time from laser emission to return must be an integral multiple of the laser modulation period. The tolerance is approximately on the order of pulse width.
また偏光制御用素子7は、この光ファイバ帰還系の複屈
折を調節し、回折格子9の反射率を最大にするとともに
、半導体レーザ4の出射光と帰還入射光の偏光が同じに
なるようにする。In addition, the polarization control element 7 adjusts the birefringence of this optical fiber feedback system to maximize the reflectance of the diffraction grating 9 and to ensure that the polarization of the output light of the semiconductor laser 4 and the feedback incident light are the same. do.
第211lはこのようにして得られた単一モードスペク
トルを、帰還がない場合の多モードスペクトルと比較し
示している。No. 211l shows the single mode spectrum thus obtained in comparison with the multimode spectrum without feedback.
光カプラ5を用いることなく同様の系を組むこともでき
る。すなわち、半導体レーザが有する一方の端面を帰還
用としミ他の一方を出力専用とすればよいのである。こ
の場合の構成を第3図に示す。A similar system can also be constructed without using the optical coupler 5. That is, one end face of the semiconductor laser can be used for feedback, and the other end face can be used for output only. The configuration in this case is shown in FIG.
(発明の効果)
以上説明したように、本発明の単一モード光パルス光源
構成法を用いることにより、半導体レーザの縦モード波
長ごとに発振波長を変えることができる単一モード光源
が実現できる。これにより、■伝送路ファイバの零分散
波長に送信波長を一致させた高速光伝送用光源、
■狭波長帯域の光増幅器に対する波長同調、■精密波長
分散測定用波長可変光源
が実現できる。(Effects of the Invention) As described above, by using the single mode optical pulse light source configuration method of the present invention, a single mode light source whose oscillation wavelength can be changed for each longitudinal mode wavelength of a semiconductor laser can be realized. As a result, it is possible to realize (1) a light source for high-speed optical transmission in which the transmission wavelength matches the zero-dispersion wavelength of the transmission line fiber, (2) wavelength tuning for narrow wavelength band optical amplifiers, and (2) a tunable wavelength light source for precision chromatic dispersion measurement.
【図面の簡単な説明】
第1図は本発明の一実施例を示す図、
第2図は光帰還がある場合と、光帰還がない場合の半導
体スペクトルを比較して示した図、第3図は本発明の他
の実施例を示す図である。
l・・・信号発生器 2・・・パルス発生器3・
・・直流電流源
4・・・ファブリ−・ペロー型半導体レーザ5・・−光
カプラ
6・・・遅延単一モード光ファイバ
7・・・偏光制御用素子 8・・・コリメートレンズ
9・・・回折格子
特許出願人 日本電信電話株式会社
代理人 弁理士 杉 村 暁 秀同 弁
理士 杉 村 興 作71へ\ l
l→←・・
′1 κ 7[Brief Description of the Drawings] Figure 1 is a diagram showing an embodiment of the present invention, Figure 2 is a diagram comparing semiconductor spectra with and without optical feedback, and Figure 3 is a diagram showing a comparison of semiconductor spectra with and without optical feedback. The figure shows another embodiment of the invention. l... Signal generator 2... Pulse generator 3.
... DC current source 4 ... Fabry-Perot semiconductor laser 5 ... - Optical coupler 6 ... Delay single mode optical fiber 7 ... Polarization control element 8 ... Collimating lens 9 ... Diffraction grating patent applicant Nippon Telegraph and Telephone Corporation Agent Patent attorney Akira Sugimura Hidetoshi Patent attorney Oki Sugimura To Saku 71\ l
l→←・・′1 κ 7
Claims (1)
外部信号によって、直接強度変調して生ずる光出力の一
部を、波長選択素子を介して変調周期またはその整数倍
だけ遅らせて該半導体レーザに帰還することを特徴とす
る単一モード光パルス光源構成法。1. A portion of the optical output generated by direct intensity modulation of a Fabry-Perot cavity semiconductor laser using a periodic external signal is delayed by the modulation period or an integral multiple thereof via a wavelength selection element and then fed back to the semiconductor laser. A method for configuring a single mode optical pulse light source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28738289A JPH03148890A (en) | 1989-11-06 | 1989-11-06 | Constituting method for single-mode light-pulse light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28738289A JPH03148890A (en) | 1989-11-06 | 1989-11-06 | Constituting method for single-mode light-pulse light source |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03148890A true JPH03148890A (en) | 1991-06-25 |
Family
ID=17716629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28738289A Pending JPH03148890A (en) | 1989-11-06 | 1989-11-06 | Constituting method for single-mode light-pulse light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03148890A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010111795A1 (en) * | 2009-04-03 | 2010-10-07 | Exalos Ag | Light source, and optical coherence tomography module |
-
1989
- 1989-11-06 JP JP28738289A patent/JPH03148890A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010111795A1 (en) * | 2009-04-03 | 2010-10-07 | Exalos Ag | Light source, and optical coherence tomography module |
US8625650B2 (en) | 2009-04-03 | 2014-01-07 | Exalos Ag | Light source, and optical coherence tomography module |
US8971360B2 (en) | 2009-04-03 | 2015-03-03 | Exalos Ag | Light source, and optical coherence tomography module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | A widely tunable narrow linewidth semiconductor fiber ring laser | |
US7257142B2 (en) | Semi-integrated designs for external cavity tunable lasers | |
AU2003283377B2 (en) | Wavelength control of an external-cavity tuneable laser | |
US5862162A (en) | External resonator type wavelength- tunable light source | |
CN113557643A (en) | Wavelength control method of silicon photon external cavity tunable laser | |
US5859945A (en) | Array type light emitting element module and manufacturing method therefor | |
US8144738B2 (en) | External cavity wavelength tunable laser device and optical output module | |
US20020054614A1 (en) | Wavelength discretely tunable semiconductor laser | |
US10333280B2 (en) | Semiconductor laser device | |
CA2165194C (en) | Optical switch and transmitter and receiver for a multiplex transmission system including such a switch | |
US7620081B2 (en) | Semiconductor laser utilizing real-time linewidth reduction method | |
Lee et al. | Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity | |
JP2005512136A (en) | Optical microwave source | |
JPH03148890A (en) | Constituting method for single-mode light-pulse light source | |
GB2413697A (en) | Uncooled semiconductor laser | |
JP6586028B2 (en) | Semiconductor laser light source | |
KR102013811B1 (en) | a frequency variable multi-wavelength optical microwave filter | |
US6785305B1 (en) | Tuneable, adjustment-stable semiconductor laser light source and a method for the optically stable, largely continuous tuning of semiconductor lasers | |
US20220360046A1 (en) | Variable Wavelength Laser and Control Method Therefor | |
JP6849524B2 (en) | Semiconductor laser light source | |
KR100523174B1 (en) | Discretely Tunable Erbium-Doped Fiber Ring Laser with 273 Ch. 50 GHz-Spacing | |
JPH10321938A (en) | Frequency stabilized light source | |
Bergonzo et al. | Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating | |
JP3072123B2 (en) | Optically integrated tunable semiconductor laser device | |
JP3072124B2 (en) | Optically integrated semiconductor laser device |