JPH10321938A - Frequency stabilized light source - Google Patents

Frequency stabilized light source

Info

Publication number
JPH10321938A
JPH10321938A JP13071597A JP13071597A JPH10321938A JP H10321938 A JPH10321938 A JP H10321938A JP 13071597 A JP13071597 A JP 13071597A JP 13071597 A JP13071597 A JP 13071597A JP H10321938 A JPH10321938 A JP H10321938A
Authority
JP
Japan
Prior art keywords
laser
wavelength
region
electrode
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13071597A
Other languages
Japanese (ja)
Other versions
JP3433044B2 (en
Inventor
Hiroyuki Ishii
啓之 石井
Fumiyoshi Kano
文良 狩野
Yuzo Yoshikuni
裕三 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13071597A priority Critical patent/JP3433044B2/en
Publication of JPH10321938A publication Critical patent/JPH10321938A/en
Application granted granted Critical
Publication of JP3433044B2 publication Critical patent/JP3433044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stabilize an oscillation frequency, by fixing equivalent reflactivities of a front and a rear distribution reflector region to the same value and laser oscillation wavelengths to one wavelength, so that Bragg wavelengths of the front and the rear distribution reflectors may coincide. SOLUTION: Bias current sources 18-21 are connected to a front side distribution reflector region(DBR) 2, a rear side DBR 3, a phase adjusting region 4, and a gain region of an SSG-DBR laser (laser) 1, respectively. The DBRs 2 and 3 are added with sine wave signals from signal sources 16, 17. The output light from the laser 1 is branched by means of fiber couplers 7, 8 and part of the light is guided to a synchronous detector 23 through an optical detector 9. The synchronous detector 23 makes a phase synchronous detection using the signal sources 16, 17, and detects an error A between a reflection peak wavelength and a longitudinal mode wavelength of the front side DBR and an error B between a reflection peak wavelength and a longitudinal mode wavelength of the rear side DBR. The detected errors A and B are fed back to the DBRs 2 and 3 through an amplifier 14 and a low pass filter 15 to stabilize the laser oscillation frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザの出
力光の波長(光周波数)を一定値に固定するとともに、
この半導体レーザの波長が安定したレーザ光を得る周波
数安定化光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention fixes the wavelength (optical frequency) of output light of a semiconductor laser to a constant value,
The present invention relates to a frequency-stabilized light source for obtaining laser light having a stable wavelength of the semiconductor laser.

【0002】[0002]

【従来の技術】現在、将来の通信情報量の増大に対し
て、光周波数(波長)多重通信システムの研究が盛んで
ある。この場合、送信用光源としては半導体レーザが主
であり、周波数多重のためには単一モード発振特性の半
導体レーザが必要となる。しかも、発振周波数を大きく
変えることのできる光源を用いた場合には、波長多重通
信網の任意の波長チャンネルにアクセスすることができ
るので、波長多重網の再配置を行うことができるため、
高機能な波長多重通信網を構築することが可能となる。
このような半導体レーザを用いた場合波長多重通信に用
いる光源としては、光周波数が一定値に固定されると共
に、長期にわたり安定していることが重要となってい
る。
2. Description of the Related Art At present, research on an optical frequency (wavelength) multiplex communication system has been actively conducted in order to increase the amount of communication information. In this case, a semiconductor laser is mainly used as a light source for transmission, and a semiconductor laser having a single mode oscillation characteristic is required for frequency multiplexing. Moreover, in the case of using a light source capable of greatly changing the oscillation frequency, it is possible to access an arbitrary wavelength channel of the wavelength division multiplex communication network, so that the wavelength division multiplex network can be rearranged.
It is possible to construct a sophisticated wavelength multiplex communication network.
When such a semiconductor laser is used, as a light source used for wavelength division multiplexing communication, it is important that the optical frequency is fixed at a constant value and stable for a long time.

【0003】ここで、分布帰還型(DFB)半導体レー
ザは、優れた単一モード発振特性を示すことから、現在
の長距離系光通信システム用光源の主流であり、また将
来の光周波数(波長)多重通信システム用光源としても
期待されているが、発振周波数を大きく変えることがで
きない。一方、分布反射型(DBR)半導体レーザは、
分布反射器領域に電流を注入することにより、DFBレ
ーザに比べて波長を大きく変化さることが可能である。
とりわけ、超周期構造回折格子が前後の分布反射器に形
成された4電極構造のSSG−DBRレーザは30−6
0nmの波長可変範囲を持つ単一モード半導体レーザで
あるので、波長多重用光源としてきわめて有望視されて
いる。
[0003] Distributed feedback (DFB) semiconductor lasers are currently the mainstream of light sources for long-distance optical communication systems because of their excellent single-mode oscillation characteristics. ) Although it is expected as a light source for a multiplex communication system, the oscillation frequency cannot be largely changed. On the other hand, a distributed reflection (DBR) semiconductor laser is
By injecting a current into the distributed reflector region, it is possible to greatly change the wavelength as compared with a DFB laser.
In particular, a four-electrode SSG-DBR laser in which a super-periodic structure diffraction grating is formed on the front and rear distributed reflectors is 30-6
Since it is a single mode semiconductor laser having a wavelength tunable range of 0 nm, it is very promising as a light source for wavelength multiplexing.

【0004】また、DFB型、DBR型に限らず、半導
体レーザの発振周波数は、温度により大きく変化するの
で、そのための温度制御は必要であるが、温度制御が適
切に行われていても、長期的な使用のもとでは、活性領
域の劣化等の素子特性の変動により発振周波数も変動す
るので、さらに何らかの周波数(波長)安定化のための
制御回路が必要となる。
The oscillation frequency of the semiconductor laser is not limited to the DFB type and the DBR type, and the oscillation frequency of the semiconductor laser greatly changes depending on the temperature. Therefore, temperature control for the oscillation frequency is necessary. Under typical use, the oscillation frequency also fluctuates due to fluctuations in element characteristics such as deterioration of the active region, so that a control circuit for further stabilizing some frequency (wavelength) is required.

【0005】図4は、4電極SSG−DBRレーザで用
いて従来の方法による周波数安定化光源の構成図の一例
である。SSG−DBRレーザ1は、前側SSG−DB
R領域2、後側SSG−DBR領域3、位相調整領域
4、利得領域5を有し、それぞれの領域には電極が備え
られている。これらの電極には、それぞれ別のバイアス
電流源18,19,20,21が接続され、バイアス電
流値によっておよその発振波長が定められている。出力
光の一部は交差弁別型の周波数基準フィルタ11に入射
され、差動増幅器12にて基準周波数とレーザ光の周波
数のずれ量が検出される。このずれ量を位相調整領域4
に流す電流にフィードバックすることで、発振周波数が
フィルタの基準周波数に安定化される。
FIG. 4 is an example of a configuration diagram of a frequency stabilized light source according to a conventional method using a four-electrode SSG-DBR laser. The SSG-DBR laser 1 has a front SSG-DB
It has an R region 2, a rear SSG-DBR region 3, a phase adjustment region 4, and a gain region 5, and each region is provided with an electrode. These electrodes are connected to different bias current sources 18, 19, 20, and 21, respectively, and the approximate oscillation wavelength is determined by the bias current value. Part of the output light is incident on a cross-discrimination type frequency reference filter 11, and a differential amplifier 12 detects the amount of deviation between the reference frequency and the frequency of the laser light. The amount of this shift is used as the phase adjustment area 4
The oscillation frequency is stabilized at the reference frequency of the filter by feeding back the current flowing through the filter.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術においてはある程度の安定性は得られるものの、
長期的な安定性に欠けるという問題があった。SSG−
DBRレーザ等の前後に分布反射器を持つレーザでは、
レーザ共振器により定まる多数の共振縦モードの中か
ら、前後の分布反射の鋭い反射ピークにより1つの縦モ
ードだけが選択され、単一モードで発振する。そして、
この反射ピークの波長を電流注入により変化させ、任意
の縦モードを選択することで、発振波長を大きく変化さ
せることができる。その反面、前後の分布反射器の反射
ピークを常に縦モードに一致させなければ、安定な単一
モード動作が得られないということになる。前記従来例
では、位相調整領域4に流す電流を調整することで、縦
モード波長がフィルタの基準波長に一致するように制御
しているものの、前後の反射ピークと縦モードとが長期
的に一致しているという保証がないという問題があっ
た。例えば、レーザの長期使用により、分布活性領域の
部分が劣化し、その部分の光学的屈折率が変動すれば、
発振縦モードが別のモードに跳んでしまうという危険性
がある。このような状況になった場合、従来例による方
法では、周波数を基準フィルタに同調させることは不可
能となってしまう。
However, in the above prior art, although a certain degree of stability is obtained,
There was a problem of lack of long-term stability. SSG-
For lasers with distributed reflectors before and after such as DBR lasers,
From a number of resonance longitudinal modes determined by the laser resonator, only one longitudinal mode is selected by a sharp reflection peak of distributed reflection before and after, and oscillation is performed in a single mode. And
By changing the wavelength of the reflection peak by current injection and selecting an arbitrary longitudinal mode, the oscillation wavelength can be largely changed. On the other hand, a stable single mode operation cannot be obtained unless the reflection peaks of the front and rear distributed reflectors always match the longitudinal mode. In the above-mentioned conventional example, although the longitudinal mode wavelength is controlled to match the reference wavelength of the filter by adjusting the current flowing through the phase adjustment region 4, the front and rear reflection peaks and the longitudinal mode are different for a long time. There was a problem that there was no guarantee that they did. For example, if the laser is used for a long time, the portion of the distributed active region is degraded, and the optical refractive index of the portion is changed,
There is a risk that the oscillation longitudinal mode jumps to another mode. In such a situation, it becomes impossible to tune the frequency to the reference filter with the conventional method.

【0007】本発明の目的は、上記従来例における問題
を解決し、長期的な素子特性の変動に対しても発振周波
数が常に安定な4電極分布反射型(DBR)レーザを用
いた光源を得ることである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and to obtain a light source using a four-electrode distributed reflection (DBR) laser whose oscillation frequency is always stable against long-term fluctuations in device characteristics. That is.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成する本
発明は次の特定事項を有する。 (1) 利得領域、位相調整領域、及び前後2つの分布
反射器領域を備えた4領域分布反射型半導体レーザを有
し、このレーザの発振波長に上記2つの分布反射器のブ
ラッグ波長が一致するよう上記2つの分布反射器領域の
等価屈折率を調整する機能と、レーザ発振波長を一の波
長に固定する機能とを有する。 (2) 第1の電極を備えた前側分布反射器領域、第2
の電極を備えた後側分布反射器領域、及び第3の電極を
備えた位相調整領域を有する分布反射型半導体レーザを
有し、上記第1の電極に微少強度変調された電流を注入
し、上記レーザの出力光を位相同期検波して得られる信
号が最小となるよう上記第1の電極へ流す電流を設定す
る機能と、上記第2の電極に微少強度変調された電流を
注入し、上記レーザの出力光を位相同期検波して得られ
る信号が最小となるよう上記第2の電極へ流す電流を設
定する機能と、上記レーザの出力光の波長が光周波数基
準器の基準波長に一致するように上記第3の電極に注入
する電流を設定する機能を有する。 (3) 上記(2)において、分布反射型半導体レーザ
の利得領域に第4の電極を有し、上記レーザの光出力強
度が一定になるよう上記第4の電極へ注入する電流を設
定する機能を有する。
The present invention for achieving the above object has the following specific features. (1) A four-region distributed reflection type semiconductor laser including a gain region, a phase adjustment region, and two distributed reflector regions before and after, and the Bragg wavelengths of the two distributed reflectors match the oscillation wavelength of this laser. Thus, it has a function of adjusting the equivalent refractive index of the two distributed reflector regions and a function of fixing the laser oscillation wavelength to one wavelength. (2) Front-side distributed reflector area with first electrode, second
A distributed reflector semiconductor laser having a rear-side distributed reflector region having a third electrode, and a phase adjustment region having a third electrode, and injecting a current intensity-modulated into the first electrode, A function of setting a current flowing to the first electrode so that a signal obtained by phase-locking detection of the output light of the laser is minimized, and injecting a current of minute intensity modulation into the second electrode, A function of setting a current flowing to the second electrode so that a signal obtained by phase-locking detection of the laser output light is minimized, and a wavelength of the laser output light matches a reference wavelength of the optical frequency reference device. As described above, a function of setting the current to be injected into the third electrode is provided. (3) In the above (2), a function of setting a current to be injected into the fourth electrode so as to have a fourth electrode in a gain region of the distributed-reflection semiconductor laser and to have a constant light output intensity of the laser. Having.

【0009】本発明においては、前後のDBR領域にそ
れぞれ周波数の異なる微少変調信号を印加し、光出力光
を同期検波することで、前後の反射ピーク波長と縦モー
ド波長とのずれ量を検出し、常に前後の反射ピーク波長
と縦モードとが一致するように制御している。図2は、
前側DBR電流に対する光強度の変化と後側DBR電流
に対する光強度の変化をそれぞれ示している。図2
(a)中の曲線は下に凸で、図2(b)の曲線は上に凸
となっている。これは、前側分布反射器の反射率が最大
になったときに光出力が微少になり、後側分布反射器の
反射率が最大になったときに光出力が極小になることを
示すものである。従って、光出力を同期検波することに
より、これらの極点からのずれ量を検出し、この誤差信
号を適切に増幅し、前後DBR領域にフィードバックす
ることで、縦モード周波数とブラッグ周波数とを常に一
致させることができる。
In the present invention, the amount of deviation between the front and rear reflection peak wavelengths and the longitudinal mode wavelength is detected by applying minute modulation signals having different frequencies to the front and rear DBR regions and synchronously detecting the optical output light. The control is performed such that the front and rear reflection peak wavelengths always coincide with the longitudinal mode. FIG.
A change in light intensity with respect to the front DBR current and a change in light intensity with respect to the rear DBR current are shown. FIG.
The curve in (a) is convex downward, and the curve in FIG. 2 (b) is convex upward. This indicates that when the reflectance of the front side distribution reflector becomes maximum, the light output becomes very small, and when the reflectance of the rear side distribution reflector becomes maximum, the light output becomes minimum. is there. Therefore, by detecting the optical output synchronously, the deviation amount from these extreme points is detected, this error signal is appropriately amplified, and fed back to the front and rear DBR regions, so that the longitudinal mode frequency and the Bragg frequency always match. Can be done.

【0010】[0010]

【発明の実施の形態】ここで、図1、図3を参照しては
本発明の実施の形態を説明する。図1において図4と同
一部分には同符号を付す。4電極からなるSSG−DB
Rレーザ1の前側分布反射器(DBR)領域2、後側分
布反射器領域3、位相調整(PC)領域4、及び利得領
域5にはそれぞれバイアス電流源18,19,20,2
1がつながれ電流が注入される。前後のDBR領域には
信号源16,17により微少な正弦波信号が加えられ
る。ここで、前側DBR領域2からの信号と後側DBR
領域3からの信号とを分離して検出するために、変調信
号の周波数は異なる値に設定してある。SSG−DBR
レーザ1からの光出力は光ファイバ6により取り出され
るが、その一部はファイバカプラ7,8により分けられ
て光検出器9に導かれる。光検出器9で電気信号に変換
された信号は、前側DBR領域2及び後側DBR領域3
に加えられた参照信号16,17を用いて同期検波器2
3で位相同期検波され、前側DBR反射ピーク波長と縦
モード波長とのずれ量A及び後側DBR反射ピーク波長
と縦モード波長とのずれ量Bとして検出される。この誤
差信号A,Bを増幅器14でそれぞれ適切に増幅し、負
帰還を確実にするための低域通過フィルタ15を通した
後、前後それぞれのDBR領域2,3にフィードバック
することで、前後それぞれの反射ピーク波長が縦モード
波長に安定化される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the same parts as those in FIG. 4 are denoted by the same reference numerals. SSG-DB consisting of 4 electrodes
Bias current sources 18, 19, 20, and 2 are provided in the front distributed reflector (DBR) region 2, the rear distributed reflector region 3, the phase adjustment (PC) region 4, and the gain region 5 of the R laser 1, respectively.
1 is connected and a current is injected. Signal sources 16 and 17 apply minute sine wave signals to the front and rear DBR regions. Here, the signal from the front DBR region 2 and the rear DBR
The frequency of the modulated signal is set to a different value in order to detect the signal from the region 3 separately. SSG-DBR
The optical output from the laser 1 is extracted by an optical fiber 6, and a part thereof is separated by fiber couplers 7 and 8 and guided to a photodetector 9. The signal converted into the electric signal by the photodetector 9 is divided into a front DBR region 2 and a rear DBR region 3.
Using the reference signals 16 and 17 added to the synchronous detector 2
3, and is detected as a shift amount A between the front DBR reflection peak wavelength and the longitudinal mode wavelength and a shift amount B between the rear DBR reflection peak wavelength and the longitudinal mode wavelength. The error signals A and B are appropriately amplified by the amplifier 14, respectively, passed through a low-pass filter 15 for ensuring negative feedback, and then fed back to the front and rear DBR regions 2 and 3, respectively. Is stabilized at the longitudinal mode wavelength.

【0011】また、ファイバカプラ7,8にて取り出さ
れた一部の光は、光周波数の基準とする交差弁別型の光
フィルタ(たとえばボリュームホログラフ)11に入力
される。このフィルタ11の次段には2つの光検出器1
0が配置されて光電変換され、さらに差動増幅器12の
入力となり、この各入力は差分がとられて出力されるこ
とになる。この光フィルタ11は2つの出力ポートを有
し、それらの出力特性は基準周波数をはさんでわずかに
異なる光周波数にピークをもつ透過特性を示し、基準周
波数で2つの出力が等しくなる。よって、差動増幅器の
出力信号は基準周波数からのずれ量に比例した値を示
す。この信号を位相調整電流にフィードバックすること
で、発振周波数(波長)は光基準フィルタ周波数(波
長)に安定化される。
A part of the light extracted by the fiber couplers 7 and 8 is input to a cross-discrimination type optical filter (for example, a volume holograph) 11 which is used as a reference for the optical frequency. In the next stage of the filter 11, two photodetectors 1 are provided.
0 is arranged and photoelectrically converted, and further becomes an input of the differential amplifier 12, and each input is obtained by taking a difference. This optical filter 11 has two output ports, the output characteristics of which show transmission characteristics having a peak at a slightly different optical frequency across the reference frequency, and the two outputs become equal at the reference frequency. Therefore, the output signal of the differential amplifier shows a value proportional to the amount of deviation from the reference frequency. By feeding this signal back to the phase adjustment current, the oscillation frequency (wavelength) is stabilized at the optical reference filter frequency (wavelength).

【0012】さらに、図1では、出力光の強度を一定に
するために、光検出器9の出力の一部を差動増幅器13
にて基準電圧に対して差動増幅し、この信号を活性領域
に流す電流にフィードバックしている。なお、図示はし
ていないが、レーザの温度はペルチェ素子を用いて一定
になるように制御している。
Further, in FIG. 1, in order to keep the intensity of the output light constant, a part of the output of
, Differentially amplifies the reference voltage, and feeds back this signal to the current flowing in the active region. Although not shown, the temperature of the laser is controlled to be constant using a Peltier element.

【0013】図3は、本発明の効果をみるために、長期
的使用により素子特性が変化することの代わりとして、
レーザの温度を変化させたときの発振波長の変化の様子
を実験により確かめた結果である。図中Δ印は、反射ピ
ーク波長と縦モードとの安定化を行わずに、基準光フィ
ルタ波長との誤差信号を位相調整領域にフィードバック
した図4による場合を示し、○印は本実施例によるもの
を示している。図3から明らかなように、従来の方法で
は温度が±1.5℃程度変化すると、縦モード波長が隣
のモードに跳ぶことにより、発振波長が安定化範囲から
すぐに逸脱してしまうのに対し、本実施例によるもので
は、広い温度範囲にわたって安定化されている。これ
は、常に反射ピーク波長と縦モード波長とが一致するよ
うに制御されているからである。この結果は本実施例に
よる安定化方法が、長期的な素子の特性変化に対しても
耐性があるということを物語るものである。
FIG. 3 is a graph showing the effect of the present invention.
It is a result of confirming by an experiment how an oscillation wavelength changes when a laser temperature is changed. In the figure, the symbol Δ indicates the case according to FIG. 4 in which the error signal between the reference optical filter wavelength and the reflection peak wavelength and the longitudinal mode were not stabilized, and the error signal from the reference optical filter wavelength was fed back to the phase adjustment region. Showing things. As is clear from FIG. 3, in the conventional method, when the temperature changes by about ± 1.5 ° C., the longitudinal mode wavelength jumps to the next mode, so that the oscillation wavelength immediately deviates from the stabilization range. On the other hand, according to the present embodiment, it is stabilized over a wide temperature range. This is because the control is performed so that the reflection peak wavelength always coincides with the longitudinal mode wavelength. This result indicates that the stabilization method according to the present embodiment is resistant to long-term changes in device characteristics.

【0014】なお、図1においては、基準光周波数(波
長)フィルタとしてボリュームホログラフを用いている
が、マッハ・ツェンダー型フィルタ、アレイ格子フィル
タ等の干渉型フィルタやガス吸収セルを用いた場合にも
適用できる。また、図1では、検出した誤差信号を増幅
し、低減通過フィルタを通過させた後フィードバックす
る比例制御の構成をとっているが、さらに積分回路や微
分回路を挿入した、いわゆるP.I.D.制御回路を挿
入し、より安定度を高めるようにしてもよい。また、検
出した誤差信号をA/D変換器によりディジタル信号に
変換し、コンピュータを用いてデジタル信号処理をして
各電流値を制御するような場合にも適用できる。
Although a volume holograph is used as a reference optical frequency (wavelength) filter in FIG. 1, an interference type filter such as a Mach-Zehnder type filter or an array grating filter or a gas absorption cell is also used. Applicable. Further, in FIG. 1, a proportional control configuration is adopted in which the detected error signal is amplified, passed through a reduction pass filter, and then fed back. However, a so-called P.R. I. D. A control circuit may be inserted to increase the stability. Further, the present invention can be applied to a case where the detected error signal is converted into a digital signal by an A / D converter, and digital signals are processed using a computer to control each current value.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、前
後の反射ピーク波長、及び縦モード波長を別々に安定化
することにより、長期にわたって周波数(波長)の安定
した出力光を得ることができる。
As described above, according to the present invention, by stabilizing the front and rear reflection peak wavelengths and the longitudinal mode wavelength separately, it is possible to obtain output light having a stable frequency (wavelength) over a long period of time. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を表す構成図。FIG. 1 is a configuration diagram illustrating an embodiment of the present invention.

【図2】前側DBR電流に対する光出力(a)と後側D
BR電流に対する光出力(b)を示す図。
FIG. 2 shows light output (a) and rear D with respect to front DBR current.
The figure which shows the optical output (b) with respect to BR current.

【図3】従来と本発明との結果比較図。FIG. 3 is a diagram comparing results between a conventional example and the present invention.

【図4】従来例の構成図。FIG. 4 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 4電極超周期構造回折格子分布反射型(SSG−D
BR)レーザ 2 前側分布反射器(DBR)領域 3 後側分布反射器(DBR)領域 4 位相調整(PC)領域 5 利得領域 6 光ファイバ 7,8 ファイバカプラ 9,10 光検出器(フォトダイオード) 11 光周波数基準フィルタ(ボリュームホログラフ) 12,13 差動増幅器 14 増幅器 15 低域通過フィルタ 16,17 参照信号源 18 前側分布反射器領域へのバイアス電流源 19 後側分布反射器領域へのバイアス電流源 20 位相調整領域へのバイアス電流源 21 利得領域へのバイアス電流源 22 電圧源 23 位相同期検波回路
14 electrode super periodic structure diffraction grating distributed reflection type (SSG-D
BR) laser 2 front side distributed reflector (DBR) region 3 rear side distributed reflector (DBR) region 4 phase adjustment (PC) region 5 gain region 6 optical fiber 7,8 fiber coupler 9,10 photodetector (photodiode) Reference Signs List 11 optical frequency reference filter (volume holograph) 12, 13 differential amplifier 14 amplifier 15 low-pass filter 16, 17 reference signal source 18 bias current source to front distributed reflector region 19 bias current to rear distributed reflector region Source 20 Bias current source to phase adjustment region 21 Bias current source to gain region 22 Voltage source 23 Phase synchronous detection circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 利得領域、位相調整領域、及び前後2つ
の分布反射器領域を備えた4領域分布反射型半導体レー
ザを有し、 このレーザの発振波長に上記2つの分布反射器のブラッ
グ波長が一致するよう上記2つの分布反射器領域の等価
屈折率を調整する機能と、レーザ発振波長を一の波長に
固定する機能とを有する、周波数安定化光源。
1. A four-region distributed-reflection semiconductor laser comprising a gain region, a phase-adjusting region, and two distributed reflector regions before and after, and the Bragg wavelength of the two distributed reflectors is set to the oscillation wavelength of the laser. A frequency-stabilized light source having a function of adjusting the equivalent refractive index of the two distributed reflector regions so as to match, and a function of fixing the laser oscillation wavelength to one wavelength.
【請求項2】 第1の電極を備えた前側分布反射器領
域、第2の電極を備えた後側分布反射器領域、及び第3
の電極を備えた位相調整領域を有する分布反射型半導体
レーザを有し、 上記第1の電極に微少強度変調された電流を注入し、上
記レーザの出力光を位相同期検波して得られる信号が最
小となるよう上記第1の電極へ流す電流を設定する機能
と、上記第2の電極に微少強度変調された電流を注入
し、上記レーザの出力光を位相同期検波して得られる信
号が最小となるよう上記第2の電極へ流す電流を設定す
る機能と、上記レーザの出力光の波長が光周波数基準器
の基準波長に一致するように上記第3の電極に注入する
電流を設定する機能とを有する、周波数安定化光源。
2. A front distributed reflector region with a first electrode, a rear distributed reflector region with a second electrode, and a third distributed reflector region.
A distributed-reflection semiconductor laser having a phase adjustment region with an electrode of the type described above, a current obtained by injecting a current whose intensity is minutely modulated into the first electrode, and a phase-locked detection of output light of the laser is obtained. A function of setting a current flowing to the first electrode so as to be a minimum, and a signal obtained by injecting a current whose intensity is minutely modulated into the second electrode and phase-locking detecting the output light of the laser to minimize the signal. And a function of setting a current to be injected into the third electrode so that the wavelength of the output light of the laser coincides with the reference wavelength of the optical frequency reference device. And a frequency stabilized light source.
【請求項3】 分布反射型半導体レーザの利得領域に第
4の電極を有し、上記レーザの光出力強度が一定になる
よう上記第4の電極へ注入する電流を設定する機能を有
する請求項2記載の周波数安定化光源。
3. A distributed reflection type semiconductor laser having a fourth electrode in a gain region and having a function of setting a current to be injected into the fourth electrode so that the light output intensity of the laser is constant. 2. The frequency stabilized light source according to 2.
JP13071597A 1997-05-21 1997-05-21 Frequency stabilized light source Expired - Fee Related JP3433044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13071597A JP3433044B2 (en) 1997-05-21 1997-05-21 Frequency stabilized light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13071597A JP3433044B2 (en) 1997-05-21 1997-05-21 Frequency stabilized light source

Publications (2)

Publication Number Publication Date
JPH10321938A true JPH10321938A (en) 1998-12-04
JP3433044B2 JP3433044B2 (en) 2003-08-04

Family

ID=15040901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13071597A Expired - Fee Related JP3433044B2 (en) 1997-05-21 1997-05-21 Frequency stabilized light source

Country Status (1)

Country Link
JP (1) JP3433044B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172905A1 (en) * 2000-07-11 2002-01-16 Interuniversitair Microelektronica Centrum Vzw A method and apparatus for controlling a laser structure
EP1223647A1 (en) * 2001-01-12 2002-07-17 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for controlling a laser structure
KR100464358B1 (en) * 2002-03-11 2005-01-03 삼성전자주식회사 Method for fabricating distributed bragg reflector laser
JP2007300149A (en) * 2007-08-22 2007-11-15 Matsushita Electric Ind Co Ltd Method for controlling light source unit
JP4918203B2 (en) * 1999-09-02 2012-04-18 ジェイディーエス ユニフェイズ コーポレイション Tunable laser source with integrated optical amplifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918203B2 (en) * 1999-09-02 2012-04-18 ジェイディーエス ユニフェイズ コーポレイション Tunable laser source with integrated optical amplifier
EP1172905A1 (en) * 2000-07-11 2002-01-16 Interuniversitair Microelektronica Centrum Vzw A method and apparatus for controlling a laser structure
EP1223647A1 (en) * 2001-01-12 2002-07-17 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for controlling a laser structure
KR100464358B1 (en) * 2002-03-11 2005-01-03 삼성전자주식회사 Method for fabricating distributed bragg reflector laser
JP2007300149A (en) * 2007-08-22 2007-11-15 Matsushita Electric Ind Co Ltd Method for controlling light source unit

Also Published As

Publication number Publication date
JP3433044B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
US7230963B2 (en) Monolithic wavelength stabilized asymmetric laser
US7257142B2 (en) Semi-integrated designs for external cavity tunable lasers
Sarlet et al. Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing
EP1668751B1 (en) Phase-control in an external-cavity tuneable laser
US20020015433A1 (en) Tunable frequency stabilized fiber grating laser
US9793684B2 (en) Laser apparatus
JP3262331B2 (en) Terminal for frequency division optical communication system
US6842587B1 (en) Use of amplified spontaneous emission from a semiconductor optical amplifier to minimize channel interference during initialization of an externally modulated DWDM transmitter
US9436022B2 (en) Modulated light source
US6359915B1 (en) Wavelength-stabilized Bragg laser
JP2001127377A (en) Optical transmitter and apparatus therefor
JPH06232844A (en) Optical semiconductor device, optical communicating system using the same and optical communication system
US6795479B2 (en) Generation of optical pulse train having high repetition rate using mode-locked laser
Sarlet et al. Wavelength and mode stabilization of widely tunable SG-DBR and SSG-DBR lasers
US9966724B2 (en) Laser and method of controlling laser
US6738187B2 (en) Semiconductor optical amplifiers using wavelength locked loop tuning and equalization
JP2708467B2 (en) Tunable semiconductor laser
US20090086774A1 (en) Control device, laser device, wavelength converting method, and program
JPH07111354A (en) Semiconductor laser drive device
JP3433044B2 (en) Frequency stabilized light source
US6327064B1 (en) Frequency stabilized and crosstalk-free signal sources for optical communication systems
JP3237499B2 (en) Frequency stabilized light source
JP4079263B2 (en) Frequency stabilized light source
JP3632838B2 (en) Frequency stabilization method and frequency stabilized light source of distributed reflection type semiconductor laser
JP3072123B2 (en) Optically integrated tunable semiconductor laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees