JPH03279739A - Multiple-room type air conditioner - Google Patents

Multiple-room type air conditioner

Info

Publication number
JPH03279739A
JPH03279739A JP2292265A JP29226590A JPH03279739A JP H03279739 A JPH03279739 A JP H03279739A JP 2292265 A JP2292265 A JP 2292265A JP 29226590 A JP29226590 A JP 29226590A JP H03279739 A JPH03279739 A JP H03279739A
Authority
JP
Japan
Prior art keywords
room
compressor
suction pressure
air conditioner
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2292265A
Other languages
Japanese (ja)
Other versions
JP2568747B2 (en
Inventor
Yoshiro Tsuchiyama
吉朗 土山
Koji Ebisu
戎 晃司
Masataka Ozeki
正高 尾関
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US07/634,349 priority Critical patent/US5222371A/en
Publication of JPH03279739A publication Critical patent/JPH03279739A/en
Application granted granted Critical
Publication of JP2568747B2 publication Critical patent/JP2568747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a desired dynamic characteristic whenever stability is secured, by calculating the integral gain of an integrating means from at least one of outside air temperature, the sum total of rated capacities of room units being operated, and the rate of change in suction pressure of a compressor. CONSTITUTION:Set values for each room are inputted to a comparing means 31, and is compared with an output from an element 34 having a characteristic inverse to a desired dynamic characteristic. The result of comparison is sent to an integrating means 32, which integrates the input data with respect to time, to obtain an integral gain 1/L, where L is set by a parameter-setting means 23. The parameter-setting means 23 calculates the integral gain from outside air temperature, the number of room units being operated, the sum total of capacitile of the room units being operated, or the rate of change in suction pressure of a compressor. The result of integration by the integrating means 32 is sent to operating circuits for expansion valves for each room, as an expansion valve opening for each room. With the opening of the expansion valve thus controlled, an air conditioner 21 is operated to absorb heat from each room. The characteristic of lowering in room temperature through heat absorption is shown as a room characteristic in a block 22, and a room temperature for each room is determined. The temperature in each room is detected by a room temperature detector, and is inputted to the element 34 having the characteristic inverse to the desired characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 多室形空気調和機における室温制御に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to room temperature control in a multi-room air conditioner.

従来の技術 第4図ζ友 従来例の多室形空気調和機のシステム構成
図であり、 1は圧縮@ 3は室外熱交換器であり、室
外機6を構成している。室内機7A、7& 7C各々c
友  室内熱交換器8A、 8B、 8C1室内膨張弁
9A、 9B、 9 C,室温検知器10A、 IOB
、 IOCを備え 室外機6、及び各室内機7A、  
7B、  7Cの各ガス偲 及び液側を各々ガス側管路
13、及び液側管路12で接続して閉回路となし 閉回
路の内部に冷媒を封入してなる周知のヒートポンプサイ
クルである。
Conventional Technology FIG. 4 is a system configuration diagram of a conventional multi-room air conditioner, in which 1 is a compression @ 3 is an outdoor heat exchanger, which constitutes an outdoor unit 6. Indoor units 7A, 7 & 7C each c
Friend indoor heat exchanger 8A, 8B, 8C1 indoor expansion valve 9A, 9B, 9C, room temperature detector 10A, IOB
, Equipped with IOC, outdoor unit 6 and each indoor unit 7A,
This is a well-known heat pump cycle in which the gas and liquid sides of 7B and 7C are connected through a gas side conduit 13 and a liquid side conduit 12 to form a closed circuit.A refrigerant is sealed inside the closed circuit.

かかる構成における多室形空気調和機の作用様態法 室
外熱交換器3は凝縮器 各室内熱交換器8A、8B、 
8Cは蒸発器として働き、各部屋の空気から吸熱するこ
とにより、各部屋11A、 11& IICを冷房する
How the multi-room air conditioner works in such a configuration: The outdoor heat exchanger 3 is a condenser; each of the indoor heat exchangers 8A, 8B;
8C acts as an evaporator and cools each room 11A, 11 & IIC by absorbing heat from the air in each room.

次く 各室内膨張弁9A、 9B、9Cの作用様態を以
下に説明する。各室内膨張弁9A、 9B、9Cの開度
を増加すると、冷媒の流量が増加し冷房能力が増加して
各室の温度を低下せしめる。
Next, the mode of operation of each indoor expansion valve 9A, 9B, and 9C will be explained below. When the opening degree of each indoor expansion valve 9A, 9B, and 9C is increased, the flow rate of the refrigerant increases, the cooling capacity increases, and the temperature of each room is lowered.

その温度は各室温検知器10A、  IOB、  IO
Cにより検知される。
The temperature is measured by each room temperature detector 10A, IOB, IO
Detected by C.

また全体の負荷の増減に対してCヨ  圧縮機1の回転
数を操作することにより対応する。
In addition, changes in the overall load can be handled by controlling the rotation speed of the compressor 1.

な抵 暖房時にCt  西方弁(図示せず)を用いて圧
縮機1の入力と出力を切り換えることにより1、冷媒の
流れる方向が第4図とは逆になり、室内側熱交換器8A
、8B、 8Cは凝縮器 室外側熱交換器3は蒸発器に
なる。
By switching the input and output of the compressor 1 using the Ct west valve (not shown) during heating, the direction in which the refrigerant flows is reversed from that shown in Fig. 4, and the indoor heat exchanger 8A
, 8B, and 8C are condensers, and the outdoor heat exchanger 3 is an evaporator.

従来の多室形空気調和機の各室内膨張弁制御の方法はい
わゆるPID制御方式 あるいは条件に応じて操作量を
決定する表検索方式が採用されている。PID制御方式
では目標値に対する誤差情報を得て、誤差情報の比仇 
積分、微分を算出し算出結果を制御対象に対して適当な
比で加算して操作量を決定している。−人 表検索方式
で4!現在の設定温良 各種の検出量に応じた制御量の
表を予め設定しておく方法である。
Conventional methods for controlling each indoor expansion valve of a multi-room air conditioner employ a so-called PID control method or a table search method that determines the amount of operation according to conditions. In the PID control method, error information with respect to the target value is obtained and the comparison of the error information is calculated.
The manipulated variable is determined by calculating integrals and differentials and adding the calculated results to the controlled object at an appropriate ratio. -People 4 with table search method! Current temperature setting This is a method in which a table of control amounts corresponding to various detected amounts is set in advance.

また 圧縮機の制御方法としてζよ 第4図の吸入圧力
検出器11により得られた吸入圧力を一定になるように
制御する方法がある。全体の負荷が大きいと、各宗家内
機の蒸発器8九 B、  Cにおいて蒸発が速まり、結
果として圧縮機吸入圧力が上昇すも 逆に全体の負荷が
少ないと蒸発が遅れるので圧縮機吸入圧力が下がる。し
たがって圧縮機1の制御番エ  圧縮機吸入圧力が目標
より高ければ圧縮機回転数を大きくし 目標より低けれ
ば回転数を小さくす4 このようにして圧縮機を制御す
ることにより、負荷に応じた能力を出すことができる。
Further, as a method of controlling the compressor, there is a method of controlling the suction pressure obtained by the suction pressure detector 11 shown in FIG. 4 so as to be constant. When the overall load is large, evaporation speeds up in the evaporators 89B and C of each Sokei internal unit, resulting in an increase in compressor suction pressure.On the other hand, when the overall load is small, evaporation is delayed and the compressor suction pressure increases. Pressure decreases. Therefore, the control number for compressor 1 is: If the compressor suction pressure is higher than the target, the compressor rotation speed is increased; if it is lower than the target, the rotation speed is decreased.4 By controlling the compressor in this way, the rotation speed is You can show your abilities.

さらく 室内機と室外機における冷媒の分布を略一定に
保つことができる。
The distribution of refrigerant in the indoor unit and outdoor unit can be maintained approximately constant.

発明が解決しようとする課題 しかしながら、このような多室形空気調和機では 動作
条(4=、  例えば運転台数が変われば 対象の特性
が変化するのはいうまでもなく、また 長時間運転を停
止させた後の起動時に6表 圧縮機の吸入圧力が通常と
は逆方向に変化する現象があり、定常時とは特性が大き
く異なることはよく知られている。このような現象に対
して、 PID制御方式では 制御系の安定度、応答性
能が共に変化し安定度を確保するに(よ 応答性能を犠
牲にせざるを得ないという課題があっへ そして、各動
作条件に応じたPID制御パラメータを設定しても、応
答性能は変化してしまうという課題もあったまた 表検
索方式の場合、運転条件などに応じた操作量の表を設定
しておく必要がある力丈 運転台数が増加すると、運転
条件の組合せは膨大なものになり、表の大きさが爆発的
に増加してしまい現実的には対応できなくなる。
Problems to be Solved by the Invention However, in such multi-room air conditioners, it goes without saying that the operating conditions (4 = For example, if the number of units in operation changes, the characteristics of the target will change, and the operation may be stopped for a long time. It is well known that there is a phenomenon in which the suction pressure of the compressor changes in the opposite direction to normal, and the characteristics are significantly different from those in steady state. In the PID control method, the stability and response performance of the control system both change, and in order to ensure stability, the problem is that response performance must be sacrificed. There was also the problem that even if the number of machines in operation increased, the response performance would change. The number of combinations of operating conditions becomes enormous, and the size of the table increases explosively, making it impossible to handle it realistically.

また 圧縮機の制御系において+1  第9図に示すよ
うに 停止して時間が経過して冷媒の偏りが大きくなる
と、圧縮機を起動させると吸入圧力は大きく低下して目
標値に戻ってこない現象が発生する。すなわち、吸入圧
力が低下して、圧縮機回転数を下げる状態が発生する。
In addition, +1 in the compressor control system.As shown in Figure 9, as time passes after the compressor has stopped and the refrigerant imbalance increases, when the compressor is started, the suction pressure drops significantly and does not return to the target value. occurs. That is, a situation occurs in which the suction pressure decreases and the compressor rotational speed is lowered.

このようになると、吸入圧力を目標値に到達することが
できなくなる。
In this case, the suction pressure cannot reach the target value.

課題を解決するための手段 本発明の第1(主 所望の制御動特性の逆特性に略一致
する特性を得る手段、積分手段を設け、検出した室温を
前記逆特性手段の入力とし 前記逆特性手段の出力と設
定値とを比較し 比較結果を前記積分手段に入カレ 積
分手段の出力により膨張弁の開度を制御するように構成
し 外気温 運転台数と能力の総租 圧縮機吸入圧の変
化量に基づいて前記積分手段の積分ゲインを出力する手
段を設ける。
Means for Solving the Problems First aspect of the present invention (Main) A means for obtaining a characteristic substantially corresponding to an inverse characteristic of a desired control dynamic characteristic, an integrating means is provided, and the detected room temperature is input to the inverse characteristic means; The output of the means is compared with the set value, and the comparison result is input to the integrating means.The output of the integrating means is used to control the opening degree of the expansion valve. Means for outputting the integral gain of the integrating means based on the amount of change is provided.

本発明の第2(よ 起動時の所望の制御動特性の逆特性
に略一致する手段、積分手段、定常時の所望の制御動特
性の逆特性に略一致する手段、積分手段を設け、検出し
た圧縮機吸入圧力を前記逆特性手段の人力とし 前記逆
特性手段の出力と目標吸入圧力とを比較し 比較結果を
前記積分手段に人力し 積分手段の出力により圧縮機の
回転数を操作するよう構成し 前記圧縮機吸入圧力の変
化量を検出する手段を有し 圧縮機吸入圧力の変化量が
負から正に変化する時にファジィ論理で前記所望の制御
動特性の逆特性手段および積分手段を起動用の手段から
定常用の手段に切り換える。
The second feature of the present invention is to provide a means for substantially matching the inverse characteristic of the desired control dynamic characteristic at startup, an integrating means, a means for substantially matching the inverse characteristic of the desired control dynamic characteristic at steady state, and an integrating means; The obtained compressor suction pressure is used as the input power of the inverse characteristic means, the output of the inverse characteristic means is compared with the target suction pressure, the comparison result is inputted to the integrator means, and the rotation speed of the compressor is controlled by the output of the integrator means. comprising a means for detecting the amount of change in the compressor suction pressure, and activating the inverse characteristic means and the integrating means for the desired control dynamic characteristic using fuzzy logic when the amount of change in the compressor suction pressure changes from negative to positive. Switch from normal use to normal use.

作用 本発明の第1で(戴 所望の動特性の逆特性を帰還ルー
プに挿入することにより、設定人力に対して4L  所
望の特性の要素を経由する構成と等価となり、安定性が
確保できれば常に所望の動特性を得ることが可能になる
。また 運転条件の変化による制御対象の変動に対して
は 運転条件により算出された積分ゲインが変化するの
で、安定化される。また 算出された積分ゲイン(よ 
運転条件の連続的な変化に対しては連続的に変化するの
で、操作量が急変することもなく、滑らかな制御が実現
する。
Effect In the first aspect of the present invention (Dai), by inserting the inverse characteristic of the desired dynamic characteristic into the feedback loop, it becomes equivalent to a configuration in which the set human force goes through an element with the desired characteristic of 4L, and if stability can be ensured, the This makes it possible to obtain the desired dynamic characteristics.Furthermore, in response to fluctuations in the controlled object due to changes in operating conditions, the calculated integral gain changes depending on the operating conditions, so it is stabilized.Also, the calculated integral gain (Yo
Since it changes continuously in response to continuous changes in operating conditions, smooth control is achieved without sudden changes in the amount of operation.

Q− また本発明の第2で(よ 起動用の所望の動特性に相当
するものとして、最大量の操作量を得られるものを設定
して、圧縮機回転数を最大として起動させることにより
吸入圧力は時間と共に急激に低下する力丈 冷媒の偏り
が解除されると吸入圧力はある程度上昇に転じる。この
時に定常用の所望の動特性にファジィ論理で滑らかに切
り替わるので、吸入圧力が低下してかつ圧縮機回転数も
上昇しない事態を発生しなしX。
Q- Also, in the second aspect of the present invention (Yo), by setting the one that can obtain the maximum amount of operation as the one corresponding to the desired dynamic characteristic for startup, and starting with the compressor rotation speed at the maximum, the suction The pressure decreases rapidly over time. When the refrigerant imbalance is removed, the suction pressure begins to increase to some extent. At this time, the desired dynamic characteristics for steady-state use are smoothly switched using fuzzy logic, so the suction pressure decreases. Also, there is no situation in which the compressor rotation speed does not increase.

実施例 以下、本発明第1を実施例を図に基づいて説明する。第
1図は第1の発明になる多室形空気調和機の制御系の構
成図である。各室の設定値は比較手段31に入力され 
所望の動特性の逆特性要素34の出力と比較される。比
較結果は積分手段32に送られる。積分手段32では 
入力値を時間積分する。積分ゲインは(1/L)とする
。ここでLはパラメータ設定手段23により設定される
EXAMPLE Hereinafter, the first example of the present invention will be explained based on the drawings. FIG. 1 is a configuration diagram of a control system of a multi-room air conditioner according to the first invention. The setting values for each room are input to the comparison means 31.
It is compared with the output of the inverse characteristic element 34 of the desired dynamic characteristic. The comparison result is sent to the integrating means 32. In the integrating means 32
Integrate the input value over time. The integral gain is (1/L). Here, L is set by the parameter setting means 23.

パラメータ設定手段(よ 外気温 運転台数と能力の総
和量、圧縮機の吸入圧力の変化量をもと番へ0− 積分ゲインを算出する。パラメータ設定手段23の動作
原理は後述する。積分手段32の結果は各室の膨張弁開
度として、各室の膨張弁の操作回路(図示せず)へ送ら
れも 膨張弁の開度を制御することにより空気調和機2
1が操作されることになる。これにより各室から熱を吸
収する。熱吸収されて室温が低下する特性を室特性とし
てブロック22で示している。このようにして各室の室
温が決まも 各室の室温は第4図で示した室温検出器1
0ん IOB、IOCにて検出される。検出された室温
は所望の動特性の逆特性を有する要素34に入力されて
、制御ループを構成する。
The parameter setting means (outside temperature) calculates the integral gain based on the total number of operating units and capacity, and the amount of change in the suction pressure of the compressor.The operating principle of the parameter setting means 23 will be described later.Integration means 32 The result is sent to the expansion valve operation circuit (not shown) of each room as the expansion valve opening of each room.By controlling the expansion valve opening, the air conditioner 2
1 will be operated. This absorbs heat from each chamber. The characteristic that the room temperature decreases due to heat absorption is indicated by a block 22 as a room characteristic. In this way, the room temperature of each room is determined.The room temperature of each room is determined by the room temperature detector 1 shown in Figure 4.
0n Detected by IOB and IOC. The sensed room temperature is input to an element 34 having the inverse of the desired dynamic characteristics to form a control loop.

第2図は第1図で示した制御系の動作原理を示したもの
である。同図(a)は第1図の空気調和機21および室
特性要素22の2つのブロックを制御対象として1つの
ブロック33で示し その伝達特性をGpとしたもので
ある。また 積分手段32では積分ゲインを(1/L)
とり、rSJはラプラス演算子である。また所望の動特
性をGmとし 逆特性を(1/Gm)としてブロック3
4に示1− している。第2図(a)のブロックを直結フィードバッ
ク系に変形したものが同図(b)のブロック図である。
FIG. 2 shows the operating principle of the control system shown in FIG. 1. In FIG. 1(a), the two blocks of the air conditioner 21 and room characteristic element 22 in FIG. 1 are shown as one block 33 to be controlled, and the transfer characteristic thereof is designated as Gp. Also, the integrating means 32 sets the integral gain to (1/L)
, and rSJ is the Laplace operator. In addition, the desired dynamic characteristic is set as Gm, and the reverse characteristic is set as (1/Gm), and block 3
4 shows 1-. The block diagram in FIG. 2(b) is a modification of the block in FIG. 2(a) into a direct feedback system.

すなわち設定値r h<、  所望の動特性Gmよりな
るブロック35を経由して比較要素35に入力されてい
る。比較要素36て 室温と比較して比較結果を逆特性
要素34に入力する。逆特性要素34の出力は積分手段
32に入力されていも 積分手段32の出力は操作量と
して制御対象33に入力される。制御対象33から検出
された室温は比較要素36にフィードバックされ 制御
ループを構成している。ここでループの一巡伝達特性が
十分大きく、かス ループを閉じたときにループが安定
であれば ループを閉じたときのループ部の入出力特性
は殆ど1になってしまう。このた八 設定irから見た
室温の動特性は所望の動特性35にほぼ一致する。
That is, the set value rh<, is input to the comparison element 35 via the block 35 consisting of the desired dynamic characteristic Gm. Comparison element 36 compares with room temperature and inputs the comparison result to inverse characteristic element 34. Although the output of the inverse characteristic element 34 is input to the integrating means 32, the output of the integrating means 32 is input to the controlled object 33 as a manipulated variable. The room temperature detected from the controlled object 33 is fed back to the comparison element 36, forming a control loop. If the round-trip transfer characteristic of the loop is sufficiently large and the loop is stable when the loop is closed, the input/output characteristics of the loop section will be almost 1 when the loop is closed. In addition, the dynamic characteristics of the room temperature viewed from the IR settings almost match the desired dynamic characteristics 35.

第3図C&  第1図のパラメータ設定手段23の動作
原理を示す図である。外気温 運転台数と定格能力の総
和量、圧縮機の吸入圧力の変化量のうちいくつかの値に
ついての積分ゲイン(1/L)2− は予め設定されている。それらをXl、X2.Xl・・
・とする。したがって、現在の運転条件が設定されてい
る条件と同じであれば その値を積分手段32へ送る。
FIG. 3C& is a diagram showing the operating principle of the parameter setting means 23 of FIG. 1. The integral gain (1/L) 2- for some values among the outside temperature, the total amount of the number of operating units and the rated capacity, and the amount of change in the suction pressure of the compressor is set in advance. They are Xl, X2. Xl...
・Suppose. Therefore, if the current operating conditions are the same as the set conditions, the value is sent to the integrating means 32.

現在の運転条件が設定されている条件と異なる場合にζ
よ 現在の条件と、設定されている条件とのずれを算出
する。第3図でζよ現在の条件と設定している条件との
距離N1、NλN3.  ・・・を用いている。距離と
してcL  絶対値ノルム ユークリッドノルムなどが
考えられる。
ζ when the current operating conditions differ from the set conditions.
Calculate the difference between the current conditions and the set conditions. In Fig. 3, ζ is the distance between the current condition and the set condition N1, NλN3. ...is used. As distance, cL, absolute value norm, Euclidean norm, etc. can be considered.

距離の比で設定量を加算平均する。距離をNiとすると
き、加算平均Xは次の式で求まる。
Add and average the set amount based on the distance ratio. When the distance is Ni, the additive average X is determined by the following formula.

X=ΣXi・(1/Ni)/Σ(1/Ni)このように
して、加算平均を算出して、積分ゲイン(1/L)を算
出することができる。
X=ΣXi·(1/Ni)/Σ(1/Ni) In this way, the addition average can be calculated and the integral gain (1/L) can be calculated.

この方法により、運転条件が変わり、制御対象の動特性
が変化して耘 適正な積分ゲインを得ることによりルー
プは安定に保たれ 所望の動特性が常に得られる。また
 積分ゲインは運転条件の連続的な変化に対して連続的
に変化するの玄 常に制御状態を保ったまま制御動作を
行うことが実3− 現する。なお第3図でCヨ  積分ゲインの設定の条件
入力として、外気温と運転している室内機の定格能力の
総和量との2つで説明した力交 これに圧縮機の吸入圧
力の変化量を併せて用いる場合(よ4次元空間の3次元
超平面として考えることができ、結果として、演算方法
は同じとなる。
With this method, when the operating conditions change and the dynamic characteristics of the controlled object change, the loop is kept stable by obtaining an appropriate integral gain, and the desired dynamic characteristics are always obtained. In addition, since the integral gain changes continuously in response to continuous changes in operating conditions, it is possible to perform control operations while maintaining the control state at all times. In Fig. 3, the input conditions for setting the integral gain are the external temperature and the total rated capacity of the operating indoor units. (can be considered as a three-dimensional hyperplane in a four-dimensional space, and as a result, the calculation method is the same.

第5図(よ いくつかの運転条件についてファジィ集合
として積分ゲインを設定し それ以外の運転条件につい
てζよ 設定したゲインの適合度をファジィ論理のメン
バシップ関数として定義したものである。現在の運転条
件に対して設定されている条件に対する適合度を求へ 
ファジィ集合としての積分ゲインから実際に用いる積分
ゲインをファジィ推論する方法を示したものである。第
3図と同様に一、  2つのパラメータ(外気温と運転
している室内機の定格能力総和量)で説明している力丈
3つのパラメータであっても動作原理は同じである。第
5図(a)は運転条件が設定された条件に対してどれだ
け適合するかを算出する過程を示したものである。すな
わ板 現在の条件をもとに14− 条件R1、R2,R3、・・・に対する適合度を求める
。同図(a)では条件R1に対する適合度が0゜4、条
件R2に対する適合度が0.6、条件R3に対する適合
度が0の例を示している。同図(b)は適合度から積分
ゲインXを得るファジィ推論方法をしめしたものであり
、条件R1に対しては積分ゲインをファジ゛イ量として
三角形ABCで示している。同様にR2に対しては三角
形DEF、R3に対しては三角形CGHで示している。
Figure 5 shows that the integral gain is set as a fuzzy set for some operating conditions, and the fitness of the set gain is defined as a membership function of fuzzy logic for other operating conditions. Find the degree of conformance to the conditions set for the conditions
This shows a method of fuzzy inferring the integral gain actually used from the integral gain as a fuzzy set. Similarly to Fig. 3, the operating principle is the same even if the explanation is made using one or two parameters (outside temperature and total rated capacity of the operating indoor units), but three parameters are used, such as strength. FIG. 5(a) shows the process of calculating how well the operating conditions match the set conditions. In other words, the degree of conformity to 14-conditions R1, R2, R3, . . . is determined based on the current conditions. FIG. 5A shows an example in which the degree of conformity to condition R1 is 0.4, the degree of conformity to condition R2 is 0.6, and the degree of conformity to condition R3 is 0. FIG. 6(b) shows a fuzzy inference method for obtaining an integral gain X from the degree of fitness, and for condition R1, the integral gain is shown as a fuzzy quantity by a triangle ABC. Similarly, R2 is shown as a triangle DEF, and R3 is shown as a triangle CGH.

いま、条件R1の適合度が0.4であるので、三角形A
BCを高さ0.4で切取り斜線で示すものを残す。同様
にして三角形DEFを高さ0,6で切り取り斜線内で示
すものを残す。三角形CGHは高さ0で切り取られるの
で何も残らない。この様にして得られた斜線部分の重心
XGを束数 その時の横軸の値を出力すなわち積分ゲイ
ンとして出力する。このようにして耘 連続的な運転条
件の変化に対して、連続的に変化する積分ゲインが得ら
れる。
Now, since the fitness of condition R1 is 0.4, triangle A
Cut out BC at a height of 0.4 and leave what is shown with diagonal lines. In the same way, triangle DEF is cut out at heights 0 and 6, leaving what is shown within the diagonal lines. Triangle CGH is cut off at height 0, so nothing remains. The center of gravity XG of the shaded area obtained in this way is the number of bundles.The value on the horizontal axis at that time is output as the output, that is, the integral gain. In this way, an integral gain that continuously changes can be obtained in response to continuous changes in operating conditions.

な耘 第1の発明実施例において、積分手段を用いる方
法を説明した力丈 大きいゲインを有する5− 比例ゲイン手段および低周波通過手段の直列結合特性を
有する手段を用いても同様の効果を得ることができる。
In the first embodiment of the invention, a method using an integrating means is explained. Similar effects can be obtained by using a means having a series combination characteristic of a 5-proportional gain means and a low frequency pass means having a large gain. be able to.

次に第2の発明について実施例を用いて説明する。第6
図は本発明の第2についての構成を示すブロック図であ
る。すなわち検出された圧縮機吸入圧力は所望の動特性
の逆特性手段44、微分手段45に人力される。所望の
動特性の逆特性手段44の出力は比較器41に人力され
目標となる吸入圧力値と比較され その差を積分手段4
2に入力する。積分手段42の出力は圧縮機回転指令と
して空気調和機21に入力される。空気調和機21によ
り圧縮機吸入圧力が得られ これにより圧縮機吸入圧力
を目標値に制御する系が構成される。
Next, the second invention will be explained using an example. 6th
The figure is a block diagram showing the configuration of the second aspect of the present invention. That is, the detected compressor suction pressure is manually input to the desired dynamic characteristic inverse characteristic means 44 and differentiator means 45. The output of the desired dynamic characteristic inverse characteristic means 44 is manually input to the comparator 41 and compared with the target suction pressure value, and the difference is calculated by the integrating means 4.
Enter 2. The output of the integrating means 42 is input to the air conditioner 21 as a compressor rotation command. The compressor suction pressure is obtained by the air conditioner 21, and thereby a system for controlling the compressor suction pressure to a target value is configured.

また 微分手段45の出力はパラメータ設定手段43に
送られ 所望動特性逆特性手段44および積分手段のパ
ラメータを設定するのに用いられる。
Further, the output of the differentiating means 45 is sent to the parameter setting means 43 and used to set the parameters of the desired dynamic characteristic inverse characteristic means 44 and the integrating means.

第7図は第6図のパラメータ設定手段43の動作原理を
しめす図である。すなわ板 入力情報である圧縮機吸入
圧力の変化量に応じて起動用の所6− 望動特性と定常用の所望動特性との切り換えを示してい
る。すなわち圧縮機吸入圧力の変化量が負であるときに
は起動用の所望動特性のみを用b\圧縮機吸入圧力の変
化量が0からすこし正の間は起動用の所望動特性と定常
用所望動特性とを混合して用b\ 圧縮機吸入圧力の変
化量が十分正になると定常用の動特性のみを用いるもの
である。起動時の所望の動特性は圧縮機の操作量(回転
指令)が直ちに最大になるように決められる。
FIG. 7 is a diagram showing the operating principle of the parameter setting means 43 of FIG. 6. In other words, the plate shows switching between the start-up desired dynamic characteristic and the steady-state desired dynamic characteristic in accordance with the amount of change in the compressor suction pressure, which is the input information. In other words, when the amount of change in the compressor suction pressure is negative, only the desired dynamic characteristics for startup are used. When the amount of change in the compressor suction pressure is between 0 and slightly positive, the desired dynamic characteristics for startup and the desired steady-state characteristics are used. When the amount of change in the compressor suction pressure becomes sufficiently positive, only the steady-state dynamic characteristics are used. Desired dynamic characteristics at startup are determined so that the amount of operation (rotation command) of the compressor is immediately maximized.

第8図は第7図で示したパラメータ設定手段の内容によ
る制御結果である。圧縮機吸入圧力は起動用動特性に従
った制御により急激に低下する。
FIG. 8 shows the control results based on the contents of the parameter setting means shown in FIG. The compressor suction pressure is rapidly reduced by control according to the startup dynamic characteristics.

冷媒の偏りが大きい場合でも時間が経過して、圧縮機か
ら送りだした冷媒が再び吸入されるようになると、吸入
圧力の変化は増加方向に転じるようになる。このときフ
ァジィ論理で定常用のモデルに切り替わっていくのて 
圧縮機回転指令は減少する。圧縮機回転指令が減少する
と吸入圧力は上昇し 上昇して目標値を上回ると再び圧
縮機回転指令を増加する。すなわちフィードバック制御
が7− 実現する。これにより圧縮機吸入圧力は目標値に制御さ
れる。
Even if there is a large imbalance in the refrigerant, as time passes and the refrigerant sent out from the compressor begins to be sucked in again, the change in suction pressure will start to increase. At this time, fuzzy logic switches to a steady-state model.
The compressor rotation command decreases. When the compressor rotation command decreases, the suction pressure increases, and when it rises and exceeds the target value, the compressor rotation command is increased again. In other words, feedback control is realized. Thereby, the compressor suction pressure is controlled to the target value.

本発明の第2の発明については冷房における吸入圧力で
説明を行った力丈 暖房において、室内機の負荷情報を
圧縮機吐出圧力でもって検出し 吐出圧力が一定になる
ように圧縮機回転指令を操作することが行われる力(こ
の場合にも本発明は同様に適用することができることは
明白である。
Regarding the second aspect of the present invention, the power level was explained using the suction pressure in cooling.In heating, the load information of the indoor unit is detected by the compressor discharge pressure, and the compressor rotation command is issued so that the discharge pressure is constant. the force by which the manipulation is carried out (it is clear that the invention can be applied in this case as well).

発明の詳細 な説明したように 本発明は多室型空気調和機の運転条
件が大きく変化しても安定に設定値に追従することので
きる方法を提供するものであり、か2 追従性能を常に
一定に保つことができる。
As described in detail, the present invention provides a method that allows a multi-room air conditioner to stably follow the set value even if the operating conditions change significantly. can be kept constant.

また冷媒の偏りが大きく異なる場合においても安定な起
動を行うことができるものである。
Furthermore, stable startup can be performed even when the refrigerant bias is significantly different.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第1の一実施例の制御系の構成8− 多室型空気調和機の構成阻 第5図は運転条件変化に対
して積分ゲインを算出する第2の方法の説明医 第6図
は本発明第2の一実施例の制御系のブロック構成医 第
7図は第6図の制御系のパラメータ設定原理を示す動作
原理医 第8図は第6図の制御系を適用させた場合の起
動特性図 第9図は起動用の所望動特性を設定しない場
合の起動特性図であも
FIG. 1 shows the configuration of the control system according to the first embodiment of the present invention 8 - Configuration of a multi-room air conditioner. FIG. Fig. 6 shows the block configuration of the control system according to the second embodiment of the present invention. Fig. 7 shows the operating principle showing the parameter setting principle of the control system of Fig. 6. Fig. 8 shows the control system of Fig. 6 applied. Figure 9 is a starting characteristic diagram when the desired dynamic characteristics for starting are not set.

Claims (6)

【特許請求の範囲】[Claims] (1)圧縮機、室外熱交換器、室外膨張弁から成る1台
の室外機と、室内熱交換器、室内膨張弁を備えた複数台
の室内機を並列的に接続し、前記各室内機を設置した各
室の温度を検知する各室温検知器と、前記各室の各室温
設定値を検知する各設定室温検知器とを具備し、前記各
室設定温度に各室室温を一致させるべく前記複数の膨張
弁を制御する多室型空気調和機であって、前記検出した
各室室温に対する所望の動特性の略逆特性を得る手段、
前記逆特性手段の出力と設定値とを比較する手段、比較
結果を時間積分する手段を有し、積分手段の出力結果に
より前記各室の膨張弁の開度を制御する多室型空気調和
機であって、外気温、運転している前記室内機の定格能
力の和、前記圧縮機の吸入圧力の変化率のうち少なくと
も1つをもとに前記積分手段の積分ゲインを算出するこ
とを特徴とする多室型空気調和機。
(1) One outdoor unit consisting of a compressor, an outdoor heat exchanger, and an outdoor expansion valve is connected in parallel with multiple indoor units each equipped with an indoor heat exchanger and an indoor expansion valve, and each of the indoor units is connected in parallel. Each room temperature detector detects the temperature of each room in which the room is installed, and each set room temperature detector detects each room temperature setting value of each room. A multi-chamber air conditioner that controls the plurality of expansion valves, wherein means for obtaining desired dynamic characteristics substantially inverse to the detected room temperature of each room;
A multi-room air conditioner comprising means for comparing the output of the inverse characteristic means with a set value, and means for time-integrating the comparison result, and controlling the opening degree of the expansion valve of each chamber according to the output result of the integrating means. The integral gain of the integrating means is calculated based on at least one of the outside temperature, the sum of the rated capacities of the indoor units in operation, and the rate of change in the suction pressure of the compressor. Multi-room air conditioner.
(2)請求項1において、外気温および運転している室
内機の定格能力の総和量、圧縮機の吸入圧力の変化量の
複数の情報により予め設定された複数の積分ゲイン値を
用いて、現在の外気温と総和量と吸入圧力の変化量を、
前記各設定された各外気温と総和量と吸入圧力の変化量
のずれの比で前記積分ゲイン値を重み付き加算平均し、
得られた加算平均値を積分手段の積分ゲインとして用い
ることを特徴とする多室型空気調和機。
(2) In claim 1, using a plurality of integral gain values preset according to a plurality of pieces of information such as the outside temperature, the total amount of rated capacity of the operating indoor unit, and the amount of change in the suction pressure of the compressor, The current outside temperature, total amount, and amount of change in suction pressure,
Weighted averaging of the integral gain value is performed based on the ratio of the difference between each of the set outside temperatures, the total amount, and the amount of change in suction pressure;
A multi-room air conditioner characterized in that the obtained average value is used as an integral gain of an integrating means.
(3)請求項1において、外気温および運転している室
内機の定格能力の総和量および圧縮機吸入圧力の変化量
による積分ゲイン値をファジィ集合として複数個設定し
、現在の外気温と総和量と吸入圧力変化量を用いて、前
記各設定されたファジィ集合に対する適合度を求め、得
られた適合度をもとに積分ゲイン値をファジィ推論し、
推論結果を積分手段の積分ゲインとして用いることを特
徴とする多室型空気調和機。
(3) In claim 1, a plurality of integral gain values based on the outside temperature, the total amount of the rated capacity of the operating indoor unit, and the amount of change in the compressor suction pressure are set as a fuzzy set, and the current outside temperature and the total sum are set as a fuzzy set. Using the amount and suction pressure change amount, find the goodness of fit for each of the set fuzzy sets, perform fuzzy inference on the integral gain value based on the obtained goodness of fit,
A multi-room air conditioner characterized in that an inference result is used as an integral gain of an integrating means.
(4)請求項1において、積分手段の代わりに高いゲイ
ンの比例ゲイン手段と低周波域通過特性手段を直列結合
した特性を有する手段を用いることを特徴とする多室型
空気調和機。
(4) The multi-room air conditioner according to claim 1, characterized in that, instead of the integrating means, means having a characteristic in which a high gain proportional gain means and a low frequency band pass characteristic means are coupled in series is used.
(5)圧縮機、室外熱交換器、室外膨張弁から成る1台
の室外機と、室内熱交換器、室内膨張弁を備えた複数台
の室内機を並列的に接続し、前記各室内機より圧縮機に
接続される圧縮機吸入部の吸入圧力を検知する手段を有
し、あらかじめ設定された圧縮機吸入部圧力目標値に前
記圧縮機吸入圧力を一致すべく前記圧縮機の回転数を制
御する多室型空気調和機であって、前記検出した圧縮機
吸入圧力に対する所望の動特性の略逆特性を得る手段、
前記逆特性手段の出力と吸入圧力目標値とを比較する手
段、比較結果を時間積分する手段を有し、積分手段の出
力結果により前記圧縮機の回転数を操作する多室型空気
調和機であって、運転開始時用の所望の動特性と定常運
転時の所望の動特性を設け、前記圧縮機吸入圧力の変化
量を得る手段を有し、運転開始時は前記圧縮機吸入圧力
の変化量に基づき前記2つの所望の動特性をファジィ論
理で切り換えることを特徴とする多室型空気調和機。
(5) One outdoor unit consisting of a compressor, an outdoor heat exchanger, and an outdoor expansion valve is connected in parallel with multiple indoor units each equipped with an indoor heat exchanger and an indoor expansion valve, and each of the indoor units is connected in parallel. means for detecting the suction pressure of a compressor suction section connected to the compressor, and the rotation speed of the compressor is adjusted to match the compressor suction pressure to a preset compressor suction section pressure target value. A multi-chamber air conditioner for controlling a multi-chamber air conditioner, means for obtaining desired dynamic characteristics substantially inverse to the detected compressor suction pressure;
A multi-chamber air conditioner comprising means for comparing the output of the inverse characteristic means and a suction pressure target value, and means for time-integrating the comparison result, and controlling the rotation speed of the compressor based on the output result of the integrating means. There is provided a desired dynamic characteristic for the start of operation and a desired dynamic characteristic for steady operation, and means for obtaining the amount of change in the compressor suction pressure; A multi-room air conditioner characterized in that the two desired dynamic characteristics are switched using fuzzy logic based on the quantity.
(6)請求項5において、吸入圧力の変化量の符号が負
から正に切り替わるときから前記ファジィ論理の切り換
えが開始することを特徴とする多室型空気調和機。
(6) The multi-room air conditioner according to claim 5, wherein switching of the fuzzy logic starts when the sign of the amount of change in suction pressure changes from negative to positive.
JP2292265A 1989-12-28 1990-10-29 Multi-room air conditioner Expired - Fee Related JP2568747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/634,349 US5222371A (en) 1989-12-28 1990-12-26 Air conditioner of multichamber type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5524790 1990-03-06
JP2-55247 1990-03-06

Publications (2)

Publication Number Publication Date
JPH03279739A true JPH03279739A (en) 1991-12-10
JP2568747B2 JP2568747B2 (en) 1997-01-08

Family

ID=12993270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292265A Expired - Fee Related JP2568747B2 (en) 1989-12-28 1990-10-29 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2568747B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2186463A1 (en) * 1999-06-26 2003-05-01 Samsung Electronics Co Ltd Procedure of control of valve of expansion activated by engine of air conditioner of multiple type. (Machine-translation by Google Translate, not legally binding)
JP2011220610A (en) * 2010-04-09 2011-11-04 Mitsubishi Heavy Ind Ltd Constant setting device, method and program
JP2012063066A (en) * 2010-09-15 2012-03-29 Mitsubishi Heavy Ind Ltd Vapor compression type heat pump and method of controlling the same
JP2012255599A (en) * 2011-06-09 2012-12-27 Mitsubishi Heavy Ind Ltd Multi-type air conditioner, and control method therefor
JP2022088859A (en) * 2020-12-03 2022-06-15 いすゞ自動車株式会社 Parameter adjustment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2186463A1 (en) * 1999-06-26 2003-05-01 Samsung Electronics Co Ltd Procedure of control of valve of expansion activated by engine of air conditioner of multiple type. (Machine-translation by Google Translate, not legally binding)
JP2011220610A (en) * 2010-04-09 2011-11-04 Mitsubishi Heavy Ind Ltd Constant setting device, method and program
JP2012063066A (en) * 2010-09-15 2012-03-29 Mitsubishi Heavy Ind Ltd Vapor compression type heat pump and method of controlling the same
JP2012255599A (en) * 2011-06-09 2012-12-27 Mitsubishi Heavy Ind Ltd Multi-type air conditioner, and control method therefor
JP2022088859A (en) * 2020-12-03 2022-06-15 いすゞ自動車株式会社 Parameter adjustment device

Also Published As

Publication number Publication date
JP2568747B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP3334660B2 (en) Refrigeration cycle control device and control method thereof
CN110094857A (en) Control method, device, computer product and the air-conditioning of air conditioner electronic expansion valve
JPH0526518A (en) Refrigerating cycle device
JP2004218879A (en) Air conditioner and its control method
JPH03279739A (en) Multiple-room type air conditioner
JP2003172557A (en) Air-conditioner
JP2012037192A (en) Electronic expansion valve, and air conditioner with the same
JP5984747B2 (en) Air conditioner
JP2502197B2 (en) Refrigeration cycle equipment
JPH02219941A (en) Method for controlling air conditioner
JP2754933B2 (en) Multi-room air conditioner
JPH04283362A (en) Air conditioner
JP2502831B2 (en) Multi-room air conditioner
JP2697282B2 (en) Air conditioner
JP2743595B2 (en) Multi-room air conditioner
JP2893844B2 (en) Air conditioner
JPH08159589A (en) Multi-room type air conditioner and operating method therefor
JP3217352B2 (en) Operation control method of refrigeration system
JP2863305B2 (en) Multi-room air conditioner
JP3237206B2 (en) Air conditioner
JPH0252955A (en) Cooling device and control method thereof
JPH07234023A (en) Method and apparatus for controlling air conditioner
JP3056554B2 (en) Air conditioner
JPH04283361A (en) Multichamber type air conditioner
JP2698157B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees