JP3217352B2 - Operation control method of refrigeration system - Google Patents

Operation control method of refrigeration system

Info

Publication number
JP3217352B2
JP3217352B2 JP27673590A JP27673590A JP3217352B2 JP 3217352 B2 JP3217352 B2 JP 3217352B2 JP 27673590 A JP27673590 A JP 27673590A JP 27673590 A JP27673590 A JP 27673590A JP 3217352 B2 JP3217352 B2 JP 3217352B2
Authority
JP
Japan
Prior art keywords
frequency
compressor
limit frequency
calculated
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27673590A
Other languages
Japanese (ja)
Other versions
JPH04151447A (en
Inventor
毅 今飯田
武司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27673590A priority Critical patent/JP3217352B2/en
Publication of JPH04151447A publication Critical patent/JPH04151447A/en
Application granted granted Critical
Publication of JP3217352B2 publication Critical patent/JP3217352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気調和機、冷凍機等の冷凍装置の運転制御
方法に関する。
The present invention relates to an operation control method for a refrigerating apparatus such as an air conditioner and a refrigerating machine.

(従来の技術) 従来の空気調和機の1例が第8図ないし第10図に示さ
れている。
(Prior Art) One example of a conventional air conditioner is shown in FIG. 8 to FIG.

第8図にはこの空気調和機の冷媒回路図が示されてい
る。
FIG. 8 shows a refrigerant circuit diagram of the air conditioner.

冷房運転時、インバータ18から電流が供給される電動
機2によってインバータ圧縮機1が駆動されると、この
インバータ駆動圧縮機1から吐出された高温・高圧の冷
媒ガスは、実線矢印で示すように、四方弁3を経て室外
熱交換器5に入り、ここで電動機6により駆動される室
外送風機7によって送風される外気と熱交換して凝縮液
化する。この冷媒液は電子膨張弁4に入り、ここで絞ら
れことにより断熱膨張する。次いで、室内熱交換器8に
流入し、ここで電動機9により駆動される室内送風機10
によって送風される室内空気を冷却することにより自身
は蒸発液化した後、四方弁3を経て圧縮機1に戻る。
During the cooling operation, when the inverter compressor 1 is driven by the electric motor 2 to which a current is supplied from the inverter 18, the high-temperature and high-pressure refrigerant gas discharged from the inverter-driven compressor 1, as shown by a solid arrow, It enters the outdoor heat exchanger 5 via the four-way valve 3, where it exchanges heat with the outside air blown by the outdoor blower 7 driven by the electric motor 6 to condense and liquefy. This refrigerant liquid enters the electronic expansion valve 4 and is adiabatically expanded by being throttled here. Next, the air flows into the indoor heat exchanger 8, where the indoor blower 10 is driven by the electric motor 9.
After being cooled by the indoor air blown by the air itself, it is evaporated and liquefied, and then returns to the compressor 1 via the four-way valve 3.

暖房運転時には、圧縮機1から吐出された冷媒は、破
線矢印で示すように、四方弁3、室内熱交換器8、電子
膨張弁4、室外熱交換器5、四方弁3をこの順に流過し
て圧縮機1に戻る。
During the heating operation, the refrigerant discharged from the compressor 1 flows through the four-way valve 3, the indoor heat exchanger 8, the electronic expansion valve 4, the outdoor heat exchanger 5, and the four-way valve 3, in this order, as indicated by the dashed arrows. And returns to the compressor 1.

第9図にはこの空気調和機の制御ブロック図が示され
ている。
FIG. 9 is a control block diagram of the air conditioner.

温度センサ11によって検出された検出温度Tiは偏差演
算手段13に入り、ここで温度設定手段12から入力された
設定温度Toとの偏差eiが算出される。この偏差eiはPID
演算手段14に入り、ここで偏差eiをPIDを演算すること
によって演算周波数fiが算出される。この演算周波数fi
は比較演算手段15に入り、ここでfHの設定手段16から入
力された上限周波数fHと比較され演算周波数fiがこの上
限周波数fHより大きい場合には上限周波数fHが運転周波
数fとしてインバータ18に出力される。また、演算周波
数fiは比較演算手段15でfLの設定手段17から入力された
下限周波数fLと比較され、演算周波数fiが下限周波数fL
より小さいときは運転周波数fは零とされ、圧縮機1は
停止する。なお、第10図には演算周波数fiと圧縮機1の
運転周波数fとの関係が示されている。
It detected temperature T i detected by the temperature sensor 11 enters the deviation calculation unit 13, where the deviation e i between the set temperature T o that is input from the temperature setting unit 12 is calculated. This deviation e i is the PID
The calculation frequency f i is calculated by entering the calculation means 14 and calculating the PID of the deviation e i . This operation frequency f i
Enters the comparison operation unit 15, where f H set is compared with the upper limit frequency f H that is input from the unit 16 calculating the frequency f i is the upper frequency f upper limit frequency if H is greater than f H is the operation frequency f Is output to the inverter 18. The calculation frequency f i is compared with the lower limit frequency f L, which is input from f L of setting means 17 in the comparison operation unit 15, operation frequency f i is the lower limit frequency f L
If it is smaller, the operating frequency f is set to zero, and the compressor 1 stops. FIG. 10 shows the relationship between the operation frequency f i and the operating frequency f of the compressor 1.

(発明が解決しようとする課題) 上記従来の空気調和機においては、PID演算によって
算出された演算周波数fiが下限周波数fLを一度でも下廻
ると、運転周波数fは零となって圧縮機1が停止する。
圧縮機1が一旦停止すると、所定の時間経過しなければ
これを再起動できないので、室温の変化が大きくなり、
在室者に不快感を与えるおそれがあった。
In the (0007) the conventional air conditioner, the Shitamawaru even once operation frequency f i which is calculated by the PID operation is the lower limit frequency f L, the operating frequency f is the compressor becomes zero 1 stops.
Once the compressor 1 is stopped, it cannot be restarted until a predetermined time has elapsed, so that the change in room temperature increases,
There was a possibility that the occupants would feel uncomfortable.

(課題を解決するための手段) 本発明は上記課題を解決するために発明されたもので
あって、その要旨とするところは、客体の検出温度と設
定温度との温度偏差及びこの温度偏差の時間的変化率を
演算し、これら演算値から制御ルールに基づいたファジ
ィ論理演算によりインバータ駆動圧縮機のインバータ周
波数を演算し、この演算周波数を予め設定された上限周
波数、下限周波数及び零値と比較し、上記演算周波数が
上記零値以下のときは上記圧縮機を停止し、上記演算周
波数が上記零値以上で、かつ、上記下限周波数以下のと
きは上記圧縮機を上記下限周波数で運転するとともに上
記圧縮機から吐出されたガスを上記圧縮機の吸入側にバ
イパスさせ、上記演算周波数が上記下限周波数以上で、
かつ、上記上限周波数以下のときは上記圧縮機を演算周
波数で運転し、上記演算周波数が上記上限周波数以上の
ときは上記圧縮機を上記上限周波数で運転することを特
徴とする冷凍装置の運転方法にある。
(Means for Solving the Problems) The present invention has been invented to solve the above problems, and the gist of the present invention is to provide a temperature deviation between a detected temperature of an object and a set temperature and a temperature deviation of the temperature deviation. Calculate the temporal change rate, calculate the inverter frequency of the inverter-driven compressor by fuzzy logic operation based on the control rule from these calculated values, and compare the calculated frequency with the preset upper limit frequency, lower limit frequency and zero value. When the calculation frequency is equal to or less than the zero value, the compressor is stopped, and when the calculation frequency is equal to or more than the zero value and equal to or less than the lower limit frequency, the compressor is operated at the lower limit frequency. The gas discharged from the compressor is bypassed to the suction side of the compressor, and the calculation frequency is equal to or higher than the lower limit frequency,
And operating the compressor at the calculation frequency when the frequency is equal to or lower than the upper limit frequency, and operating the compressor at the upper limit frequency when the calculation frequency is equal to or higher than the upper limit frequency. It is in.

(作用) 本発明においては、客体の検出温度と設定温度との温
度偏差及びこの温度偏差の時間的変化率を演算し、これ
ら演算値から制御ルールに基づいたファジィ論理演算に
よりインバータ駆動圧縮機のインバータ周波数を演算す
る。
(Operation) In the present invention, the temperature deviation between the detected temperature of the object and the set temperature and the temporal change rate of this temperature deviation are calculated, and the fuzzy logic operation based on the control rule is used to calculate the temperature deviation from the calculated value. Calculate the inverter frequency.

そして、演算周波数を予め設定された上限周波数、下
限周波数及び零値と比較し、演算周波数が零値以下のと
きは圧縮機を停止し、演算周波数が零値以上で、かつ、
下限周波数以下のときは圧縮機を下限周波数で運転する
とともに圧縮機から吐出されたガスを圧縮機の吸入側に
バイパスさせ、演算周波数が下限周波数以上で、かつ、
上限周波数以下のときは圧縮機を演算周波数で運転し、
演算周波数が上限周波数以上のときは圧縮機を上限周波
数で運転する。
Then, the operation frequency is compared with a preset upper limit frequency, lower limit frequency and zero value, and when the operation frequency is lower than the zero value, the compressor is stopped, and the operation frequency is higher than the zero value, and
When the frequency is equal to or lower than the lower limit frequency, the compressor is operated at the lower limit frequency and the gas discharged from the compressor is bypassed to the suction side of the compressor, and the calculation frequency is equal to or higher than the lower limit frequency, and
When the frequency is below the upper limit frequency, the compressor is operated at the calculation frequency,
When the calculation frequency is higher than the upper limit frequency, the compressor is operated at the upper limit frequency.

(実施例) 本発明の1実施例が第1図ないし第7図に示されてい
る。
(Embodiment) One embodiment of the present invention is shown in FIG. 1 to FIG.

第7図には空気調和機の冷媒回路が示されている。 FIG. 7 shows a refrigerant circuit of the air conditioner.

第7図に示すように、インバータ駆動圧縮機1の吐出
管1aと吸入管1bとを繋ぐバイパス管19にはバイパス弁20
が介装され、このバイパス弁20を開くことによってイン
バータ駆動圧縮機1から吐出されたガスが吐出管1a、バ
イパス管19、バイパス弁20、吸入管1bを経てインバータ
駆動圧縮機1に吸入されるようになっている。
As shown in FIG. 7, a bypass valve 20 is connected to a bypass pipe 19 connecting the discharge pipe 1a and the suction pipe 1b of the inverter-driven compressor 1.
When the bypass valve 20 is opened, the gas discharged from the inverter-driven compressor 1 is sucked into the inverter-driven compressor 1 via the discharge pipe 1a, the bypass pipe 19, the bypass valve 20, and the suction pipe 1b. It has become.

他の構成及び作用は第8図に示す従来のものと同様で
あり、対応する部材に同じ符号を付してその説明を省略
する。
Other configurations and operations are the same as those of the conventional one shown in FIG. 8, and corresponding members are denoted by the same reference numerals and description thereof is omitted.

第1図には制御ブロック図が、第5図にはフローチャ
ートが示されている。
FIG. 1 is a control block diagram, and FIG. 5 is a flowchart.

予め定められたサンプリングタイム毎に温度センサ11
によって検出された検出温度Ti及び温度設定手段12に設
定された設定温度Toが偏差算出手段23に入力され、ここ
で両者の偏差ei(ei=To−Ti)が算出される。そして、
この偏差eiは偏差記憶手段24に記憶される。また、この
偏差eiは時間的変化率演算手段25に入力され、ここで偏
差記憶手段24に記憶されている前回のサンプリング時に
おける偏差ei-1と比較されることにより偏差eiの時間的
変化率Δei(Δei=ei−ei-1)が算出される。
Temperature sensor 11 for each predetermined sampling time
Set set temperature T o with the detected temperature T i and the temperature setting means 12 is detected is inputted to the deviation calculating means 23, both of the deviation e i (e i = T o -T i) is calculated here by You. And
The deviation e i is stored in the deviation storage means 24. Further, the deviation e i is input to the temporal change rate calculating means 25, where deviation storage time of the deviation e i by being compared with the error e i-1 at the previous sampling stored in the 24 The target change rate Δe i (Δe i = e i −e i−1 ) is calculated.

偏差eiはそのファジィー変数グレードの算出手段26に
入力され、ここでeのメンバーシップ関数記憶手段27か
ら入力されたメンバーシップ関数に対応するファジィー
変数グレードが算出される。なお、この記憶手段27に
は、第2図に示すように、偏差eに対応するメンバーシ
ップ関数が記憶されている。
The deviation e i is input to the fuzzy variable grade calculation means 26, where the fuzzy variable grade corresponding to the membership function input from the membership function storage means 27 of e is calculated. It should be noted that a membership function corresponding to the deviation e is stored in the storage means 27, as shown in FIG.

一方、時間的変化率Δeiはそのファジィー変数グレー
ドの算出手段28に入力され、ここでΔeのメンバーシッ
プ関数記憶手段29から入力されたメンバーシップ関数に
対応するファジィー変数グレードが算出される。なお、
この記憶手段29には、第3図に示すように、時間的変化
率Δeに対応するメンバーシップ関数が記憶されてい
る。
On the other hand, the temporal change rate Δe i is input to the fuzzy variable grade calculating means 28, where the fuzzy variable grade corresponding to the membership function input from the membership function storing means 29 of Δe is calculated. In addition,
As shown in FIG. 3, the storage function 29 stores a membership function corresponding to the temporal change rate Δe.

算出手段26及び28が算出された各ファジィー変数グレ
ードはグレードの最少値算出手段30に入力され、ここで
e及びΔeの制御ルール記憶手段31に記憶された制御ル
ールに基づいてei及びΔeiに対応するインバータ駆動圧
縮機1のインバータ周波数の変化量Δfの集合を算出
し、e及びΔeのファジー変数グレードの最少値からΔ
fのファジィー変数グレードが算出される。なお、この
制御ルール記憶手段31には第1表に示す制御ルールが記
憶されている。
Each fuzzy variable grade calculated by the calculation means 26 and 28 is input to the minimum value calculation means 30 for the grade, where e i and Δe i are determined based on the control rules stored in the control rule storage means 31 for e and Δe. Of the inverter frequency change amount Δf of the inverter-driven compressor 1 corresponding to, and calculates Δ か ら from the minimum value of the fuzzy variable grades of e and Δe.
A fuzzy variable grade of f is calculated. The control rule storage means 31 stores the control rules shown in Table 1.

次いで、この算出手段30で算出されたΔfのグレード
は和集合演算手段32に入力され、ここでΔfのメンバー
シップ関数記憶手段33から入力されたメンバーシップ関
数に基づいてΔfの和集合を求める。なお、Δfのメン
バーシップ関数記憶手段33には、第4図に示すように、
Δfに対応するメンバーシップ関数が記憶されている。
Next, the grade of Δf calculated by the calculation means 30 is input to the union operation means 32, where the union of Δf is obtained based on the membership function input from the membership function storage means 33 of Δf. The membership function storage means 33 for Δf stores, as shown in FIG.
A membership function corresponding to Δf is stored.

なお、第2図ないし第4図及び第1表において、Z0は
零、NBは負方向に大、NSは負方向に小、PBは正方向に
大、PSは正方向に小をそれぞれ表している。
2 to 4 and Table 1, Z0 is zero, NB is large in the negative direction, NS is small in the negative direction, PB is large in the positive direction, and PS is small in the positive direction. I have.

和集合演算手段32で演算された和集合は重心計算手段
34に入力され、ここで和集合の重心を求めることによっ
て周波数の変化量Δfiが算出される。この周波数の変化
量Δfiはfiの演算手段35に入力され、ここでfiの記憶手
段36から入力された前回の周波数fi-1と加算されて今回
の演算周波数fiが算出される。この演算周波数fiは比較
演算手段37に出力され、同時にfiの記憶手段36に記憶さ
れる。
The union calculated by the union calculating means 32 is a centroid calculating means.
It is input to 34, wherein the frequency of variation Delta] f i by determining the center of gravity of the union is calculated. Variation Delta] f i of this frequency is input to the arithmetic unit 35 of the f i, where f i previous frequency f i-1 and summed with the current calculation frequency f i that is input from the storage means 36 of the calculated You. The operation frequency f i is output to the comparison operation unit 37 and stored in the storage unit 36 of the f i at the same time.

比較演算手段37では演算周波数fiがfHの設定手段38か
ら入力された上限周波数fH、foの設定手段40から入力さ
れた零値fo、fLの設定手段39から入力された下限周波数
fLとそれぞれ比較され、第6図に示すように、演算周波
数fiが零値foより以下のときは零値foが、演算周波数fi
が零値fo以上で、かつ、下限周波数fL以下のときは下限
周波数fLが、演算周波数fiが下限周波数fL以上で、か
つ、上限周波数fH以下のときは演算周波数fiがそのま
ま、演算周波数fiが上限周波数fH以上のときは上限周波
数fHがそれぞれインバータ18に運転周波数fとして出力
される。そして、この運転周波数fが零値fo以上で、か
つ、下限周波数fL以下のときはバイパス弁20が開とされ
るが、これ以外のときなバイパス弁20を閉とされる。
In the comparison operation means 37, the operation frequency f i is input from the upper limit frequency f H input from the f H setting means 38, the zero value f o input from the f o setting means 40, and the input frequency f L from the setting means 39. Lower limit frequency
f L and are compared respectively, as shown in FIG. 6, when the operation frequency f i is less than zero value f o is zero value f o, operation frequency f i
In but a zero value f o or more, the lower limit frequency f L when the following lower limit frequency f L is in operation frequency f i is the lower limit frequency f L or more and less than or equal to the high frequency f H operational frequency f i but it is, operation frequency f i is an upper limit frequency f H or upper limit frequency f H when the are output to the respective inverter 18 as the operating frequency f. Then, at this operating frequency f is zero value f o or more and, although when the following lower limit frequency f L is the bypass valve 20 is opened, the bypass valve 20 such the other cases closed.

しかして、演算周波数fiが零値fo以上でかつ、下限周
波数fL以下のときは、インバータ駆動圧縮機1の運転周
波数fは下限周波数fLとなるので、圧縮機1は停止する
ことなく下限周波数fLで運転を継続すると同時にバイパ
ス弁20が開とされるので、圧縮機1の容量が低下し、こ
れに伴って空気調和機の冷暖房能力も低下する。
Therefore, when the operation frequency f i is equal to or more than the zero value f o and equal to or less than the lower limit frequency f L , the operating frequency f of the inverter-driven compressor 1 becomes the lower limit frequency f L, and the compressor 1 must be stopped. Since the bypass valve 20 is opened at the same time as the operation is continued at the lower limit frequency f L , the capacity of the compressor 1 decreases, and accordingly, the cooling and heating capacity of the air conditioner also decreases.

この結果、圧縮機の停止、起動回数を減らすことがで
きるので、室温の変動巾を減少できるとともにシステム
の安定性及び信頼性を向上できる。
As a result, the number of times of stopping and starting the compressor can be reduced, so that the fluctuation range of the room temperature can be reduced and the stability and reliability of the system can be improved.

以上、本発明を空気調和機に適用した例について説明
したが、本発明は冷凍機、冷水機、除湿機等の冷凍装置
に広く適用しうることは勿論である。
As described above, an example in which the present invention is applied to an air conditioner has been described. However, it is needless to say that the present invention can be widely applied to refrigerating apparatuses such as a refrigerator, a chiller, and a dehumidifier.

(発明の効果) 本発明においては、演算周波数が零値以上で、かつ、
下限周波数以下になった場合であっても下限周波数で圧
縮機の運転を継続することができるので、冷凍装置の起
動、停止の頻度を低減できるとともに圧縮機の耐久性を
向上し、かつ、システムの安定性及び信頼性を向上でき
る。
(Effect of the Invention) In the present invention, the operation frequency is equal to or higher than zero, and
Since the operation of the compressor can be continued at the lower limit frequency even when the frequency becomes lower than the lower limit frequency, the frequency of starting and stopping the refrigeration system can be reduced, the durability of the compressor is improved, and the system is improved. Stability and reliability can be improved.

また、下限周波数で圧縮機の運転を継続中圧縮機から
吐出されたガスを圧縮機の吸入側にバイパスさせるの
で、圧縮機の容量、即ち、冷凍装置の能力が低下し、従
って、客体の温度変動を抑制できる。
Further, since the gas discharged from the compressor is bypassed to the suction side of the compressor while the operation of the compressor is continued at the lower limit frequency, the capacity of the compressor, that is, the capacity of the refrigeration system is reduced, and therefore, the temperature of the object is reduced. Fluctuations can be suppressed.

また、演算周波数が零値以下のときは圧縮機を停止
し、演算周波数が上限周波数以上のときは圧縮機を上限
周波数で運転するので、従来のものと同様冷凍装置の過
負荷を防止し、かつ、その駆動エネルギの浪費を防止で
きる。
Also, when the calculation frequency is below the zero value, the compressor is stopped, and when the calculation frequency is above the upper limit frequency, the compressor is operated at the upper limit frequency. In addition, waste of the driving energy can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第7図は本発明の1実施例を示し、第1図
は制御ブロック図、第2図は検出温度と設定温度との偏
差eのメンバーシップ関数を示す線図、第3図は偏差e
の時間的変化率Δeのメンバーシップ関数を示す線図、
第4図は周波数の変化量Δfのメンバーシップ関数を示
す線図、第5図は制御フローチャート、第6図は演算周
波数と運転周波数との関係を示す線図、第7図は空気調
和機の冷媒回路図である。第8図ないし第10図は従来の
空気調和機の1例を示し、第8図は空気調和機の冷媒回
路図、第9図は制御ブロック図、第10図は演算周波数と
運転周波数との関係を示す線図である。 温度センサ……11、温度設定手段……12、偏差演算手段
……23、時間的変化率の演算手段……25、制御ルールの
記憶手段……31、周波数の演算手段……26〜34、インバ
ータ駆動圧縮機……1、インバータ……18、バイパス弁
……20
1 to 7 show an embodiment of the present invention, FIG. 1 is a control block diagram, FIG. 2 is a diagram showing a membership function of a deviation e between a detected temperature and a set temperature, and FIG. Is the deviation e
A diagram showing a membership function of a temporal change rate Δe of
FIG. 4 is a diagram showing a membership function of the frequency change amount Δf, FIG. 5 is a control flowchart, FIG. 6 is a diagram showing a relationship between an operation frequency and an operation frequency, and FIG. It is a refrigerant circuit diagram. 8 to 10 show an example of a conventional air conditioner, FIG. 8 is a refrigerant circuit diagram of the air conditioner, FIG. 9 is a control block diagram, and FIG. FIG. 3 is a diagram showing the relationship. Temperature sensor 11, temperature setting means 12, deviation calculation means 23, time change rate calculation means 25, control rule storage means 31, frequency calculation means 26 to 34, Inverter driven compressor …… 1, Inverter …… 18, Bypass valve …… 20

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−219941(JP,A) 特開 平2−154945(JP,A) 特開 昭58−18581(JP,A) 特開 平2−227572(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-219941 (JP, A) JP-A-2-154945 (JP, A) JP-A-58-18581 (JP, A) JP-A-2-182 227572 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) F24F 11/02 102

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】客体の検出温度と設定温度との温度偏差及
びこの温度偏差の時間的変化率を演算し、これら演算値
から制御ルールに基づいたファジィ論理演算によりイン
バータ駆動圧縮機のインバータ周波数を演算し、この演
算周波数を予め設定された上限周波数、下限周波数及び
零値と比較し、上記演算周波数が上記零値以下のときは
上記圧縮機を停止し、上記演算周波数が上記零値以上
で、かつ、上記下限周波数以下のときは上記圧縮機を上
記下限周波数で運転するとともに上記圧縮機から吐出さ
れたガスを上記圧縮機の吸入側にバイパスさせ、上記演
算周波数が上記下限周波数以上で、かつ、上記上限周波
数以下のときは上記圧縮機を演算周波数で運転し、上記
演算周波数が上記上限周波数以上のときは上記圧縮機を
上記上限周波数で運転することを特徴とする冷凍装置の
運転方法。
A temperature deviation between a detected temperature of an object and a set temperature and a temporal change rate of the temperature deviation are calculated, and an inverter frequency of the inverter driven compressor is calculated from these calculated values by a fuzzy logic operation based on a control rule. Calculate and compare the calculated frequency with a preset upper limit frequency, lower limit frequency and zero value.If the calculated frequency is equal to or less than the zero value, stop the compressor, and if the calculated frequency is equal to or greater than the zero value. And, when the frequency is equal to or lower than the lower limit frequency, the compressor is operated at the lower limit frequency and the gas discharged from the compressor is bypassed to the suction side of the compressor, and the calculation frequency is equal to or higher than the lower limit frequency, When the frequency is equal to or lower than the upper limit frequency, the compressor is operated at the operation frequency. When the operation frequency is equal to or higher than the upper limit frequency, the compressor is operated at the upper limit frequency. How the operation of the refrigeration system, characterized by.
JP27673590A 1990-10-16 1990-10-16 Operation control method of refrigeration system Expired - Fee Related JP3217352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27673590A JP3217352B2 (en) 1990-10-16 1990-10-16 Operation control method of refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27673590A JP3217352B2 (en) 1990-10-16 1990-10-16 Operation control method of refrigeration system

Publications (2)

Publication Number Publication Date
JPH04151447A JPH04151447A (en) 1992-05-25
JP3217352B2 true JP3217352B2 (en) 2001-10-09

Family

ID=17573615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27673590A Expired - Fee Related JP3217352B2 (en) 1990-10-16 1990-10-16 Operation control method of refrigeration system

Country Status (1)

Country Link
JP (1) JP3217352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929613B2 (en) * 2005-04-15 2012-05-09 東洋インキScホールディングス株式会社 Active energy ray-curable inkjet ink composition
JP6387873B2 (en) * 2015-03-18 2018-09-12 株式会社デンソー Refrigeration cycle equipment
US10703174B2 (en) 2015-11-30 2020-07-07 Thermo King Corporation Device and method for controlling operation of transport refrigeration unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154945A (en) * 1988-12-07 1990-06-14 Daikin Ind Ltd Operation controller for air conditioning apparatus
JP2634229B2 (en) * 1989-02-21 1997-07-23 三菱重工業株式会社 Control method of air conditioner

Also Published As

Publication number Publication date
JPH04151447A (en) 1992-05-25

Similar Documents

Publication Publication Date Title
JPH08121917A (en) Refrigerant quantity determining device
JP3217352B2 (en) Operation control method of refrigeration system
JP3342145B2 (en) Air conditioner
JP2001272149A (en) Show case cooling device
JPH1030853A (en) Controller for air conditioner
JP2716780B2 (en) Heat pump controller
JP3434094B2 (en) High pressure protection device and condensing pressure control device in refrigeration system
JP2921254B2 (en) Refrigeration equipment
JP2983853B2 (en) Vapor compression refrigerator
JP2777176B2 (en) Air conditioner
JP3224695B2 (en) Air conditioner
JPH02219941A (en) Method for controlling air conditioner
JP2568747B2 (en) Multi-room air conditioner
JP3306455B2 (en) Air conditioner
JPH02223757A (en) Air conditioner
JPH08226732A (en) Air conditioning equipment
JP2582441B2 (en) Air conditioner
JP2592141B2 (en) Heat pump type air conditioner
WO2023203593A1 (en) Refrigeration cycle device and control method
JPH11159835A (en) Operation control device of air conditioning device
JPH0760007B2 (en) Air conditioner
JP3285395B2 (en) Refrigeration cycle
JP2710698B2 (en) Multi-type air conditioner
JPH08136064A (en) Air conditioner
JP2001116372A (en) Refrigerating cycle controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees