JPH0327781A - Linear type ultrasonic motor - Google Patents

Linear type ultrasonic motor

Info

Publication number
JPH0327781A
JPH0327781A JP1162097A JP16209789A JPH0327781A JP H0327781 A JPH0327781 A JP H0327781A JP 1162097 A JP1162097 A JP 1162097A JP 16209789 A JP16209789 A JP 16209789A JP H0327781 A JPH0327781 A JP H0327781A
Authority
JP
Japan
Prior art keywords
vibrator
piezoelectric element
vibration
output member
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1162097A
Other languages
Japanese (ja)
Inventor
Shigeyuki Takagi
高木 重行
Tadayoshi Nishikawa
西川 忠佳
Takuma Endo
琢磨 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP1162097A priority Critical patent/JPH0327781A/en
Publication of JPH0327781A publication Critical patent/JPH0327781A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a linear type ultrasonic motor with a large thrust and a wide speed control range by generating the elliptic motion of a standing wave through a longitudinal vibration piezoelectric element and a slip vibration piezoelectric element to take out a linear output. CONSTITUTION:If a high frequency voltage B is applied between electrode 6A, 6B of a transverse vibration unit 4, a reverse piezoelectric action is generated in slip vibration piezoelectric elements 5A, 5B so that a vibrator 9 is displaced to the right. Then, the reverse piezoelectric action is also generated in longitudinal vibration piezoelectric elements 2A, 2B and the vibrator 9 is displaced upward while decreasing in the displacement to the right-hand direction so as to be pressure-welded to an output member 12. After that, the vibrator 9 reaches the lower longitudinal limit position transversely in the center. Thereafter, when a series of similar displacements of the vibrator 9, i.e., an elliptic motion is repeated, the output member 12 moves linearly and continuously.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リニア型超音波モータに関するや(従来の技
術) 従来、回転型の超音波モータとして進行波を用いるもの
が知られているが、リニア型超音波モー夕においては、
反射波の影響等により進行波型の駆動方式をそのまま採
用することが難しく、反射波を吸収して進行波を有効に
取り出すべく様々な試みがなされている.例えば、リニ
ア型表面波モータでは、弾性体の所定箇所に固着した圧
電素子の逆圧電作用によって、弾性体に周回する表面波
を発生させ、所定方向の表面波によって移動体に直線的
な推力を与えるようにしている.(発明が解決しようと
する課題〉 しかしながら、このような従来のリニア型超音波モータ
にあっては、弾性体に固着した圧電素子によって弾性体
を加振する構威であるため、駆動電圧を変化させると進
行波と縦振動波が共に変化してしまう.このため、定格
速度に対して速度制御可能な範囲が狭く、サーボ用モー
タ等に使用することができなくなり、また、大きな推力
を得ることも困難であった. (発明の目的) そこで本発明は縦振動圧電素子とすべり振動圧電素子に
より定在波の楕円運動を発生させて直線出力を取り出す
ようにし、推力の大きい、しかも速度制御範囲の広いリ
ニア型超音波モータを提供することを目的としている. (課題を解決するための手段) 本発明は、上記の目的を達或するために、電歪方向に積
層配置された縦振動圧電素子と、縦振動圧電素子と同方
向に積層配置されて該積層方向と直交するすべりの電歪
方向を有するすべり振動圧電素子と、縦振動圧電素子お
よびすべり振動圧電素子により加振され、少なくともす
べり振動圧電素子からの振動を増幅する振動子と、振動
子上に付勢され、振動子の運動に伴ってすべり振動圧電
素子の電歪方向に直線的に移動する移動体と、を備えた
ことを特徴とするものである. (作用) 本発明では、電歪方向に積層配置された縦振動圧電素子
と同方向にすべり振動圧電素子が積層配置され、両圧電
素子の逆圧電作用により加振された振動子が少なくとも
すべり振動を増幅しなから略楕円運動し、該振動子上に
付勢された移動体がすべり振動方向に直線的に移動する
。したがって、縦振動圧電素子およびすべり振動圧電素
子に電歪方向以外のたわみ振動が生じないから、両圧電
素子を最適な積層構造にして加振量を増大させることが
でき、振動子によりさらに増幅した大きな推力を得るこ
とができる.また、両圧電素子の交流印加電圧を別々の
駆動回路で駆動することにより縦振動圧電素子の加II
を固定したまますべり振動圧電素子の交流印加電圧を可
変することができ、速度制御範囲の広いリニア型超音波
モータが提供される. (実施例) 以下、本発明を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a linear type ultrasonic motor (prior art) Conventionally, rotary type ultrasonic motors using traveling waves have been known. In the linear ultrasonic mode,
Due to the influence of reflected waves, etc., it is difficult to adopt a traveling wave drive system as is, and various attempts have been made to absorb the reflected waves and effectively extract the traveling waves. For example, in a linear surface wave motor, a piezoelectric element fixed to a predetermined location on an elastic body generates a surface wave that circulates around the elastic body through the inverse piezoelectric action, and the surface wave in a predetermined direction applies a linear thrust to the moving body. I try to give. (Problem to be solved by the invention) However, in such a conventional linear ultrasonic motor, since the elastic body is vibrated by a piezoelectric element fixed to the elastic body, it is difficult to change the drive voltage. If you do so, both the traveling wave and the longitudinal vibration wave will change.For this reason, the range in which speed can be controlled is narrow relative to the rated speed, making it impossible to use it for servo motors, etc., and making it difficult to obtain large thrust. (Objective of the Invention) Therefore, the present invention generates an elliptical motion of a standing wave using a longitudinal vibration piezoelectric element and a sliding vibration piezoelectric element to extract a linear output. (Means for Solving the Problem) In order to achieve the above object, the present invention provides a linear type ultrasonic motor with a wide range of a sliding vibration piezoelectric element which is laminated in the same direction as the longitudinal vibration piezoelectric element and has an electrostrictive direction of slip perpendicular to the lamination direction, and is excited by the longitudinal vibration piezoelectric element and the sliding vibration piezoelectric element, A vibrator that amplifies vibrations from a vibrating piezoelectric element, and a moving body that is biased onto the vibrator and moves linearly in the electrostrictive direction of the sliding vibrating piezoelectric element as the vibrator moves. (Function) In the present invention, a longitudinal oscillating piezoelectric element is stacked in the electrostrictive direction and a sliding oscillating piezoelectric element is stacked in the same direction, and vibration is caused by the reverse piezoelectric action of both piezoelectric elements. The vibrator moves approximately elliptically while at least amplifying the shear vibration, and the movable body urged on the vibrator moves linearly in the direction of the shear vibration.Therefore, the longitudinal vibrating piezoelectric element and the shear vibrating piezoelectric Since no flexural vibration occurs in the element other than in the electrostrictive direction, it is possible to increase the amount of vibration by making both piezoelectric elements into an optimal laminated structure, and it is possible to obtain a large thrust that is further amplified by the vibrator. By driving the alternating current applied voltages of both piezoelectric elements with separate drive circuits, the longitudinal vibration piezoelectric element can be
A linear ultrasonic motor with a wide speed control range is provided, in which the alternating current voltage applied to the shear vibrating piezoelectric element can be varied while the oscillating piezoelectric element is fixed. (Example) Hereinafter, the present invention will be explained based on the drawings.

第1〜6図は本発明の一実施例を示す図である。1 to 6 are diagrams showing one embodiment of the present invention.

第1〜4図において、1は縦振動ユニットであり、縦振
動ユニット1は電歪方向に積層配置されたそれぞれ複数
の縦振動圧電素子2A、2Bと、各縦振動圧電素子2A
、2Bを挟むよう配置された複数の電極3A、3Bから
なる.縦振動圧電素子2A、2Bは交互に配置されて分
極方向が第2図(a)(b)に原理図的に示すように互
いに異なり、縦振動ユニント1は電極3A、3B間に電
圧(後述する)が印加されるとき、縦振動圧電素子2A
、2Bの逆圧電作用によって第1図の上下方向(縦方向
)に伸張、収縮するようになっている.4は横振動ユニ
ットであり、横振動ユニソト4は縦振動ユニフト1上で
さらに縦振動圧電素子2A、2Bと同方向に積層配置さ
れたそれぞれ複数のすべり振動圧電素子5A、5Bと、
各すべり振動圧電素子5A、5Bを挟むよう配置された
複数の電極6A、6Bとからなる.すべり振動圧電素子
5A、5Bは交互に配置されて分極方向が第3図(a)
(b)に示すように互いに異なり、横振動ユニット4は
電極6A、6B間に電圧(後述する)が印加されるとき
、すべり振動圧電素子5A、5Bの逆圧電作用によって
電歪方向(逆圧電作用による歪方向)である第1図の左
右方向に伸張、収縮するようになっている.また、縦振
動ユニット1および横振動ユニット4には中央部を貫通
する同軸の貫通孔1a、4aが形威されており、この貫
通孔1a,4aには支持ボルト7がその頭部7hを縦振
動ユニット1に衝合するよう挿入されている.そして、
支持ボルト7にねし結合したナット8により横振動ユニ
ソト4上に配設された筒状の振動子9と縦振動ユニット
1および横振動ユニソト4とが所定予圧で締結されてい
る。なお、振動子9は内径が横振動ユニット4の貫通孔
4aと略同径で支持ボルト7およびナント8に対して径
方向に移動可能になっており、振動子9は横振動ユニッ
ト4の逆圧電作用に伴って横方向に加振され、該振動を
増幅する。具体的には、振動子9は第4図に示すような
一定振幅の高周波電圧である電極6A、6B間の交流印
加電圧の周波数に合致する共振周波数を有し、縦振動ユ
ニット1および横振動ユニット4からの超音波振動を受
ける際、横振動ユニット4からのすべり振動を増幅しな
がら横長に楕円運動するようになっている.一方、振動
子9上にはライニング材11を挾んで出力部材12(移
動体)が設けられており、出力部材l2は図外の端部で
バルブスプール等に接続されるとともに押圧vil3を
介してコイルばね14により横振動ユニット4上に付勢
されている。コイルばね14は端面研摩等を施され、支
持ボルト7にねし結合したナソト15およびばね受け1
6により所定長に圧縮されており、所定のばね圧を発生
している.また、押圧板13は出力部材l2に当接する
ライニング材17を有しており、ライニング材17と出
力部材12の摩擦係数はライニング材11と出力部材1
2の摩擦係数より小さくなっている。そして、出力部材
12は上述のように振動子9が楕円運動するとき、コイ
ルばねl4からの付勢力により振動子9と一体的に楕円
運動するライニング材l1と摩擦して第t図の矢印X方
向に直線的に移動する.なお、l8はナソト8又は支持
ポルト7に固定されたガイドスリーブであり、ガイドス
リーブl8は出力部材12に形威された長穴12a(第
5図参照)および押圧板13と摺動自在に係合して出力
部材12および押圧仮13をガイドする.また、第4図
において、電極3A、3B間の印加電圧Aに対し、電極
6A、6B間の印加電圧B又はCは+90゜又は−90
’の位相差を有しており、該印加電圧BSCを一方から
他方に切り換えて出力部材12の移動方向を逆にするこ
とができる. 次に、作用を説明する。
In FIGS. 1 to 4, 1 is a longitudinal vibration unit, and the longitudinal vibration unit 1 includes a plurality of longitudinal vibration piezoelectric elements 2A and 2B stacked in the electrostrictive direction, and each longitudinal vibration piezoelectric element 2A.
, 2B, which are arranged to sandwich the electrodes 3A and 3B. The longitudinally vibrating piezoelectric elements 2A and 2B are arranged alternately and have different polarization directions as shown schematically in FIGS. 2(a) and 2(b). ) is applied, the longitudinal vibration piezoelectric element 2A
, 2B expand and contract in the vertical direction (vertical direction) in FIG. 4 is a transverse vibration unit, and the transverse vibration unit 4 further includes a plurality of sliding vibration piezoelectric elements 5A and 5B stacked on the vertical vibration unit 1 in the same direction as the vertical vibration piezoelectric elements 2A and 2B, respectively;
It consists of a plurality of electrodes 6A and 6B arranged to sandwich each sliding vibrating piezoelectric element 5A and 5B. The sliding vibration piezoelectric elements 5A and 5B are arranged alternately so that the polarization direction is as shown in FIG. 3(a).
As shown in (b), when a voltage (described later) is applied between the electrodes 6A and 6B, the transverse vibration unit 4 is moved in the electrostrictive direction (inverse piezoelectricity) by the reverse piezoelectric action of the sliding vibration piezoelectric elements 5A and 5B. It is designed to expand and contract in the horizontal direction in Figure 1, which is the direction of strain caused by the action. Further, the vertical vibration unit 1 and the horizontal vibration unit 4 have coaxial through holes 1a and 4a passing through the center thereof, and a support bolt 7 has its head 7h vertically in the through holes 1a and 4a. It is inserted into vibration unit 1 so as to collide with it. and,
A cylindrical vibrator 9 disposed on the horizontal vibration unit 4, the vertical vibration unit 1, and the horizontal vibration unit 4 are fastened together with a predetermined preload by a nut 8 screwed onto the support bolt 7. The vibrator 9 has an inner diameter that is approximately the same as the through hole 4a of the transverse vibration unit 4, and is movable in the radial direction with respect to the support bolt 7 and the nant 8. It is vibrated in the lateral direction due to the piezoelectric effect, and the vibration is amplified. Specifically, the vibrator 9 has a resonant frequency that matches the frequency of the AC applied voltage between the electrodes 6A and 6B, which is a high-frequency voltage with a constant amplitude as shown in FIG. When receiving ultrasonic vibration from the unit 4, it moves horizontally in an ellipse while amplifying the sliding vibration from the lateral vibration unit 4. On the other hand, an output member 12 (moving body) is provided on the vibrator 9, sandwiching the lining material 11, and the output member l2 is connected to a valve spool or the like at an end (not shown) and is A coil spring 14 biases the transverse vibration unit 4. The coil spring 14 has its end face polished, etc., and has a nasoto 15 and a spring receiver 1 screwed to the support bolt 7.
6, it is compressed to a predetermined length and generates a predetermined spring pressure. Further, the press plate 13 has a lining material 17 that comes into contact with the output member l2, and the coefficient of friction between the lining material 17 and the output member 12 is the same as that between the lining material 11 and the output member l2.
It is smaller than the friction coefficient of 2. When the vibrator 9 moves in an elliptical manner as described above, the output member 12 rubs against the lining material l1, which moves in an elliptical manner together with the vibrator 9, due to the biasing force from the coil spring l4, as indicated by the arrow X in FIG. Move linearly in the direction. Note that l8 is a guide sleeve fixed to the nasoto 8 or the support port 7, and the guide sleeve l8 is slidably engaged with the elongated hole 12a formed in the output member 12 (see FIG. 5) and the press plate 13. At the same time, the output member 12 and the pressing member 13 are guided. In addition, in FIG. 4, the applied voltage B or C between the electrodes 6A and 6B is +90° or -90° with respect to the applied voltage A between the electrodes 3A and 3B.
By switching the applied voltage BSC from one side to the other side, the moving direction of the output member 12 can be reversed. Next, the effect will be explained.

縦振動ユニット1に所定電圧の高周波電圧Aが印加され
るとともに横振動ユニット4に所定電圧の高周波電圧B
又はCが印加されると、縦振動圧電素子2A、2Bおよ
びすべり振動圧電素子5A、5Bの電歪作用により振動
子9が超音波加振されてすべり振動圧電素子5A、5B
からの振動を増幅しなから略楕円運動し、コイルばね1
4により振動子9に付勢された出力部材12がライニン
グ材1lと摩擦して直線的に移動することにより図外の
バルブスブール等を駆動する。
A high frequency voltage A of a predetermined voltage is applied to the longitudinal vibration unit 1, and a high frequency voltage B of a predetermined voltage is applied to the transverse vibration unit 4.
Or when C is applied, the vibrator 9 is ultrasonically vibrated by the electrostrictive action of the longitudinal vibration piezoelectric elements 2A, 2B and the sliding vibration piezoelectric elements 5A, 5B, and the sliding vibration piezoelectric elements 5A, 5B
The vibration from the coil spring 1 is amplified, and then the coil spring
The output member 12 biased by the vibrator 9 by the output member 4 rubs against the lining material 1l and moves linearly, thereby driving a valve stub, etc. not shown.

いま、横振動ユニット4の電極6A,6B間に高周波電
圧Bが印加されたとすると、まず、第6図(a)に示す
ようにすべり振動圧電素子5A、5Bに逆圧電作用が生
じて振動子9が同図中右方に変位し、次いで、第6図(
b)に示すように、縦振動圧電素子2A、2Bにも逆圧
電作用が生じて振動子9が上方に変位しつつ右方向の変
位を減少して出力部材12に圧接する。次いで、第6図
(c)に示すように、振動子9がさらに左方に変位しつ
つ上方向の変位を減少して出力部材12を摩擦力により
左方に移動させる.次いで、第6図(d)に示すよう、
振動子9が横方向中央で縦方向の下限位置に達し、以下
、同様な振動子9の一連の変位、すなわち楕円運動が繰
り返されることによって出力部材12が直線的に連続移
動する。一方、横振動ユニット4の電極6A、6B間に
印加電圧Cが印加されたとすると、縦振動圧電素子2A
、2Bの伸張後にすべり振動圧電素子5A、5Bの電歪
作用が生じて出力部材l2が逆進する。
Now, if a high frequency voltage B is applied between the electrodes 6A and 6B of the transverse vibration unit 4, first, as shown in FIG. 9 is displaced to the right in the figure, and then in Figure 6 (
As shown in b), a reverse piezoelectric effect also occurs in the longitudinally vibrating piezoelectric elements 2A and 2B, causing the vibrator 9 to displace upward and reduce the displacement in the right direction, thereby coming into pressure contact with the output member 12. Next, as shown in FIG. 6(c), the vibrator 9 is further displaced to the left while the upward displacement is decreased, and the output member 12 is moved to the left by the frictional force. Next, as shown in FIG. 6(d),
The vibrator 9 reaches the lower limit position in the vertical direction at the center in the horizontal direction, and thereafter, a series of similar displacements of the vibrator 9, that is, elliptical movements are repeated, so that the output member 12 continuously moves linearly. On the other hand, if the applied voltage C is applied between the electrodes 6A and 6B of the transverse vibration unit 4, then the vertical vibration piezoelectric element 2A
, 2B, the electrostrictive action of the sliding vibrating piezoelectric elements 5A, 5B occurs, and the output member l2 moves backward.

このような状態において、縦振動圧電素子2A、2Bお
よびすべり振動圧電素子5A,5Bはそれぞれの電歪方
向にのみ振動し、該電歪方向以外のたわみ振動等を生じ
ないから、縦振動ユニット1および横振動ユニット4を
多層構造として十分な加振振幅を得ることができ、振動
子9の増幅作用も加わって、印加電圧A,Bの電圧値を
大きくすることなく効率よく推力を増大させることがで
きる。また、印加電圧Aを固定して印加電圧Bの電圧値
を可変すれば出力部材12の移動速度を広範囲に制御す
ることができ、特に、超低速領域の速度制御が容易とな
る。したがって、推力の大きい、しかも速度制御範囲の
広いリニア型超音波モータが提供される. なお、本実施例においては、出力部材12の直線出力の
みを有効に取り出すべく振動子9の縦方向の移動をナソ
ト8によって所定量に制限する構或となっているが、ナ
ット8を省略して振動子9の縦方向振幅を大きくする、
例えば、振動子9が縦振動ユニットlからの縦振動をも
増幅するようにすることもできる。
In such a state, the longitudinal vibration piezoelectric elements 2A, 2B and the sliding vibration piezoelectric elements 5A, 5B vibrate only in their respective electrostrictive directions, and do not produce deflection vibrations in directions other than the electrostrictive directions, so that the longitudinal vibration unit 1 And, by making the transverse vibration unit 4 have a multilayer structure, a sufficient vibration amplitude can be obtained, and the amplification effect of the vibrator 9 is also added, so that the thrust can be efficiently increased without increasing the voltage values of the applied voltages A and B. Can be done. Further, by fixing the applied voltage A and varying the voltage value of the applied voltage B, the moving speed of the output member 12 can be controlled over a wide range, and in particular, speed control in the ultra-low speed region becomes easy. Therefore, a linear ultrasonic motor with a large thrust and a wide speed control range is provided. In this embodiment, the vertical movement of the vibrator 9 is limited to a predetermined amount by the nasoto 8 in order to effectively extract only the linear output of the output member 12, but the nut 8 is omitted. to increase the longitudinal amplitude of the vibrator 9,
For example, the vibrator 9 can also amplify the longitudinal vibration from the longitudinal vibration unit l.

(効果) 本発明によれば、電歪方向に積層配置した縦振動圧電素
子と同方向にすべり振動圧電素子を積層配置し、両圧電
素子の逆圧電作用により加振した振動子を少なくともす
べり振動を増幅するよう運動させて、移動体を直線的に
移動させるようにしているので、縦振動圧電素子および
すべり振動圧電素子を電歪方向以外のたわみ振動等が生
じない多層構造にすることができ、振動子の加振量を増
大して推力の大きいリニア型超音波モータを提供するこ
とができる。さらに、縦振動圧電素子の加振量を固定し
たまますべり振動圧電素子の加振量を可変することがで
き、速度制御範囲の広いリニア型超音波モータを提供す
ることができる。
(Effects) According to the present invention, longitudinally vibrating piezoelectric elements are stacked in the electrostrictive direction and slidingly vibrating piezoelectric elements are stacked in the same direction, and the vibrator excited by the reverse piezoelectric action of both piezoelectric elements is at least slidably vibrated. Since the movable body is moved in a straight line by amplifying the motion, the vertical vibration piezoelectric element and the shear vibration piezoelectric element can be made into a multilayer structure that does not cause flexural vibrations in directions other than the electrostrictive direction. , it is possible to provide a linear ultrasonic motor with a large thrust by increasing the amount of vibration of the vibrator. Further, it is possible to vary the amount of excitation of the sliding vibrating piezoelectric element while fixing the amount of excitation of the longitudinally vibrating piezoelectric element, and it is possible to provide a linear ultrasonic motor with a wide speed control range.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明に係るリニア型超音波モータの一実
施例を示す図であり、第1図はその正面断面図、第2図
(a)はその縦振動圧電素子の平面図、第2図(b)は
第2図(a)のBt −B!断面図、第3図(a)はそ
のすべり振動圧電素子の平面図、第3図(b)は第3図
(a)のB,B3断面図、第4図はその圧電素子に印加
する高周波電圧の波形図、第5図はその移動体の一部平
面図、第6図はその作用説明図である.2A、2B・・
・・・・縦振動圧電素子、5A、5B・・・・・・すべ
り振動圧電素子、9・・・・・・振動子、 12・・・・・・出力部材(移動体)。
1 to 6 are diagrams showing one embodiment of the linear type ultrasonic motor according to the present invention, in which FIG. 1 is a front sectional view thereof, FIG. 2(a) is a plan view of its longitudinally vibrating piezoelectric element, FIG. 2(b) shows the Bt −B of FIG. 2(a)! 3(a) is a plan view of the sliding vibration piezoelectric element, FIG. 3(b) is a cross-sectional view of B and B3 in FIG. 3(a), and FIG. 4 is a high-frequency wave applied to the piezoelectric element. A voltage waveform diagram, FIG. 5 is a partial plan view of the moving body, and FIG. 6 is an explanatory diagram of its operation. 2A, 2B...
...Longitudinal vibration piezoelectric element, 5A, 5B ... Sliding vibration piezoelectric element, 9 ... Vibrator, 12 ... Output member (moving body).

Claims (1)

【特許請求の範囲】[Claims] 電歪方向に積層配置された縦振動圧電素子と、縦振動圧
電素子と同方向に積層配置されて該積層方向と直交する
電歪方向を有するすべり振動圧電素子と、縦振動圧電素
子およびすべり振動圧電素子により加振され、少なくと
もすべり振動圧電素子からの振動を増幅する振動子と、
振動子上に付勢され、振動子の運動に伴ってすべり振動
圧電素子の電歪方向に直線的に移動する移動体と、を備
えたことを特徴とするリニア型超音波モータ。
A longitudinally vibrating piezoelectric element laminated in the electrostrictive direction, a shear vibrating piezoelectric element laminated in the same direction as the longitudinal vibrating piezoelectric element and having an electrostrictive direction perpendicular to the lamination direction, a longitudinal vibrating piezoelectric element, and a shear vibrating element. a vibrator that is excited by the piezoelectric element and amplifies at least the vibration from the sliding vibration piezoelectric element;
A linear ultrasonic motor comprising: a moving body that is biased onto a vibrator and moves linearly in the electrostrictive direction of a sliding vibrating piezoelectric element as the vibrator moves.
JP1162097A 1989-06-22 1989-06-22 Linear type ultrasonic motor Pending JPH0327781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1162097A JPH0327781A (en) 1989-06-22 1989-06-22 Linear type ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1162097A JPH0327781A (en) 1989-06-22 1989-06-22 Linear type ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH0327781A true JPH0327781A (en) 1991-02-06

Family

ID=15748009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1162097A Pending JPH0327781A (en) 1989-06-22 1989-06-22 Linear type ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0327781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128071A (en) * 2012-12-25 2014-07-07 Taiheiyo Cement Corp Piezoelectric element unit and piezoelectric actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128071A (en) * 2012-12-25 2014-07-07 Taiheiyo Cement Corp Piezoelectric element unit and piezoelectric actuator

Similar Documents

Publication Publication Date Title
US5101132A (en) Linear ultrasonic motor
JPH01107669A (en) Ultrasonic wave linear motor
JPH04161078A (en) Driver for standing wave ultrasonic motor
JP3173902B2 (en) Ultrasonic linear motor and method of manufacturing the same
JPH0327781A (en) Linear type ultrasonic motor
JPH01264582A (en) Ultrasonic linear motor
JPH0223070A (en) Linear type ultrasonic motor
JPH06141564A (en) Wave circulation actuator
JPS6091874A (en) Supersonic motor
JP2543163B2 (en) Ultrasonic linear motor
JPH02241378A (en) Ultrasonic wave linear motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP2836130B2 (en) Electronic sewing machine
JPS60230883A (en) Carrier driver for printer
JP2622286B2 (en) Ultrasonic linear motor
JPH03253274A (en) Ultrasonic motor
JP2538026B2 (en) Planar ultrasonic actuator
JPH02202379A (en) Planar ultrasonic actuator
JPH03261385A (en) Ultrasonic motor
JPH01177880A (en) Ultrasonic linear motor
JPH01259764A (en) Piezoelectric driving unit
JPS63110968A (en) Ultrasonic linear motor
JPH03146745A (en) Driving device in knitting machine
JPH02228270A (en) Plane type ultrasonic actuator
JPH0378475A (en) Linear ultrasonic motor