JPH03276856A - Turning motion controller for vehicle - Google Patents

Turning motion controller for vehicle

Info

Publication number
JPH03276856A
JPH03276856A JP2075617A JP7561790A JPH03276856A JP H03276856 A JPH03276856 A JP H03276856A JP 2075617 A JP2075617 A JP 2075617A JP 7561790 A JP7561790 A JP 7561790A JP H03276856 A JPH03276856 A JP H03276856A
Authority
JP
Japan
Prior art keywords
turning
braking force
steering
wheel
steering speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075617A
Other languages
Japanese (ja)
Inventor
Hideaki Inoue
秀明 井上
Hirotsugu Yamaguchi
博嗣 山口
Atsushi Namino
淳 波野
Shinji Matsumoto
真次 松本
Hideto Murakami
秀人 村上
Shunichi Inoue
俊一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2075617A priority Critical patent/JPH03276856A/en
Priority to US07/673,300 priority patent/US5267783A/en
Priority to DE4109925A priority patent/DE4109925C2/en
Publication of JPH03276856A publication Critical patent/JPH03276856A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/24Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
    • B60T8/246Change of direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4013Fluid pressurising means for more than one fluid circuit, e.g. separate pump units used for hydraulic booster and anti-lock braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/42Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having expanding chambers for controlling pressure, i.e. closed systems
    • B60T8/4275Pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/313ESP control system with less than three sensors (yaw rate, steering angle, lateral acceleration)

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE:To enable it to secure high responsiveness even in the case of sudden steering input by varying each wheel braking force between both turning inner and outer sides at time of turning and generating a yaw rate, while constituting it to determine the braking force difference according to even steering speed. CONSTITUTION:In this controller, there are provided a turning state detecting means A detecting a car turning state and a steering speed detecting means B detecting a steering speed, and each output signal out of these detecting means is inputted into a wheel braking force setting means C. In response to each signal out of these detecting means A, B, each wheel braking force is varied between both turning inner and outer sides so as to produce a yaw rate in the vehicle according to a turning state at time of car turning, while the braking force difference is made so as to be set according to the steering speed. With this constitution, the braking force difference comes to be determined in consideration of even the steering speed, so that in regard with yaw rate, using a suchlike braking force difference, such conformed to the turning state and the steering speed can be generated, thus the extent of responsiveness is enhanced and, what is more, a driver's steering feeling is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両の旋回挙動制御装置、特に制動を利用して
旋回時の車両挙動を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a turning behavior control device for a vehicle, and particularly to a device for controlling vehicle behavior during turning using braking.

(従来の技術) 車両の旋回制動時に制動力を制御する装置として、実開
昭59−155264号公報に記載の如きものがある。
(Prior Art) As a device for controlling braking force during turning braking of a vehicle, there is a device as described in Japanese Utility Model Application Publication No. 59-155264.

このものは、外輪側のブレーキ込めタイミングを内輪側
のそれよりも遅らせるようになっており、制動時に走行
舵の一定以上の切れ角を検知すると、制御手段は旋回外
側に位置する車輪のブレーキ込めタイミングを遅らせる
よう制御する。
In this system, the timing to apply the brakes on the outer wheels is delayed compared to that on the inner wheels, and when a turning angle of the steering wheel exceeding a certain level is detected during braking, the control means applies the brakes on the wheels located on the outside of the turn. Control to delay the timing.

かかる手法によれば、操舵角に応して旋回方向外側車輪
の液圧上界、即ちブレーキ液圧の上昇を遅らせ、初期回
頭性を得るための制動力差を生しさせることができる。
According to this method, it is possible to delay the rise in the upper limit of the hydraulic pressure of the wheels on the outer side in the turning direction, that is, the increase in the brake hydraulic pressure, in accordance with the steering angle, and to generate a difference in braking force for obtaining initial turning performance.

(発明が解決しようとする課B) しかして、アンダーステア傾向を補正すべく内外輪制動
力差によりヨーモーメントを発生させて旋回性の向上を
図る場合、制動力差を操舵量等で規定される旋回状態の
みで一律に決定し、制御するときは、操舵量を変化させ
つつある過渡期での制御において運転者の意思を十分に
反映させ得ない。上記公報のものの如く操舵角のみで制
御を行うと、保舵時と操舵時とで制動力差による発生ヨ
ーレイトに差がなく、夫々の場合に適合した制御は望め
ない。又、例えば、運転者の急な操舵入力に対してヨー
レイトの立上がりが遅れ、この場合は車両の運動は応答
遅れを伴う結果、速い操舵に対し十分な対応も期待でき
ない。
(Problem B to be solved by the invention) However, when aiming to improve turning performance by generating a yaw moment by the difference in braking force between the inner and outer wheels in order to correct the understeer tendency, the difference in braking force is determined by the amount of steering, etc. When uniformly determining and controlling only the turning state, the driver's intention cannot be sufficiently reflected in the control during the transition period when the steering amount is changing. If control is performed only by the steering angle as in the above-mentioned publication, there is no difference in the generated yaw rate due to the difference in braking force between when the steering is held and when the steering is being held, and control suitable for each case cannot be expected. Further, for example, the rise of the yaw rate is delayed in response to a sudden steering input by the driver, and in this case, the vehicle motion is accompanied by a response delay, so that a sufficient response to fast steering cannot be expected.

本発明は操舵量を変化させつつある過渡期においても適
切な挙動制御を行える応答性に優れた車両の旋回挙動制
御装置を掃供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a turning behavior control device for a vehicle that has excellent responsiveness and can perform appropriate behavior control even during a transitional period when the amount of steering is changing.

(課題を解決するための手段) この目的のため本発明の旋回挙動制御装置は第1図に概
念を示す如く、車両の旋回状態を検出する旋回状態検出
手段と、 操舵速度を検出する操舵速度検出手段と、これら手段か
らの信号に応答し、車両旋回時旋回状態に応じて車両に
ヨーレイトを発生させるよう旋回方向内外側間で車輪制
動力を異ならせると共に、操舵速度に応じて制動力差を
設定する車輪制動力設定手段とを具備してなるものであ
る。
(Means for Solving the Problems) For this purpose, the turning behavior control device of the present invention, as conceptually shown in FIG. 1, comprises turning state detection means for detecting the turning state of the vehicle, and steering speed for detecting the steering speed. detecting means, and in response to signals from these means, differing wheel braking forces between the inside and outside of the turning direction so as to generate a yaw rate in the vehicle according to the turning state when the vehicle turns, and a braking force difference according to the steering speed. and wheel braking force setting means for setting.

(作 用) 車両の旋回時、車両の旋回状態及び操舵速度を夫々検出
する旋回状態検出手段及び操舵速度検出手段からの信号
に応答して車輪制動力設定手段は、旋回状態に応じて車
両にヨーレイトを発生させるよう旋回方向内外側間で車
輪制動力を異ならせ、その制動力差を操舵速度にも応じ
たものとする。
(Function) When the vehicle is turning, the wheel braking force setting means adjusts the braking force to the vehicle according to the turning state in response to signals from the turning state detecting means and the steering speed detecting means, which respectively detect the turning state and steering speed of the vehicle. In order to generate a yaw rate, the braking force of the wheels is varied between the inner and outer sides of the turning direction, and the difference in braking force is made to correspond to the steering speed.

これにより、制動力差は操舵速度をも考慮して決定され
ることとなり、ヨーレイトについては、かかる制動力差
を利用して旋回状態及び操舵速度に応じたものを発生さ
せることができる。操舵速度を加味した制御は、操舵量
を変化させつつある過渡期での適切な車両挙動を可能と
し、応答性を高め、運転者の操舵フィーリングの向上に
も寄与する。
As a result, the braking force difference is determined in consideration of the steering speed, and the yaw rate can be generated in accordance with the turning state and the steering speed by using the braking force difference. Control that takes steering speed into consideration enables appropriate vehicle behavior during the transition period when the amount of steering is changing, increases responsiveness, and contributes to improving the driver's steering feeling.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第2図は本発明旋回挙動制御装置の一実施例の構成を示
す。
FIG. 2 shows the configuration of an embodiment of the turning behavior control device of the present invention.

第2図中IL、 IRは左右前輪、2L、 2Rは左右
後輪、3はブレーキペダル、4はタンデムマスターシリ
ンダを夫々示す。各車輪IL、 IR,2L、 2Rは
ホイールシリンダ5L、 SR,6L、 6Rを備え、
これらホイールシリンダにマスターシリンダ4からの液
圧を供給される時、各車輪は個々に制動されるものとす
る。
In FIG. 2, IL and IR indicate left and right front wheels, 2L and 2R indicate left and right rear wheels, 3 indicates a brake pedal, and 4 indicates a tandem master cylinder, respectively. Each wheel IL, IR, 2L, 2R is equipped with a wheel cylinder 5L, SR, 6L, 6R,
When these wheel cylinders are supplied with hydraulic pressure from the master cylinder 4, each wheel is individually braked.

ここで、ブレーキ液正系を説明するに、マスターシリン
ダ4からの前輪ブレーキ系7Fは、圧力応答切換弁8F
、パイロットシリンダ9Fの出力室9a。
Here, to explain the brake fluid main system, the front wheel brake system 7F from the master cylinder 4 is connected to the pressure response switching valve 8F.
, the output chamber 9a of the pilot cylinder 9F.

管路10F、 IIF、 12F 、液圧制御弁13F
、 14Fを経て左右前輪ホイールシリンダ5L、 5
Rに至らしめ、マスターシリンダ4からの後輪ブレーキ
系7Rは、圧力応答切換弁8R、パイロットシリンダ9
Rの出力室9a、管路10R,IIR,12R、液圧制
御弁13R,14Rを経て左右後輪ホイールシリンダ6
L、 6Rに至らしめる。
Pipe line 10F, IIF, 12F, hydraulic control valve 13F
, 14F to left and right front wheel cylinders 5L, 5
R, and the rear wheel brake system 7R from the master cylinder 4 is connected to the pressure response switching valve 8R and the pilot cylinder 9.
R output chamber 9a, pipes 10R, IIR, 12R, and hydraulic control valves 13R, 14R to the left and right rear wheel cylinders 6.
L, lead to 6R.

パイロットシリンダ9F、 9Rの入力室9bに関連し
て、ポンプ15、リザーバ16及びアキュムレータ17
を含む自動ブレーキ用液圧源を設け、これとパイロット
シリンダ入力室9bとの間に電磁切換弁18を介挿する
。この弁18は、常態でパイロットシリンダ入力室9b
をリザーバ16に通じることによりバイロフトシリンダ
9F、 9Rを図示の非作動位置にし、ON時パイロッ
トシリンダ入力室9bを、ポンプ15の適宜駆動で一定
圧内に保たれたアキュムレータ17に通じてこれからの
液圧によりバイロフトシリンダ9F、 9Rのピストン
9Cを内蔵ばね9dに抗しストロークさせ、出力室9a
内の液を吐出するものとする。
In relation to the input chambers 9b of the pilot cylinders 9F and 9R, the pump 15, the reservoir 16 and the accumulator 17
An automatic brake hydraulic pressure source including a hydraulic pressure source is provided, and an electromagnetic switching valve 18 is inserted between this and the pilot cylinder input chamber 9b. This valve 18 normally operates in the pilot cylinder input chamber 9b.
The virofft cylinders 9F and 9R are placed in the non-operating position shown in the figure by communicating with the reservoir 16, and when ON, the pilot cylinder input chamber 9b is communicated with the accumulator 17, which is maintained at a constant pressure by appropriate driving of the pump 15, and the future liquid is The pressure causes the pistons 9C of the biloft cylinders 9F and 9R to stroke against the built-in spring 9d, and the output chamber 9a
The liquid inside is to be discharged.

又、圧力応答切換弁8F、 8Rは、常態で対応する系
7F、 7Rを図示の如くに開通し、電磁切換弁18の
ONでバイロフトシリンダ9F、 9Rを作動させる時
これへの圧力で切換わり、系7F、 7Rを逆止(マス
ターシリンダ4に向う液流を阻止)する状態になるもの
とする。
In addition, the pressure responsive switching valves 8F and 8R open the corresponding systems 7F and 7R as shown in the figure in normal conditions, and when the electromagnetic switching valve 18 is turned on and the viroft cylinders 9F and 9R are operated, the pressure thereon switches them. , systems 7F and 7R will be in a state where they are checked (blocking the liquid flow toward the master cylinder 4).

上記電磁切換弁18の制御は、後述するコントローラか
ら制御信号として出力される当該弁のソレノイドへの電
流i、によって行われるものであり、電流i、がOAの
場合(フートブレーキ時も含む)に切換弁18はOFF
 (即ち常態)、電流i、が2AのときONとなるもの
とする。更に、そのON時には、上述の如く系7F、 
7Rが逆止され、又パイロットシリンダ9F、 9Rの
出力室9a内の液が吐出される結果、管路10F、 I
OR以降の系は、ブレーキペダル3の踏込みによらずし
て、自動ブレーキ液圧源に基づいて液圧が高められ、従
って車輪IL、 IR,2L、 2Rは、その夫々の液
圧制御弁13F、14F、 13R,14Rのうち制御
の対象とされるものと対応する該当車輪について、自動
的に制動が行われる(自動ブレーキ)。
The electromagnetic switching valve 18 is controlled by a current i flowing to the solenoid of the valve, which is output as a control signal from a controller (to be described later), and when the current i is OA (including during the footbrake), Switching valve 18 is OFF
(ie, normal state), the current i is assumed to be ON when it is 2A. Furthermore, when it is ON, as mentioned above, system 7F,
7R is checked and the liquid in the output chambers 9a of the pilot cylinders 9F and 9R is discharged, resulting in the pipes 10F and I
In the system after the OR, the hydraulic pressure is increased based on the automatic brake hydraulic pressure source without depending on the depression of the brake pedal 3, and therefore the wheels IL, IR, 2L, and 2R are controlled by their respective hydraulic pressure control valves 13F. , 14F, 13R, and 14R, braking is automatically performed for the wheels corresponding to the wheels to be controlled (automatic braking).

液圧制御弁13F、 14F、 13R,14Rは、夫
々対応する車輪のホイールシリンダ5L、 5R,6L
、 6Rへ向うブレーキ液圧を個々に制御して、アンチ
スキッド及び本発明旋回挙動制御の用に供するもので、
OFF時図示の増圧位置にあってブレーキ液圧を元圧に
向けて増圧し、第1段ON時ブレーキ液圧を増減しない
保圧位置となり、第2段ON時ブレーキ液圧を一部リザ
ーバ19F、 19Rへ逃がして低下させる減圧位置に
なるものとする。
The hydraulic pressure control valves 13F, 14F, 13R, 14R are connected to the wheel cylinders 5L, 5R, 6L of the corresponding wheels, respectively.
, the brake fluid pressure toward 6R is individually controlled for anti-skid and turning behavior control of the present invention,
When OFF, the brake fluid pressure is in the pressure increasing position shown in the figure and increases toward the source pressure. When the first stage is ON, the brake fluid pressure is in the holding position where it does not increase or decrease. When the second stage is ON, the brake fluid pressure is partially stored in the reservoir. It is assumed that the pressure is reduced by releasing to 19F and 19R.

これら液圧制御弁の制御も後述するコントローラからの
該当する弁のソレノイドへの電流(制御弁駆動電流)1
1〜i4によって行われ、電流i、〜i4がOAの時に
は上記増圧位置、電流11〜i4が2への時には上記保
圧位置、電流i I−j 4が5Aの時には上記減圧位
置になるものとする。
The control of these hydraulic pressure control valves is also carried out by a current (control valve drive current) 1 from the controller to the solenoid of the corresponding valve, which will be described later.
1 to i4, when the currents i, to i4 are OA, the pressure increase position is set, when the currents 11 to i4 are 2, the pressure holding position is set, and when the current iI-j4 is 5A, the pressure reduction position is set. shall be taken as a thing.

なお、リザーバ19F、 19R内のブレーキ液は上記
の保圧時及び減圧時駆動されるポンプ20F、 2OR
により管路10F、 IORに戻し、これら管路にも同
様のアキュムレータ21F、 21Rを接続して設ける
。アキュムレータ21F、 21Rは、自動ブレーキ時
パイロットシリンダのピストン9Cのストロークによる
液圧を蓄圧する。
The brake fluid in the reservoirs 19F and 19R is pumped by the pumps 20F and 2OR, which are driven during pressure retention and pressure reduction.
This is returned to the conduit 10F and IOR, and similar accumulators 21F and 21R are connected and provided to these conduits as well. The accumulators 21F and 21R accumulate hydraulic pressure due to the stroke of the piston 9C of the pilot cylinder during automatic braking.

液圧制御弁13F、 14F、 13R,14R及び電
磁切換弁18は夫々コントローラ22により、ON、 
OFF制御し、このコントローラ22には操舵角θを検
出する操舵角センサ23からの信号、及びブレーキペダ
ル3の踏込み時ONするブレーキスイッチ24からの信
号、並びに車輪IL、 IR,2L、 2Rの回転周速
VWI〜VW4を検出する車輪速センサ25〜28から
の信号、車体の横加速度gを検出する横加速度センサ(
横Gセンサ)29からの信号を夫々入力する。車輪速セ
ンサからの信号はアンチスキッドやトラクション制御に
用いられる。トラクション制御のためには、コントロー
ラ22からエンジン出力調整器への制御信号が送出され
るものとする。
The hydraulic pressure control valves 13F, 14F, 13R, 14R and the electromagnetic switching valve 18 are turned on and off by the controller 22, respectively.
This controller 22 receives a signal from a steering angle sensor 23 that detects the steering angle θ, a signal from a brake switch 24 that is turned ON when the brake pedal 3 is depressed, and the rotation of wheels IL, IR, 2L, and 2R. Signals from wheel speed sensors 25 to 28 that detect circumferential velocities VWI to VW4, and lateral acceleration sensors that detect lateral acceleration g of the vehicle body (
The signals from the lateral G sensor) 29 are respectively input. Signals from wheel speed sensors are used for anti-skid and traction control. For traction control, it is assumed that a control signal is sent from the controller 22 to the engine power regulator.

又、コントローラ22には各輪のホイールシリンダ5L
  5R,6L、 6Rの液圧P、〜P4を検出する液
圧センサ31R,31L、 32L、 32Rからの信
号が入力される。
The controller 22 also includes a wheel cylinder 5L for each wheel.
Signals from hydraulic pressure sensors 31R, 31L, 32L, and 32R that detect hydraulic pressures P, -P4 of 5R, 6L, and 6R are input.

各車輪用の液圧センサの出力は、ホイールシリンダ液圧
の目標値を設定して該目標値と実際のホイールシリンダ
液圧との偏差が零となるように(即ちホイールシリンダ
液圧をその目標値に一致させるように)ブレーキ液圧を
フィードバンク制御する場合の制御信号として用いられ
る。
The output of the hydraulic pressure sensor for each wheel is determined by setting a target value for the wheel cylinder hydraulic pressure so that the deviation between the target value and the actual wheel cylinder hydraulic pressure becomes zero (that is, adjusting the wheel cylinder hydraulic pressure to that target value). It is used as a control signal when performing feedbank control of brake fluid pressure (so as to match the brake fluid pressure).

上記実施例システムにおいて、通常ブレーキ時には、制
動は次のようにしてなされる。
In the above embodiment system, during normal braking, braking is performed as follows.

ブレーキペダル3を踏込む通常ブレーキ時、これに応動
して閉じるブレーキスイッチ24からの信号を受けてコ
ントローラ22は電磁切換弁18を0FF(is=o)
のままとする。これによりパイロットシリンダ9F、 
9Rは、入力室9bをリザーバ16に接続されて図示位
置を保ち、圧力応答切換弁8F、 8Rも図示位置を保
ち、前後輪ブレーキ系7F、 7Rを開通している。又
、コントローラ22は、車輪IL、 IR。
When the brake pedal 3 is depressed during normal braking, the controller 22 receives a signal from the brake switch 24, which closes in response, and turns the electromagnetic switching valve 18 to 0FF (is=o).
Leave as is. As a result, pilot cylinder 9F,
9R connects the input chamber 9b to the reservoir 16 and maintains the position shown in the figure, the pressure response switching valves 8F and 8R also maintain the position shown in the figure, and the front and rear wheel brake systems 7F and 7R are opened. Further, the controller 22 controls the wheels IL and IR.

2L、 2Rが制動ロックを生じない限り液圧制御弁1
3F  14F  13R14RをOFF (L〜14
=O)して図示の状態に保つ。
Hydraulic pressure control valve 1 unless brake lock occurs in 2L and 2R.
3F 14F 13R14R OFF (L~14
=O) and keep it in the state shown.

よって、ブレーキペダル3の踏込みによりマスターシリ
ンダ4からの前後輪ブレーキ系7F、 7Rへ同時に出
力された同じ液圧(マスターシリンダ液圧)は、夫々圧
力応答切換弁8F、 8R、パイロットシリンダ9F、
 9Rの出力室9a、管路10F、 IOR及び液圧制
御弁13F、 14F、 13R,14Rを通り、ブレ
ーキ液圧としてホイールシリンダ5L、 5R,6L、
 6Rに至す、各車輪IL、 IR,2L、 2Rを個
々に制動する。
Therefore, the same hydraulic pressure (master cylinder hydraulic pressure) that is simultaneously output from the master cylinder 4 to the front and rear wheel brake systems 7F and 7R when the brake pedal 3 is depressed is applied to the pressure response switching valves 8F and 8R, and the pilot cylinder 9F, respectively.
It passes through the output chamber 9a of 9R, the conduit 10F, the IOR, and the hydraulic pressure control valves 13F, 14F, 13R, 14R, and is applied as brake fluid pressure to the wheel cylinders 5L, 5R, 6L,
Each wheel IL, IR, 2L, and 2R up to 6R is braked individually.

この間コントローラ22は、センサ25〜28で検出し
た車輪IL、 IR,2L、 2Rの回転周速(車輪速
)VWI〜Vl114から周知の演算により疑似車速を
求め、これと個々の車輪速とから各車輪の制動スリップ
率を演算する。そして、コントローラ22はこのスリッ
プ率から各車輪の制動ロックを判定し、ロヅクしそうに
なる時該当車輪の液圧制御弁13F、 14F。
During this time, the controller 22 calculates a pseudo vehicle speed by a well-known calculation from the rotation circumferential speed (wheel speed) VWI to Vl114 of the wheels IL, IR, 2L, and 2R detected by the sensors 25 to 28, and calculates each pseudo vehicle speed from this and the individual wheel speed. Calculate the braking slip rate of the wheels. Then, the controller 22 determines the brake lock of each wheel from this slip ratio, and when the brake is about to lock, the hydraulic pressure control valves 13F and 14F of the corresponding wheel are activated.

13R又は14Rを1段階0111して保圧位置となす
ことにより該当車輪のそれ以上のブレーキ液圧の上昇を
阻止する。これにもかかわらず制動コックを生ずると、
コントローラ22は該当車輪の液圧制御弁を2段階ON
として減圧位置となすことにより、該当車輪のブレーキ
液圧を低下させて制動ロックを防止する。これにより該
当車輪が回転を回復(スピンナツブ)し始めたところで
、コントローラ22は該当車輪の液圧制御弁を保圧位置
にしてブレーキ液圧のそれ以上の低下を中止する。そし
て車輪の回転が回復するにつれ、コントローラ22は該
当車輪の液圧制御弁をOFF して増圧位置にすること
により、ブレーキ液圧をマスターシリンダ液圧に向は上
昇させる。以上のスキッドサイクルの繰返しにより各車
輪のブレーキ液圧は最大制動効率が達成される値に制御
され、通常のアンチスキッド制御がなされる。
By increasing 13R or 14R by one step to the pressure holding position, the brake fluid pressure of the corresponding wheel is prevented from increasing further. If brake cock occurs despite this,
The controller 22 turns on the hydraulic pressure control valve of the corresponding wheel in two steps.
By setting the brake fluid to the reduced pressure position, the brake fluid pressure of the relevant wheel is lowered to prevent brake lock. As a result, when the corresponding wheel starts to recover its rotation (spinnerve), the controller 22 sets the hydraulic pressure control valve of the corresponding wheel to the pressure holding position and stops any further decrease in the brake hydraulic pressure. Then, as the rotation of the wheel is restored, the controller 22 turns off the hydraulic pressure control valve of the corresponding wheel to the pressure increasing position, thereby increasing the brake hydraulic pressure toward the master cylinder hydraulic pressure. By repeating the above skid cycle, the brake fluid pressure of each wheel is controlled to a value that achieves maximum braking efficiency, and normal anti-skid control is performed.

第3図はコントローラ22により実行される操舵速度に
応じた制動力差修正処理を含む本旋回挙動制御のための
一例(フートブレーキ中の旋回挙動制′a)を示す制御
プログラムである。この処理は図示せざるオペレーティ
ングシステムで一定時間Δを毎の定時割り込みで遂行さ
れる。
FIG. 3 is a control program showing an example of the main turning behavior control (turning behavior control 'a during foot braking) including braking force difference correction processing according to the steering speed executed by the controller 22. This process is performed by an operating system (not shown) using a regular interrupt every certain period of time Δ.

先ずステップ101では、操舵角センサ23の信号から
ステアリングホイールの操舵角θを読込むと共に、操舵
速度θを読込む。操舵速度θは、本例では次式による演
算によってこれを得るようにな即ち、今回の操舵角θと
前回の(Δを時間前の)操舵角θ(OLD)との差(Δ
を時間中における操舵角変化量)を求めてこれを操舵速
度θとして読込む。なお、操舵速度θはこれ以外に他の
方法により検出してもよい。
First, in step 101, the steering angle θ of the steering wheel is read from the signal of the steering angle sensor 23, and the steering speed θ is also read. In this example, the steering speed θ is obtained by calculation according to the following formula, that is, the difference (Δ) between the current steering angle θ and the previous steering angle θ (OLD)
is the amount of change in steering angle over time) and read this as the steering speed θ. Note that the steering speed θ may be detected by other methods.

次のステップ102では、ブレーキスイッチ24がON
か否かにより、運転者によってブレーキペダル3が踏ま
れているか否かを判断する。その結果、NOならば即ち
ブレーキペダル3を踏込んでいなければ、本プログラム
例では、本旋回挙動制御が不要であることから、ステッ
プ106へ進んで後述するブレーキ液圧差指令値として
のΔPを値0とする。なお、この場合は、ステップ10
4.105を経て本プログラムを終了するが、各液圧制
御弁駆動電流11〜i4はOAのままとされ、各液圧制
御弁は常態の第1図のOFF位置を維持する。
In the next step 102, the brake switch 24 is turned on.
Based on whether or not the brake pedal 3 is being depressed by the driver, it is determined whether or not the brake pedal 3 is being depressed by the driver. If the result is NO, that is, if the brake pedal 3 is not depressed, the main turning behavior control is not necessary in this program example, so the process proceeds to step 106 and sets ΔP as the brake fluid pressure difference command value to be described later. Set to 0. In this case, step 10
4. The program ends through step 105, but each hydraulic pressure control valve drive current 11 to i4 remains at OA, and each hydraulic pressure control valve maintains its normal OFF position as shown in FIG. 1.

一方、ステップ102の答がYesでブレーキペダル3
の踏込みが判別された場合ステップ103以下へ進んで
本発明が狙いとする旋回挙動制御を行う。
On the other hand, if the answer to step 102 is Yes, the brake pedal 3
If it is determined that the driver has stepped down, the process proceeds to step 103 and subsequent steps to perform the turning behavior control that the present invention aims at.

即ち、旋回状態と操舵速度に応じて前輪側及び/又は後
輪側の左右の制動力に差を生しさせ、旋回方向外輪の制
動力を旋回方向内輪の制動力よりも低い値となるように
制御するための処理を実行する。
That is, a difference is created between the left and right braking forces of the front and/or rear wheels depending on the turning state and steering speed, so that the braking force of the outer wheel in the turning direction is lower than the braking force of the inner wheel in the turning direction. Executes processing to control the

ステップ103では、操舵角θの大きさに応じた旋回方
向内外輪のブレーキ液圧差ΔP、を決定すると共に、か
かる液圧差ΔP、を基に操舵速度θに応じて制動力差を
修正するだめの補正を施して最終的なブレーキ液圧差指
令値としてのΔP値を演算する。第4図は操舵角θに応
じて設定すべき液圧差ΔP1を算出するための特性の一
例を示し、液圧差Δp、は操舵角θが所定値01以上の
範囲で操舵角θが大きいほど大なる値となるように設定
されている。又、第5図は上記補正に用いられる補正係
数に、の特性の一例を示す。補正係数に、は、操舵速度
θによって制御ゲインを調整するため前記ΔP1値に乗
算する係数であって、急操舵時に、より一層ヨーが発生
するように、所定値(max)までの範囲で操舵速度θ
に対応して第5図のような特性に設定されている。
In step 103, the brake fluid pressure difference ΔP between the inner and outer wheels in the turning direction is determined according to the magnitude of the steering angle θ, and the braking force difference is corrected according to the steering speed θ based on this fluid pressure difference ΔP. After correction, a ΔP value as a final brake fluid pressure difference command value is calculated. FIG. 4 shows an example of the characteristics for calculating the hydraulic pressure difference ΔP1 to be set according to the steering angle θ, and the hydraulic pressure difference Δp increases as the steering angle θ becomes larger in the range where the steering angle θ is a predetermined value 01 or more. The value is set to be . Further, FIG. 5 shows an example of the characteristics of the correction coefficient used for the above correction. The correction coefficient is a coefficient that is multiplied by the ΔP1 value in order to adjust the control gain according to the steering speed θ.The correction coefficient is a coefficient that is multiplied by the ΔP1 value in order to adjust the control gain according to the steering speed θ. speed θ
The characteristics shown in FIG. 5 are set correspondingly.

操舵速度θがOであれば、これは操舵角θがθ〈θ1の
操舵状態であっても、運転者が操舵量を変化させていな
い保舵時であることを意味することになる。ここで、第
5図のデータ例では、補正係数に1は、操舵速度θに応
じて値1.0以下の所定下限値までの範囲の値に設定さ
れているが、上述のような保舵時、あるいは操舵量を変
化させつつある旋回過渡期であるもののその変化の度合
の低い操舵時には、急操舵時に比し発生ヨーレイトを小
とするべくブレーキ液圧差が小さなものとなるようにす
る一方、立上がりの速い応答性の高い回頭を要求される
急操作時はどより大きなヨーレイトが得られるように、
値を値1.0に近付はブレーキ液圧差(従って制動力差
)が大きなものとなるようになす。
If the steering speed θ is O, this means that even if the steering state is such that the steering angle θ is θ<θ1, the steering is held while the driver is not changing the amount of steering. Here, in the data example of FIG. 5, the correction coefficient 1 is set to a value in the range up to a predetermined lower limit value of 1.0 or less depending on the steering speed θ. During a turning transition period in which the steering angle or steering amount is changing, but the degree of change is low, the brake fluid pressure difference is made small in order to reduce the generated yaw rate compared to during sudden steering; In order to obtain a larger yaw rate during sudden maneuvers that require quick start-up and highly responsive turning,
When the value approaches 1.0, the brake fluid pressure difference (therefore, the braking force difference) becomes large.

なお、第4図、第5図のデータテーブル例の場合、操舵
速度θが所定値(wax)のときは、係数に1は値1.
0であり、第4図で求められる液圧差ΔP。
In the case of the data table examples shown in FIGS. 4 and 5, when the steering speed θ is a predetermined value (wax), the coefficient 1 is the value 1.
0, and the hydraulic pressure difference ΔP found in FIG.

を補正しない、それ故、操舵角θに対する設定ΔP1値
を示す第4図のデータは、本例では、急操舵時用のもの
が基準(補正対象)として設定されているが、基準はこ
れに限らず、例えば緩操舵時用のものとしてもよい(こ
の場合は、急操舵時に、よりヨーが発生するよう値1を
超える係数を補正係数として適用すればよい)。
Therefore, in this example, the data in FIG. 4 showing the set ΔP1 value for the steering angle θ is set as the reference (correction target) for sudden steering; For example, the correction coefficient may be used for slow steering (in this case, a coefficient exceeding 1 may be applied as a correction coefficient so that more yaw occurs during sudden steering).

しかして、ステップ103゛では当該ステップ実行時点
での操舵角θ及び操舵速度θに基づいて上述の関係から
ブレーキ液圧差ΔP、を求めると同時に、補正係数に+
を決定し、これらを用いて実際の内外輪間のブレーキ液
圧差ΔPを次式に従って算出、決定する。
Therefore, in step 103', the brake fluid pressure difference ΔP is determined from the above relationship based on the steering angle θ and the steering speed θ at the time of execution of the step, and at the same time, the correction coefficient is
are determined, and using these, the actual brake fluid pressure difference ΔP between the inner and outer wheels is calculated and determined according to the following formula.

ΔP=に、×ΔPI         −−−−(2)
次にステップ104.105では、上記で決定した液圧
差ΔPを用いて、旋回方向内外車輪間でそれらのブレー
キ液圧の差が値ΔPとなるようにブレーキ液圧Pj(j
=1〜4)を設定し、対応する液圧制御弁駆動電流iを
ルックアップし出力する。決定した液圧差になるように
するには、例えば、液圧差ΔPが内外輪間で生ずるよう
旋回方向外側車輪IR。
ΔP=to, ×ΔPI −−−−(2)
Next, in steps 104 and 105, using the hydraulic pressure difference ΔP determined above, brake hydraulic pressure Pj (j
= 1 to 4), and looks up and outputs the corresponding hydraulic control valve drive current i. In order to achieve the determined hydraulic pressure difference, for example, the outer wheel IR in the turning direction is adjusted so that a hydraulic pressure difference ΔP occurs between the inner and outer wheels.

2R(左旋回時)又はIL、 2L (右旋回時)の液
圧P2+pa (左旋回時)又はpHpal (右旋回
時)を下げるようにする。この場合に、本実施例では各
輪に液圧センサ31L、 31R,32L、 32Rが
設けられているので、旋回方向について操舵角θ信号の
符号により判断した結果、例えば左旋回と判断されたな
らば、次のようにして旋回方向外側の前車輪IRについ
ての設定ブレーキ液圧P2及び後車輪2Rについての設
定ブレーキ液圧P4を求め、夫々その目標値に一致する
ようにフィードバック制御することができる。
Lower the hydraulic pressure P2+pa (when turning left) or pHpal (when turning right) of 2R (when turning left) or IL, 2L (when turning right). In this case, in this embodiment, each wheel is provided with hydraulic pressure sensors 31L, 31R, 32L, and 32R, so if the turning direction is determined based on the sign of the steering angle θ signal, for example, if it is determined to be a left turn, For example, the set brake fluid pressure P2 for the front wheel IR on the outside in the turning direction and the set brake fluid pressure P4 for the rear wheel 2R can be determined in the following manner, and feedback control can be performed so that they respectively match their target values. .

h=P+−ΔP         −−−−(3)P4
 = PI−ΔP         −−−−(4)こ
こに、上記各式中の右辺第1項は、夫々内側前車輪IL
及び後車輪2Lのブレーキペダル踏込力によるホイール
シリンダ5L、 6Lの実際の液圧、即ち液圧センサ3
1L、 32Lにより検出されたブレーキ液圧である。
h=P+−ΔP −−−−(3) P4
= PI-ΔP --- (4) Here, the first term on the right side in each of the above equations is the inner front wheel IL.
and the actual hydraulic pressure in the wheel cylinders 5L and 6L based on the brake pedal depression force of the rear wheel 2L, that is, the hydraulic pressure sensor 3.
This is the brake fluid pressure detected by 1L and 32L.

本例ではこれを基準として外輪側での液圧が62分だけ
低目のものとなるように設定されることとなる。かくし
て、内側車輪IL、 2Lの制動力はブレーキペダル踏
込力にまかせるべ(それらの液圧制御弁13F、 13
Rの駆動電流i++ i、はこれをOAのままにする一
方、外側車輪IR,2Rについてはその制動力を制限す
るように、即ちブレーキ液圧が前記(3)、 (4)式
によるものとなるように液圧制御弁14F、 14Rを
作動させるべくその駆動電流iZ+i4のパターン(制
御弁のON −OFFパターン)を決定して出力すれば
よい。
In this example, based on this, the hydraulic pressure on the outer ring side is set to be lower by 62 minutes. Thus, the braking force of the inner wheels IL and 2L should be left to the brake pedal depression force (those hydraulic pressure control valves 13F and 13
The driving current i++ i of R is kept at OA, while the braking force of the outer wheels IR and 2R is limited, that is, the brake fluid pressure is set according to equations (3) and (4) above. In order to operate the hydraulic pressure control valves 14F and 14R, the pattern of the drive current iZ+i4 (ON-OFF pattern of the control valves) may be determined and output.

以上の制御により、ブレーキペダル3の踏込みによる制
動時、旋回方向外側車輪の制動力はブレーキペダル3の
踏力に対応した値より小さくされることから、車両にヨ
ーレイトを発生させ、車両は旋回方向のヨーモーメント
を受けて旋回を助長されるが、この場合、前記(2)式
の如く操舵角θに応じた液圧差ΔP、に補正係数に、が
乗算される結果、急操舵時には差圧が大となるように、
即ち制動力差が大きくなって上記ヨーモーメントが大と
なるように補正が行われる。
With the above control, when braking is performed by depressing the brake pedal 3, the braking force of the outer wheel in the turning direction is made smaller than the value corresponding to the depressing force of the brake pedal 3, which causes the vehicle to generate a yaw rate and the vehicle to move in the turning direction. Turning is facilitated by receiving a yaw moment, but in this case, as in equation (2) above, the hydraulic pressure difference ΔP, which corresponds to the steering angle θ, is multiplied by the correction coefficient, resulting in a large pressure difference during sudden steering. So that
That is, correction is performed so that the braking force difference increases and the yaw moment increases.

制動力差を操舵量のみで決定するときは、運転者の意思
が反映されず制御ゲインが不足(あるいは過剰)となる
場合があるのに対し、本実施例では、操舵速度θにも対
応させて制動力を制御し、制動力差は、操舵角θと操舵
速度θの大きさに応じて旋回方向外側車輪の制動力を内
側車輪の制動力よりも小さくすることによって生成して
いる結果、適切に制動力差が設定され、過渡制御も可能
である。操舵速度θは運転者が如何なる旋回を意図して
いるかを反映しており、θが大なるほど速いステアリン
グ操作での車両操縦を望んでいる場合であるが、このよ
うな急な操舵入力に対しても応答遅れが少なく、立上が
りが速く車両挙動が機敏となり、速いステアリング操作
の場合に高い応答性が得られるなどよく運転者の意思と
対応する。
When the braking force difference is determined only by the steering amount, the driver's intention is not reflected and the control gain may be insufficient (or excessive).In contrast, in this embodiment, the control gain is also determined based on the steering speed θ. As a result, the braking force difference is generated by making the braking force of the outer wheel in the turning direction smaller than the braking force of the inner wheel according to the magnitude of the steering angle θ and the steering speed θ. The braking force difference is set appropriately, and transient control is also possible. The steering speed θ reflects what kind of turn the driver intends to make, and the larger θ is, the faster the driver wants to operate the vehicle. The system responds well to the driver's intentions, with little response delay, quick start-up, agile vehicle behavior, and high responsiveness to fast steering operations.

これにより、回顧性の不足を招くことなく、一般に制動
時に発生する回頭性の悪さ、舵の効きの悪さ (ステア
リングホイールを切っているのに車両はその走行軌跡が
旋回方向外側へふくらもうとする傾向)を解消できると
共に、保舵時と操舵時で発生ヨーレイトに差がなく十分
な効果がないという事態を回避し得、操舵量を変化させ
つつある過渡期においても適切な制御が実現される。
This eliminates the problem of poor turning performance and poor steering effectiveness that generally occur during braking (even though the steering wheel is turned, the vehicle's trajectory tends to swell outward in the direction of the turn) without causing a lack of retrospective performance. In addition, it is possible to avoid the situation where there is no difference in the generated yaw rate between when the steering wheel is held and when the steering wheel is being steered, and there is no sufficient effect, and appropriate control can be achieved even during the transitional period when the steering amount is changing. Ru.

なお、上記ではブレーキ液圧差ΔPを操舵速度々に応じ
た補正係数に、で修正して求めたが、更にこれに加えて
車速に応じて液圧差を変化させてもよい。
In addition, although the brake fluid pressure difference ΔP was corrected and determined by the correction coefficient according to the steering speed in the above, the fluid pressure difference may be changed in addition to this according to the vehicle speed.

被駆動輪の回転数より車速を推定する等の車速検出手段
によって車速を得、第3図のステ・ンプ103での処理
において、第6図に示す如き車速に依存する補正係数K
gを追加して適用し、ΔP =に+xKz×ΔP、の演
算によりブレーキ液圧差ΔPが決定されるようにするこ
とによって、−層きめの細かい制御が可能である。
The vehicle speed is obtained by a vehicle speed detection means such as estimating the vehicle speed from the rotational speed of the driven wheels, and in the process at step 103 in FIG. 3, a correction coefficient K depending on the vehicle speed as shown in FIG. 6 is determined.
By additionally applying g and determining the brake fluid pressure difference ΔP by calculating ΔP=+xKz×ΔP, fine-grained control is possible.

又、旋回状態の検出については操舵角θを使用したが、
操舵角θの代わりに又はこれと共にセンサ29で検出の
横加速度、ヨーレイト等を用いるようにしてもよい。
In addition, the steering angle θ was used to detect the turning state, but
The lateral acceleration, yaw rate, etc. detected by the sensor 29 may be used instead of or in addition to the steering angle θ.

第7図は本発明の他の例を示す制御プログラムで、前記
プログラムがブレーキペダルを踏んでいる時のみ制御す
る方式であったのに対し、非フートブレーキ時の旋回挙
動制御をも行うようにしたものである。
FIG. 7 is a control program showing another example of the present invention. Whereas the previous program was a system that controlled only when the brake pedal was depressed, it is also possible to control turning behavior when the foot brake is not applied. This is what I did.

ステップ101〜105bの処理は第3図のステップ1
01〜105の場合に準じたものであるが、ステップ1
02でブレーキペダル3が踏まれていないと判別された
場合には、ステップ106aにおいて自動ブレーキON
タイミングか否かを判別する。これは、例えば、所定の
旋回状態にあるかどうかをみるなどして判断することが
できる。
The processing in steps 101 to 105b is performed in step 1 of FIG.
This is similar to cases 01 to 105, but step 1
If it is determined in step 02 that the brake pedal 3 is not depressed, the automatic brake is turned on in step 106a.
Determine whether the timing is right. This can be determined, for example, by checking whether the vehicle is in a predetermined turning state.

ステップ106aの答がYesの場合は、ステップ10
6bで自動ブレーキ用液圧源による制動を行わせるべく
1s=2Aの状態、即ち切換弁18をONとするための
電流に切換え設定し、次のステップ106Cでステップ
103と同様に第4図、第5図に基づき液圧差ΔP演算
処理を実行する。しかして、ステ・ノブ106dで例え
ば旋回方向内側車輪のブレーキ液圧Pin(左旋回時の
場合はPl、P3、右旋回時の場合はPZ+P4)を上
記ΔP値に設定すると共に、外側車輪のブレーキ液圧P
。uLについてはこれを0に設定し、ステップ105a
、 105bを実行して本プログラムを終了する。この
場合には、旋回方向内側車輪に対応する制御弁駆動電流
11+ 13 (左旋回時)又は12+i4(右旋回時
)は、対応する車輪のホイールシリンダ液圧が自動ブレ
ーキ系によって元圧に向けて上昇するとき前記ΔP値と
なるように該当する制御弁を作動させるべくそのパター
ン(制御弁のON−OFFパターン)が設定される一方
、外側車輪については、当該車輪用液圧制御弁駆動電流
を2Aとして保圧位置に切換え保持されるようにする。
If the answer to step 106a is Yes, step 10
6b, in order to perform braking by the automatic brake hydraulic pressure source, the state of 1s = 2A, that is, the current is switched to turn ON the switching valve 18, and in the next step 106C, as in step 103, the current shown in FIG. The fluid pressure difference ΔP calculation process is executed based on FIG. Therefore, for example, the brake fluid pressure Pin of the inner wheel in the turning direction (Pl, P3 when turning left, PZ + P4 when turning right) is set to the above ΔP value using the steering knob 106d, and the brake fluid pressure Pin of the inner wheel in the turning direction is set to the above ΔP value. Brake fluid pressure P
. Set this to 0 for uL, step 105a
, 105b is executed to terminate this program. In this case, the control valve drive current 11+13 (when turning left) or 12+i4 (when turning right) corresponding to the inner wheel in the turning direction is determined by the automatic braking system, which directs the wheel cylinder hydraulic pressure of the corresponding wheel to the main pressure. The pattern (control valve ON-OFF pattern) is set to operate the corresponding control valve so that the above-mentioned ΔP value is achieved when the wheel rises. is set to 2A, and the pressure is switched to the holding position and held.

このようにして各電流11”””14+ isを設定し
出力して電磁切換弁18、液圧制御弁13F、 14F
、 1313R,14Rを制御することにより、自動ブ
レーキ系が作動し、旋回方向内側車輪のブレーキ液圧が
ΔP値に制御され、他方外側車輪についてはそのブレー
キ液圧の上昇は阻止されることとなり、両者間に制動力
差を自動的に生成してヨーレイトを発生させることがで
きると共に、制動力差をそのときの操舵速度に応じた適
切なものにすることができる。
In this way, each current 11"""14+is is set and output to operate the electromagnetic switching valve 18 and hydraulic pressure control valves 13F and 14F.
, 1313R and 14R, the automatic brake system is activated, and the brake fluid pressure of the inner wheel in the turning direction is controlled to the ΔP value, while the brake fluid pressure of the outer wheel is prevented from increasing. It is possible to automatically generate a braking force difference between the two to generate a yaw rate, and it is also possible to make the braking force difference appropriate depending on the steering speed at that time.

なお、ステップ106aの答がNOの場合には、ステッ
プ106eでΔPを値0とし、又自動ブレーキ系も非作
動のままとする。
If the answer to step 106a is NO, ΔP is set to 0 in step 106e, and the automatic brake system is also left inactive.

以上のようにして、非制動時(非フートブレーキ時)も
本制御、即ち旋回時に自動ブレーキをかけ、しかも、そ
の場合に操舵速度の大きさにも応じて制動力差が生ずる
ように内側車輪のブレーキ液圧を高くするような制御を
行ってもよい。
As described above, this control is applied even when braking is not applied (non-foot braking), that is, automatic braking is applied when turning, and in this case, the inner wheels are controlled so that a difference in braking force is generated depending on the magnitude of the steering speed. Control may be performed to increase the brake fluid pressure.

上記各側では、前輪及び後輪をともに対象として制御し
たが、前輪側のみ又は後輪側のみを対象として内外輪間
で制動力差が生ずるようにしてもよい。又、液圧差ΔP
については、時間の関数としてもよく、例えば−旦決定
した後、時間の経過に伴って漸減し所定時間後ΔP=O
となるようにしてもよい。更に、制動力差をもたせるた
め車輪のブレーキ液圧を制御するのに、液圧センサを用
いその検出値を利用したが、予め液圧制御弁のON −
OFF操作と液圧値とを対応させるようにしておけば、
即ちフィードバック制御を行わない制御態様であれば、
本旋回挙動制御には液圧センサは不要であり、又ON 
−OFF型の制御弁ではなく比例弁を用いれば、電流指
令により液圧が決定されるので、この場合も液圧センサ
は不要であり、そのような構成で実施してもよい。
In each of the above-mentioned sides, both the front wheels and the rear wheels are controlled, but the braking force difference may be generated between the inner and outer wheels by controlling only the front wheels or only the rear wheels. Also, the fluid pressure difference ΔP
may be a function of time, for example, after being determined -1, it gradually decreases as time passes, and after a predetermined time ΔP=O
You may make it so that Furthermore, in order to provide a difference in braking force, a hydraulic pressure sensor was used and its detected value was used to control the brake hydraulic pressure of the wheels.
If you make the OFF operation correspond to the hydraulic pressure value,
In other words, if the control mode does not perform feedback control,
This turning behavior control does not require a hydraulic sensor, and the ON
If a proportional valve is used instead of a -OFF type control valve, the hydraulic pressure is determined by the current command, so a hydraulic pressure sensor is not necessary in this case as well, and such a configuration may be used.

(発明の効果) かくして本発明旋回挙動制御装置は上述の如く、旋回時
に旋回方向内外側間で車輪制動力を異ならせてヨーレイ
トを発生させると共に、その制動力差を操舵速度にも応
じて決定する構成としたから、旋回状態のみでなく操舵
速度にも対応させた適切な過渡制御も可能で、運転者の
操縦意思をより反映した制御を行わせることができ、急
な操舵入力の場合でも高い応答性が得られ運転者の操舵
フィーリングの向上を図ることができる。
(Effects of the Invention) As described above, the turning behavior control device of the present invention generates a yaw rate by varying the wheel braking force between the inner and outer sides of the turning direction when turning, and also determines the difference in braking force according to the steering speed. Because of this configuration, it is possible to perform appropriate transient control that corresponds not only to the turning state but also to the steering speed, making it possible to perform control that more closely reflects the driver's steering intention, even in the case of sudden steering input. High responsiveness can be obtained and the driver's steering feeling can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明旋回挙動制御装置の概念図、第2図は本
発明旋回挙動制御装置の一実施例を示すシステム図、 第3図は同側でのコントローラの制御プログラムの一例
を示すフローチャート、 第4図は同プログラムで適用される操舵角に応じたブレ
ーキ液圧差ΔP1を設定するための特性の一例を示す図
、 第5図は操舵速度による補正係数に、の特性の一例を示
す図、 第6図は車速に依存する補正係数に2の特性の一例を示
す図、 第7図はコントローラの制御プログラムの他の例を示す
フローチャートである。 IL、 IR・・・前輪 2L、 2R・・・後輪 3・・・ブレーキペダル 4・・・タンデムマスターシリンダ 5L、 5R,6L、 6R・・・ホイールシリンダ7
F・・・前輪ブレーキ系 7R・・・後輪ブレーキ系 8F、 8R・・・圧力応答切換弁 9F、 9R・・・パイロットシリンダ10F、 IO
R,IIF、 IIR,12F、 12R・・・管路1
3F、 13R,14F、 14R−・・液圧制御弁1
5、20F、 20R・・・ポンプ 16 19F、 19R・・・リザーバ17、21F、
 21R・・・アキュムレータ18・・・tvL切換弁 22・・・コントローラ 23・・・操舵角センサ 24・・・ブレーキスイッチ 25、26.27.28・・・車輪速センサ29・・・
横加速度センサ 31L、 31R,32L、 32R・・・液圧センサ
第3図 θf 撞酊^O
Fig. 1 is a conceptual diagram of the turning behavior control device of the present invention, Fig. 2 is a system diagram showing an embodiment of the turning behavior control device of the present invention, and Fig. 3 is a flowchart showing an example of a control program of the controller on the same side. , Fig. 4 is a diagram showing an example of the characteristics for setting the brake fluid pressure difference ΔP1 according to the steering angle applied in the same program, and Fig. 5 is a diagram showing an example of the characteristics for the correction coefficient depending on the steering speed. , FIG. 6 is a diagram showing an example of the characteristics of a correction coefficient of 2 depending on the vehicle speed, and FIG. 7 is a flowchart showing another example of the control program of the controller. IL, IR...Front wheel 2L, 2R...Rear wheel 3...Brake pedal 4...Tandem master cylinder 5L, 5R, 6L, 6R...Wheel cylinder 7
F...Front wheel brake system 7R...Rear wheel brake system 8F, 8R...Pressure response switching valve 9F, 9R...Pilot cylinder 10F, IO
R, IIF, IIR, 12F, 12R...Pipe 1
3F, 13R, 14F, 14R-...hydraulic pressure control valve 1
5, 20F, 20R...Pump 16 19F, 19R...Reservoir 17, 21F,
21R...Accumulator 18...TVL switching valve 22...Controller 23...Steering angle sensor 24...Brake switch 25, 26.27.28...Wheel speed sensor 29...
Lateral acceleration sensor 31L, 31R, 32L, 32R... Hydraulic pressure sensor Figure 3 θf

Claims (1)

【特許請求の範囲】 1、車両の旋回状態を検出する旋回状態検出手段と、 操舵速度を検出する操舵速度検出手段と、 これら手段からの信号に応答し、車両旋回時旋回状態に
応じて車両にヨーレイトを発生させるよう旋回方向内外
側間で車輪制動力を異ならせると共に、操舵速度に応じ
て制動力差を設定する車輪制動力設定手段とを具備して
なることを特徴とする車両の旋回挙動制御装置。
[Scope of Claims] 1. Turning state detection means for detecting the turning state of the vehicle; Steering speed detection means for detecting the steering speed; In response to signals from these means, the vehicle Turning of a vehicle characterized by comprising: a wheel braking force setting means for differentiating the wheel braking force between the inner and outer sides of the turning direction so as to generate a yaw rate at the same time, and setting the braking force difference according to the steering speed. Behavior control device.
JP2075617A 1990-03-27 1990-03-27 Turning motion controller for vehicle Pending JPH03276856A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2075617A JPH03276856A (en) 1990-03-27 1990-03-27 Turning motion controller for vehicle
US07/673,300 US5267783A (en) 1990-03-27 1991-03-22 Vehicle turning behavior control apparatus
DE4109925A DE4109925C2 (en) 1990-03-27 1991-03-26 Device for regulating the driving stability of a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075617A JPH03276856A (en) 1990-03-27 1990-03-27 Turning motion controller for vehicle

Publications (1)

Publication Number Publication Date
JPH03276856A true JPH03276856A (en) 1991-12-09

Family

ID=13581348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075617A Pending JPH03276856A (en) 1990-03-27 1990-03-27 Turning motion controller for vehicle

Country Status (3)

Country Link
US (1) US5267783A (en)
JP (1) JPH03276856A (en)
DE (1) DE4109925C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024297A (en) * 2007-07-17 2008-02-07 Jtekt Corp Steering device of vehicle
JP2009056949A (en) * 2007-08-31 2009-03-19 Advics:Kk Control device at turning for vehicle
JP2009255840A (en) * 2008-04-18 2009-11-05 Kanzaki Kokyukoki Mfg Co Ltd Electric ground working vehicle
JP2011073605A (en) * 2009-09-30 2011-04-14 Advics Co Ltd Motion control device of vehicle

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032232B2 (en) * 1990-04-16 2000-04-10 日産自動車株式会社 Vehicle turning behavior control device
US5251137A (en) * 1991-07-10 1993-10-05 General Motors Corporation Vehicle handling control method for antilock braking
JPH05185801A (en) * 1992-01-10 1993-07-27 Nissan Motor Co Ltd Behavior control device of vehicle
DE4234456C2 (en) * 1992-01-18 2003-11-27 Bosch Gmbh Robert Anti-locking control method
DE4215280A1 (en) * 1992-05-09 1993-11-11 Teves Gmbh Alfred Hydraulic brake system with slip control
DE4232311C1 (en) * 1992-09-26 1994-02-24 Bosch Gmbh Robert Hydraulic vehicle brake system with anti-lock device
DE4241595A1 (en) * 1992-12-10 1994-06-16 Bosch Gmbh Robert Vehicle braking system with ABS - uses 2/2 valve with packing washers resting on sealing lips of piston to shut off openings
DE4309470C2 (en) * 1993-03-24 2002-09-19 Bosch Gmbh Robert Hydraulic vehicle brake system with anti-lock device
JP2753793B2 (en) * 1993-06-03 1998-05-20 本田技研工業株式会社 Method for controlling front and rear force of vehicle wheels
JP3229074B2 (en) * 1993-06-04 2001-11-12 本田技研工業株式会社 Vehicle steering system
US5402344A (en) * 1993-08-23 1995-03-28 Martin Marietta Energy Systems, Inc. Method for controlling a vehicle with two or more independently steered wheels
EP0644093B1 (en) * 1993-09-22 2002-12-11 Aisin Seiki Kabushiki Kaisha Apparatus for controlling brake pressure to wheels
US6021367A (en) * 1994-08-24 2000-02-01 Ford Global Technologies, Inc. Vehicle steering system and method for controlling vehicle direction through differential braking of left and right road wheels
JPH0880823A (en) * 1994-09-13 1996-03-26 Toyota Motor Corp Behavior controller of vehicle
US5710705A (en) 1994-11-25 1998-01-20 Itt Automotive Europe Gmbh Method for determining an additional yawing moment based on side slip angle velocity
US5711024A (en) 1994-11-25 1998-01-20 Itt Automotive Europe Gmbh System for controlling yaw moment based on an estimated coefficient of friction
US5732378A (en) 1994-11-25 1998-03-24 Itt Automotive Europe Gmbh Method for determining a wheel brake pressure
US5732377A (en) 1994-11-25 1998-03-24 Itt Automotive Europe Gmbh Process for controlling driving stability with a yaw rate sensor equipped with two lateral acceleration meters
US5774821A (en) 1994-11-25 1998-06-30 Itt Automotive Europe Gmbh System for driving stability control
US5701248A (en) 1994-11-25 1997-12-23 Itt Automotive Europe Gmbh Process for controlling the driving stability with the king pin inclination difference as the controlled variable
US5732379A (en) 1994-11-25 1998-03-24 Itt Automotive Europe Gmbh Brake system for a motor vehicle with yaw moment control
US5694321A (en) 1994-11-25 1997-12-02 Itt Automotive Europe Gmbh System for integrated driving stability control
US5671143A (en) * 1994-11-25 1997-09-23 Itt Automotive Europe Gmbh Driving stability controller with coefficient of friction dependent limitation of the reference yaw rate
DE19549800B4 (en) 1994-11-25 2017-03-09 Continental Teves Ag & Co. Ohg Driving stability device for a vehicle
US5710704A (en) 1994-11-25 1998-01-20 Itt Automotive Europe Gmbh System for driving stability control during travel through a curve
US5742507A (en) 1994-11-25 1998-04-21 Itt Automotive Europe Gmbh Driving stability control circuit with speed-dependent change of the vehicle model
US5735584A (en) * 1994-11-25 1998-04-07 Itt Automotive Europe Gmbh Process for driving stability control with control via pressure gradients
DE19522632A1 (en) * 1995-06-22 1997-01-02 Teves Gmbh Alfred Process for improving the control behavior of an anti-lock control system
JP3257375B2 (en) * 1995-08-08 2002-02-18 トヨタ自動車株式会社 Vehicle behavior control device
JP3435924B2 (en) * 1995-08-25 2003-08-11 トヨタ自動車株式会社 Vehicle braking force control device
JP3116787B2 (en) * 1995-10-06 2000-12-11 トヨタ自動車株式会社 Vehicle behavior control device
JPH09226559A (en) * 1996-02-23 1997-09-02 Toyota Motor Corp Reference wheelspeed calculation device for controlling brake force and drive force
JP3257392B2 (en) * 1996-02-23 2002-02-18 トヨタ自動車株式会社 Vehicle behavior control device
DE19624795A1 (en) * 1996-06-21 1998-01-02 Teves Gmbh Alfred Method for regulating the driving behavior of a vehicle with tire sensors
DE19632251B4 (en) * 1996-08-09 2004-08-26 Volkswagen Ag Device and method for steering a motor vehicle
JPH10167037A (en) * 1996-12-10 1998-06-23 Unisia Jecs Corp Vehicular motion control device
DE69735222T8 (en) * 1996-12-24 2007-03-01 Denso Corp., Kariya braking system
JP3425728B2 (en) * 1997-03-28 2003-07-14 三菱ふそうトラック・バス株式会社 Vehicle behavior control device
FR2772703B1 (en) * 1997-12-22 2000-02-04 Renault METHOD FOR CONTROLLING THE BRAKING PRESSURE ON THE WHEELS OF A VEHICLE DURING TURN BRAKING
DE19809546C1 (en) * 1998-03-05 1999-10-07 Knorr Bremse Systeme Method and device for determining the wheelbase of vehicles
DE10029819C1 (en) * 2000-06-16 2002-05-23 Daimler Chrysler Ag Motor vehicle, e.g. tractor, with control system that provides selective wheel braking for assisting vehicle steering
DE10054647A1 (en) * 2000-11-03 2002-05-08 Daimler Chrysler Ag Procedure for regulating driving stability
JP4705519B2 (en) * 2005-07-28 2011-06-22 日信工業株式会社 Brake pressure control device for vehicle
SE0602484L (en) * 2006-11-22 2008-05-23 Scania Cv Ab Adaptive brake control
US8249790B2 (en) * 2007-06-04 2012-08-21 Advics Co., Ltd. Vehicle behavior control device
JP5464273B2 (en) * 2010-07-09 2014-04-09 日産自動車株式会社 Vehicle left and right wheel driving force distribution control device
US9022487B2 (en) 2011-08-11 2015-05-05 Cnh Industrial America Llc System and method for brake assisted turning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2112669A1 (en) * 1971-03-16 1972-10-12 Bosch Gmbh Robert Anti-lock device
US4042059A (en) * 1973-05-21 1977-08-16 Kelsey-Hayes Company Anti-spin control system
EP0112574A1 (en) * 1982-12-27 1984-07-04 Meditec S.A. Two-compartment prefilled syringe
JPH0645338B2 (en) * 1985-04-09 1994-06-15 日産自動車株式会社 Anti-skid controller
JPH0649446B2 (en) * 1985-11-28 1994-06-29 日本電装株式会社 Braking control device for turning vehicle
DE3545715A1 (en) * 1985-12-21 1987-07-02 Daimler Benz Ag DEVICE FOR CONTROLLING THE DRIVE IN MOTOR VEHICLES
DE3731756A1 (en) * 1987-09-22 1989-03-30 Bosch Gmbh Robert METHOD FOR REGULATING THE DRIVING STABILITY OF A VEHICLE
US5051908A (en) * 1988-04-22 1991-09-24 Honda Giken Kogyo Kabushiki Kaisha Driving wheel torque control device for vehicle
DE3919347C3 (en) * 1988-06-15 2002-05-29 Aisin Seiki Device and method for controlling vehicle movement
US4898431A (en) * 1988-06-15 1990-02-06 Aisin Seiki Kabushiki Kaisha Brake controlling system
JP2712360B2 (en) * 1988-09-02 1998-02-10 トヨタ自動車株式会社 Braking force control device
US4998593A (en) * 1989-03-31 1991-03-12 Aisin Seiki Kabushiki Kaisha Steering and brake controlling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024297A (en) * 2007-07-17 2008-02-07 Jtekt Corp Steering device of vehicle
JP4539882B2 (en) * 2007-07-17 2010-09-08 株式会社ジェイテクト Vehicle steering device
JP2009056949A (en) * 2007-08-31 2009-03-19 Advics:Kk Control device at turning for vehicle
JP2009255840A (en) * 2008-04-18 2009-11-05 Kanzaki Kokyukoki Mfg Co Ltd Electric ground working vehicle
JP2011073605A (en) * 2009-09-30 2011-04-14 Advics Co Ltd Motion control device of vehicle

Also Published As

Publication number Publication date
US5267783A (en) 1993-12-07
DE4109925C2 (en) 1995-08-10
DE4109925A1 (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JPH03276856A (en) Turning motion controller for vehicle
JP2605918B2 (en) Vehicle turning behavior control device
JP2623927B2 (en) Vehicle turning behavior control device
US7627412B2 (en) Automatic braking force control apparatus
JP5295750B2 (en) Control device for brake device
US10703348B2 (en) Hydraulic pressure control device
JPH0692751B2 (en) Acceleration slip controller
JP6544335B2 (en) Vehicle braking system
JPH09286323A (en) Braking pressure controller
JP2001010474A (en) Motion control device for vehicle
JP2861561B2 (en) Braking force control device
JPH03143757A (en) Turn action control device for vehicle
US20060208566A1 (en) Braking force control apparatus of wheeled vehicle
JP5195344B2 (en) Braking device and braking method
JP2725427B2 (en) Vehicle turning behavior control device
JP3418193B2 (en) Vehicle turning behavior control device
JPH04287753A (en) Braking force control device
JP3185216B2 (en) Vehicle behavior control device
JP2518938B2 (en) Vehicle turning behavior control device
JP4416281B2 (en) Automatic brake device
JP5446685B2 (en) Vehicle motion control device
JPH03227761A (en) Whirling behavior control system of car
JP3146718B2 (en) Braking force control device
JP3296050B2 (en) Anti-skid control device
JPH04334650A (en) Braking force control device