JPH03276621A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH03276621A
JPH03276621A JP7604790A JP7604790A JPH03276621A JP H03276621 A JPH03276621 A JP H03276621A JP 7604790 A JP7604790 A JP 7604790A JP 7604790 A JP7604790 A JP 7604790A JP H03276621 A JPH03276621 A JP H03276621A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid
solid electrolytic
manufacturing
capacitor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7604790A
Other languages
Japanese (ja)
Inventor
Yasuo Kudo
康夫 工藤
Masao Fukuyama
正雄 福山
Toshikuni Kojima
小島 利邦
Soji Tsuchiya
土屋 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7604790A priority Critical patent/JPH03276621A/en
Priority to US07/667,988 priority patent/US5140502A/en
Priority to EP19910302032 priority patent/EP0447165A3/en
Publication of JPH03276621A publication Critical patent/JPH03276621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To easily manufacture a capacitor at a low cost which is free from characteristics deterioration such as the decrease of capacitance and the increase of leak current, by keeping a solid-state electrolytic capacitor using conductive polymer in a hollow state and sealing it. CONSTITUTION:A capacitor element is constituted by arranging solid-state electrolyte 3 on a dielectric film 2 formed on the surface of an anode 1 composed of valve metal like aluminum, tantalum and titanium. Said element is kept in a hollow state without being in contact with a sheath 4 and sealed. From the viewpoint of facilitating manufacture, thermoplastic resin is desirable for sealing seath material. In particular, polyphenylene sulfide is excellent in barrier properties of water content and oxygen, and further in heat resistance. As the sealing means, any means are applicable if only hermetic properties can be obtained practically, but ultrasonic welding capable of highly reliable sealing in a short time is especially suitable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンデンザ特性とりわけ周波数特性ならびに
高温・高湿下における信頼性特性の優れた固体電解コン
デンサ、とりわけ固体電解質として導電性高分子を用い
る固体電解コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to solid electrolytic capacitors that have excellent capacitor characteristics, particularly frequency characteristics, and reliability characteristics under high temperature and high humidity conditions, and in particular solid electrolytic capacitors that use conductive polymers as the solid electrolyte. The present invention relates to a method for manufacturing a capacitor.

従来の技術 近年、電気機器のデジタル化に伴って、コンデンサも小
型大容量で高周波領域でのインピーダンスの低いものが
要求されている。従来、高周波領域で使用されるコンデ
ンサにはプラスチックコンデンサ、マイカコンデンサ、
積層セラミックコンデンサがあるが、これらのコンデン
サでは形状が大きくなり大容量化が難しい。一方、大容
量コンデンサとしてはアルミニウム乾式電解コンデンサ
あるいはアルミニウムまたはタンタル固体電解コンデン
サ等の電解コンデンサがある。これらのコンデンサでは
用いている電解質(液体電解質あるいは固体の二酸化マ
ンガン)の抵抗が高いために、高周波領域で十分低いイ
ンピーダンスを得ることはできない。
2. Description of the Related Art In recent years, with the digitalization of electrical equipment, capacitors are required to be small, large in capacity, and have low impedance in the high frequency range. Traditionally, capacitors used in the high frequency range include plastic capacitors, mica capacitors,
There are multilayer ceramic capacitors, but these capacitors have a large shape and are difficult to increase capacity. On the other hand, examples of large capacity capacitors include electrolytic capacitors such as aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. Since the electrolyte (liquid electrolyte or solid manganese dioxide) used in these capacitors has a high resistance, it is not possible to obtain sufficiently low impedance in the high frequency range.

これに対し、最近、固体電解質として二酸化マンガンの
代わりに、導電性が高く、陽極酸化性の優れた有機半導
体、7.7.8.8.−テトラシアノキノジメタンコン
ブレソクス塩(以下r TCNQ塩」と略す)、を用い
ることが提案されている。
In contrast, recently, organic semiconductors with high conductivity and excellent anodic oxidation properties have been used as solid electrolytes instead of manganese dioxide. It has been proposed to use -tetracyanoquinodimethane combresox salt (hereinafter abbreviated as rTCNQ salt).

同一出願人らになる発明(特公昭56−10777号公
報)および丹羽信−氏による発明(特開昭58−]77
609号公報に公表されているように、このようなTC
NQ塩を用いたアルミニウム固体電解コンデンサでは、
周波数特性および温度特性が著しく改良され、低い漏れ
電流特性が達成されている。また、TCNQ塩は有機物
の導電材料としては、熱的な安定性に優れているため、
得られたコンデンサの高温寿命も従来の乾式電解コンデ
ンサのそれをはるかに凌ぐとされている。さらに近年、
ピロール、チオフェンなどの複素環式のモノマーを支持
電解質を用いて電解重合することにより、支持電解質の
アニオンをドーパントとして含む高導電性の高分子を陽
極体上に形成し、これを電解質として用いる固体電解コ
ンデンサを提案されている(特開昭60−3711.4
号公報、特開昭60233017号公報)。
Invention by the same applicant (Japanese Patent Publication No. 56-10777) and invention by Shin Niwa (Japanese Patent Publication No. 58-1977)
As published in Publication No. 609, such TC
In aluminum solid electrolytic capacitors using NQ salt,
Frequency and temperature characteristics have been significantly improved, and low leakage current characteristics have been achieved. In addition, TCNQ salt has excellent thermal stability as an organic conductive material.
The high-temperature lifespan of the resulting capacitor is said to far exceed that of conventional dry electrolytic capacitors. Furthermore, in recent years,
By electrolytically polymerizing heterocyclic monomers such as pyrrole and thiophene using a supporting electrolyte, a highly conductive polymer containing the anion of the supporting electrolyte as a dopant is formed on the anode body, and this is a solid that is used as an electrolyte. Electrolytic capacitors have been proposed (Japanese Patent Application Laid-Open No. 60-3711.4
(Japanese Patent Application Laid-open No. 60233017).

発明が解決しようとする課題 しかしながら、一般に固体電解質を用いたコンデンサは
、電解質による誘電体皮膜の損傷部の修復能力が低い、
また電解質と誘電体皮膜の密着性が弱い等の問題がある
。この傾向は特に導電性高分子を電解質として用いた場
合に顕著である。
Problems to be Solved by the Invention However, capacitors using solid electrolytes generally have a low ability to repair damaged parts of the dielectric film caused by the electrolyte.
Further, there are problems such as weak adhesion between the electrolyte and the dielectric film. This tendency is particularly noticeable when a conductive polymer is used as an electrolyte.

般に固体の電子素子は機械的損傷あるいは湿度および酸
化等外気からの劣化を防止するため樹脂外装して使用に
供される。ところが導電性高分子を電解質とする固体電
解コンデンサは、樹脂外装するとその硬化あるいは冷却
過程で発生する収縮ストレスにより、電解質の誘電体皮
膜からの剥離あるいは誘電体皮膜の損傷といった好まし
くない現象が生じ、容量の低下あるいは漏れ電流の増加
といったコンデンサ特性を劣化させるといった問題があ
った。そして漏れ電流特性の増加は電解質の皮膜修復能
力が低いために、その後のエージングによっても修復は
困難であった。そのためしばしはゴム状弾性を有する樹
脂を用いてストレスを減少させることも試みられたが、
この場合でも急激な温度変化条件下に暴露されると上述
のような問題が発生し、やはり同様のコンデンサ特性の
劣化は避けられなかった。
In general, solid electronic devices are used with a resin exterior to prevent mechanical damage or deterioration from outside air such as humidity and oxidation. However, when a solid electrolytic capacitor that uses a conductive polymer as an electrolyte is coated with resin, shrinkage stress generated during the curing or cooling process can cause undesirable phenomena such as peeling of the electrolyte from the dielectric film or damage to the dielectric film. There has been a problem in that capacitor characteristics deteriorate, such as a decrease in capacity or an increase in leakage current. The increase in leakage current characteristics was caused by the low ability of the electrolyte to repair the film, and it was difficult to repair it even with subsequent aging. For this reason, attempts have been made to reduce stress by using resins with rubber-like elasticity, but
Even in this case, the above-mentioned problems would occur if the capacitor was exposed to rapid temperature changes, and similar deterioration of the capacitor characteristics could not be avoided.

本発明は上記課題を解決するもので、固体電解質の陽極
誘電体表面からの剥離の防止および誘電体皮膜の損傷の
防止を図ることにより、特性の劣化のないコンデンサを
容易に安価に製造する方法の提供を目的とするものであ
る。
The present invention solves the above problems, and is a method for easily and inexpensively manufacturing a capacitor with no deterioration in characteristics by preventing the solid electrolyte from peeling off from the anode dielectric surface and preventing damage to the dielectric film. The purpose is to provide the following.

課題を解決するための手段 本発明は上記目的を達成するもので、その技術的手段は
誘電体皮膜が設けられた弁金属表面に導電性高分子から
なる固体電解質を設けた電解コンデンサ素子を、直接外
装樹脂に接触させないように中空状態に保持して封止す
ることにより、外装樹脂からのストレスを防止するよう
にしたものである。
Means for Solving the Problems The present invention achieves the above object, and its technical means includes an electrolytic capacitor element in which a solid electrolyte made of a conductive polymer is provided on a valve metal surface provided with a dielectric film. By keeping it in a hollow state and sealing it so that it does not come into direct contact with the exterior resin, stress from the exterior resin is prevented.

作用 本発明は上記製法により、固体電解質と誘電体との剥離
および誘電体皮膜の損傷に基づく特性劣化のない固体電
解コンデンサが容易に得られる。
According to the present invention, a solid electrolytic capacitor without characteristic deterioration due to peeling of the solid electrolyte and dielectric and damage to the dielectric film can be easily obtained by the above manufacturing method.

封止する材料は実質的に水分および酸素を遮断できるも
のであれば、どのようなものでもいいが、好適には熱可
塑性プラスチックが、さらに好適には水分の透過の少な
いポリフェニレンスルファイド(PPS)が用いられる
。封止する手段はどのような手段でもよいが、好適には
溶着によることが望ましく、さらに好適には製造を容易
にするために超音波溶着法が用いられる。導電性高分子
固体電解質としては、複素環式化合物を繰り返し単位と
し、アニオンがドープされた導電性高分子が好適に用い
られる。さらに好適には、複素環式化合物としてピロー
ル、チオフェン、フランあるいはそれらの誘導体が使用
される。導電性高分子電解質の形成法としては、化学的
酸化重合および電解重合法等があり、後者の場合誘電体
表面の被覆が、二酸化マンガンのような薄い導電層を介
してなされる場合があるが、そのような場合でも本発明
は同様に適用することができる。
The sealing material may be any material as long as it can substantially block moisture and oxygen, but thermoplastics are preferably used, and polyphenylene sulfide (PPS), which has low moisture permeability, is more preferably used. is used. Although any means for sealing may be used, it is preferable to use welding, and more preferably, ultrasonic welding is used to facilitate manufacturing. As the conductive polymer solid electrolyte, a conductive polymer having a repeating unit of a heterocyclic compound and doped with an anion is preferably used. More preferably, pyrrole, thiophene, furan or derivatives thereof are used as the heterocyclic compound. Methods for forming conductive polymer electrolytes include chemical oxidative polymerization and electrolytic polymerization. In the latter case, the dielectric surface may be coated with a thin conductive layer such as manganese dioxide. , the present invention can be similarly applied to such cases.

実施例 以下に本発明の実施例を図面を用いて説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による固体電解コンデンサの基本的な構
成例を示す断面図である。アルミニウム、タンタル、チ
タン等弁金属からなる陽極1の表面に形成された誘電体
皮膜2上に固体電解質3を設けてなるコンデンサ素子を
、外装4に接触させずに中空状態に保持して封止してい
るo5はグラファイト層、6は銀ペイント層であり、7
.8はそれぞれ陽極リード、陰極リードである。本実施
例による固体電解コンデンサは、素子部分が外装に接触
していないため、外装樹脂のストレスによる固体′電解
質の陽極誘電体表面からの剥離および誘電体皮膜の損傷
がない。したがって容量低下および漏れ電流特性の増加
等の特性劣化のない固体電解コンデンサが容易に製造す
ることができる。封正に用いられる外装材は、実質的に
機密性を有するものであればどのよう々ものでも使用で
きるが、製造方法を容易にするという観点から、熱可塑
性樹脂が望ましく、なかでもポリフェニレンサルファイ
ドが水分および酸素のバリア性に優れさらに耐熱性にも
すぐれているために好適である。封止する手段は実質的
に機密性を保持できる手段であればどのような手段でも
いいが、溶着中でも超音波溶着が短時間で確実性の高い
封止が可能なため好適である。なお、陰・陽極リード取
りだし部分は寸法精度の都合上通常の溶着のみでは機密
封止が困難の場合もあり、溶着の後エポキシ樹脂を流し
込む等の適当な手段で封止することもできる。
FIG. 1 is a sectional view showing a basic configuration example of a solid electrolytic capacitor according to the present invention. A capacitor element consisting of a solid electrolyte 3 provided on a dielectric film 2 formed on the surface of an anode 1 made of a valve metal such as aluminum, tantalum, titanium, etc. is held in a hollow state without contacting an exterior 4 and sealed. O5 is a graphite layer, 6 is a silver paint layer, and 7 is a graphite layer.
.. 8 are an anode lead and a cathode lead, respectively. In the solid electrolytic capacitor according to this embodiment, since the element portion does not contact the exterior, there is no peeling of the solid electrolyte from the anode dielectric surface and no damage to the dielectric film due to stress on the exterior resin. Therefore, a solid electrolytic capacitor without deterioration of characteristics such as a decrease in capacity and an increase in leakage current characteristics can be easily manufactured. Any material can be used as the packaging material used for sealing as long as it is substantially airtight, but thermoplastic resins are preferred from the viewpoint of facilitating the manufacturing process, and polyphenylene sulfide is particularly preferred. It is suitable because it has excellent moisture and oxygen barrier properties and also has excellent heat resistance. Although any means for sealing may be used as long as it can substantially maintain airtightness, ultrasonic welding is preferable because it enables highly reliable sealing in a short time even during welding. Note that, due to dimensional accuracy, it may be difficult to hermetically seal the cathode/anode lead extraction portions by ordinary welding alone, so they may be sealed by appropriate means such as pouring epoxy resin after welding.

次に本発明の実施例について更に詳細に述べる。Next, embodiments of the present invention will be described in more detail.

〈実施例1〉 8X10mmのアルミニウムエツチド箔に陽極リードを
取り付け、3チアジビン酸アンモニウム水溶液を用い、
約70℃で35V印加して陽極酸化により誘電体皮膜を
形成後、硝酸マンガン30チ水溶液に浸しさらに250
℃で10分加熱し熱分解二酸化マンガンを表面に付着さ
せて陽極を作製した。この陽極箔にステンレス製の補助
電極を接触させ、ピロール(0,3M) 、り −トル
エンスルフオン酸ナトリウム(0,15M)水からなる
電解液に浸し、補助電極を介してポリピロールにナフタ
レンスフオン酸アニオンがドープされた電解重合膜を形
成し、水を用いて洗浄し乾燥後、電解重合膜上にカーボ
ンペーストと銀ペーストを塗布して陰極リードを取り出
し、コンデンサ素子を完成させた。第2図に示すように
この素子11をポリフェニレンサルファイドの外装ケー
ス12に納め、同じ材質の外装蓋13をかぶせ、外装材
に接触させずに保持し両者を超音波溶着により封止した
。14は超音波溶着部を示す。その後陰・陽極リード8
.7の取り出し部分の隙間をエポキシ樹脂15で埋めて
コンデンサを5個完成させた。13Vでエージングを行
った後の、120 Hzにおける初期の容量、損失係数
および10V印加2分後の漏れ電流の平均値を第1表に
示す。
<Example 1> An anode lead was attached to an 8x10 mm aluminum etched foil, and an aqueous solution of ammonium thiadibate was used.
After forming a dielectric film by anodic oxidation by applying 35V at about 70°C, it was immersed in a 30% manganese nitrate aqueous solution and further heated to 250°C.
An anode was prepared by heating at ℃ for 10 minutes to adhere pyrolytic manganese dioxide to the surface. A stainless steel auxiliary electrode is brought into contact with this anode foil, immersed in an electrolytic solution consisting of pyrrole (0.3M), ri-sodium toluenesulfonate (0.15M), and naphthalene sulfonate applied to polypyrrole via the auxiliary electrode. An electrolytic polymer film doped with acid anions was formed, washed with water and dried, then carbon paste and silver paste were applied to the electrolytic polymer film, the cathode lead was removed, and a capacitor element was completed. As shown in FIG. 2, this element 11 was placed in an exterior case 12 made of polyphenylene sulfide, covered with an exterior lid 13 made of the same material, held without contacting the exterior material, and sealed by ultrasonic welding. 14 indicates an ultrasonic welding part. Then negative/anode lead 8
.. Five capacitors were completed by filling the gap between the extraction parts of 7 with epoxy resin 15. After aging at 13V, the initial capacity at 120 Hz, loss factor, and average value of leakage current after 2 minutes of application of 10V are shown in Table 1.

以下余白 第1表 く比較例1〉 同一外形寸法になるようにシリコーンゴム型を用いて、
主剤二ピコ−)#828(油化シェルエポキシ製)と硬
化剤ジアミノジフェニルメタン(採土ケ谷化学製)を化
学量論的に配合したエポキシ樹脂でキャスティング外装
した以外実施例1と同様圧して作製した場合のコンデン
サの特性を第1表に示す。実施例1の方が容量が大きく
、漏れ電流が小さいことが明らかであり、本発明による
固体電解コンデンサは極めて優れた特性を有することが
実証された。
Comparative example 1 shown in Table 1 in the margin below> Using a silicone rubber mold so that the external dimensions are the same,
A case made by pressing in the same manner as in Example 1, except that it was cast and exteriorized with an epoxy resin containing a stoichiometric mixture of the main agent Nipico) #828 (manufactured by Yuka Shell Epoxy) and the curing agent diaminodiphenylmethane (manufactured by Odugaya Chemical). Table 1 shows the characteristics of the capacitor. It is clear that Example 1 has a larger capacity and a smaller leakage current, demonstrating that the solid electrolytic capacitor according to the present invention has extremely excellent characteristics.

〈実施例2〉 ピロールに代えてピロールとN−メチルピロールを0.
15Mずつ含む混合物を用いた以外実施例1と同様にし
てコンデンサを作製した。その結果を第1表に示す。
<Example 2> Pyrrole and N-methylpyrrole were used in place of pyrrole.
A capacitor was produced in the same manner as in Example 1 except that a mixture containing 15M each was used. The results are shown in Table 1.

〈比較例2〉 外装を比較例1と同様に行った以外、実施例2と同様に
してコンデンサを作製し、同様の特性を測定した。その
結果を第1表に示す。実施例2の方が容量が大きく、漏
れ電流が小さbことが明らかであり、本発明による固体
電解コンデンサは極めて優れた特性を有することが実証
された。
<Comparative Example 2> A capacitor was produced in the same manner as in Example 2, except that the exterior was made in the same manner as in Comparative Example 1, and the same characteristics were measured. The results are shown in Table 1. It is clear that Example 2 has a larger capacity and a smaller leakage current, proving that the solid electrolytic capacitor according to the present invention has extremely excellent characteristics.

〈実施例3〉 溶媒にアセトニトリルを、支持電解質に過塩素酸テトラ
エチルアンモニウムを、またピロールに代えチオフェン
を用いた以外、実施例1と同様にしてコンデンサを作製
した。その結果を第1表に示す。
Example 3 A capacitor was produced in the same manner as in Example 1, except that acetonitrile was used as the solvent, tetraethylammonium perchlorate was used as the supporting electrolyte, and thiophene was used instead of pyrrole. The results are shown in Table 1.

く比較例3〉 外装を比較例1と同様に行った以外、実施例3と同様に
してコンデンサを作製し、同様の特性を測定した。その
結果を第1表に示す。実施例3の方が容量が大きく、漏
れ電流が小さいことが明らかであり、本発明による固体
電解コンデンサは極めて優れた特性を有することが実証
された。
Comparative Example 3 A capacitor was produced in the same manner as in Example 3, except that the exterior was made in the same manner as in Comparative Example 1, and the same characteristics were measured. The results are shown in Table 1. It is clear that Example 3 has a larger capacity and a smaller leakage current, proving that the solid electrolytic capacitor according to the present invention has extremely excellent characteristics.

〈実施例4〉 エンボス加工後、10チリン酸水溶液を用いて約90℃
で35Vを印加した陽極酸化を行ったタンタル箔を用い
た以外、実施例1と同様にしてコンデンサを作製し、同
様の特性を測定した。その結果を第1表に示す。
<Example 4> After embossing, the temperature was about 90°C using a 10-thiphosphoric acid aqueous solution.
A capacitor was produced in the same manner as in Example 1, except that a tantalum foil that had been anodized to which 35 V was applied was used, and the same characteristics were measured. The results are shown in Table 1.

く比較例4〉 外装を比較例1と同様に行った以外、実施例4と同様に
してコンデンサを作製し、同様の特性を測定した。その
結果を第1表に示す。実施例4の方が容量が大きく、漏
れ電流が小さいことが明らかであり、本発明による固体
電解コンデンサは極めて優れた特性を有することが実証
された。
Comparative Example 4 A capacitor was produced in the same manner as in Example 4, except that the exterior was made in the same manner as in Comparative Example 1, and the same characteristics were measured. The results are shown in Table 1. It is clear that Example 4 has a larger capacity and a smaller leakage current, demonstrating that the solid electrolytic capacitor according to the present invention has extremely excellent characteristics.

なお、実施例では二酸化マンガン層を介して形成させた
電解重合高分子を電解質として用いた場合についてのみ
述べたが、二酸化マンガン以外の導電性層を用いてもよ
く、甘だ電解重合以外の方法により重合した導電性高分
子体電解質を用いた場合でも本発明は適用できる。なお
、本発明によるコンデンサは素子が実質的に中空状態に
保たれていればよく、外装するケースの形状寸法に限定
されるものではない。
In addition, in the examples, only the case where an electrolytic polymer formed via a manganese dioxide layer is used as an electrolyte is described, but a conductive layer other than manganese dioxide may also be used, and a method other than the electrolytic polymerization may be used. The present invention is also applicable to the case where a conductive polymer electrolyte polymerized by is used. Note that the capacitor according to the present invention is not limited to the shape and dimensions of the case as long as the element is kept in a substantially hollow state.

発明の効果 以上要するに本発明は、導電性高分子を用いた固体電解
コンデンサ素子を中空状態に保持して封止することによ
り、外装樹脂と接触することによるストレスのため、固
体電解質が陽極誘電体表面から剥離すにとおよび誘電体
皮膜の損傷を防止し、よって容量の低下および漏れ電流
の増加等の特性の劣化のないコンデンサを容易に安価に
製造することができる利点を有する。
Effects of the Invention In short, the present invention has a solid electrolytic capacitor element using a conductive polymer that is held in a hollow state and sealed. It has the advantage that it prevents peeling from the surface and damage to the dielectric film, making it possible to easily manufacture a capacitor at low cost without deterioration of characteristics such as a decrease in capacitance or an increase in leakage current.

4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的な構造を示す固体電解コンデン
サの断面図、第2図は本発明の製造方法を具現化する方
法を説明する断面図である。 1 陽極、2−誘電体皮膜、3・固体電解質、4・外装
、5・グラファイト層、6・・釧ベイ/ト層、7・・−
陽極リード、8・陰極リード、11・ コンデンサ素子
、12・・外装ケース、13・・外装蓋、14・・・超
音波溶着部、15・エポキシ樹脂。
FIG. 1 is a sectional view of a solid electrolytic capacitor showing the basic structure of the present invention, and FIG. 2 is a sectional view illustrating a method for embodying the manufacturing method of the present invention. 1 Anode, 2-Dielectric film, 3. Solid electrolyte, 4. Exterior, 5. Graphite layer, 6.. Senbait layer, 7..-
Anode lead, 8. Cathode lead, 11. Capacitor element, 12. Exterior case, 13. Exterior lid, 14. Ultrasonic welding part, 15. Epoxy resin.

Claims (9)

【特許請求の範囲】[Claims] (1)誘電体皮膜を形成した弁金属表面に導電性高分子
固体電解質層を設けてなる電解コンデンサ素子を、実質
的に中空状態に保持されるように外装材で封止する固体
電解コンデンサの製造方法。
(1) A solid electrolytic capacitor in which an electrolytic capacitor element is formed by providing a conductive polymer solid electrolyte layer on the surface of a valve metal with a dielectric film formed thereon, and is sealed with an exterior material so as to be held in a substantially hollow state. Production method.
(2)封止する外装材が熱可塑性樹脂である請求項1記
載の固体電解コンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the exterior material to be sealed is a thermoplastic resin.
(3)封止する外装材がポリフェニレンサルファイドを
主成分とする材料からなる請求項1又は2記載の固体電
解コンデンサの製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1 or 2, wherein the encapsulating material is made of a material containing polyphenylene sulfide as a main component.
(4)封止が溶着による手段である請求項1乃至3のい
ずれかに記載の固体電解コンデンサの製造方法。
(4) The method for manufacturing a solid electrolytic capacitor according to any one of claims 1 to 3, wherein the sealing is performed by welding.
(5)封止が超音波溶着による手段である請求項1乃至
3のいずれかに記載の固体電解コンデンサの製造方法。
(5) The method for manufacturing a solid electrolytic capacitor according to any one of claims 1 to 3, wherein the sealing is performed by ultrasonic welding.
(6)固体電解質層が複素環式化合物から選ばれる少な
くとも一種の化合物を繰り返し単位とし、少なくとも一
種のアニオンをドーパントとして含む導電性高分子から
なる請求項1記載の固体電解コンデンサの製造方法。
(6) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolyte layer is made of a conductive polymer containing at least one type of compound selected from heterocyclic compounds as a repeating unit and at least one type of anion as a dopant.
(7)固体電解質層が複素環式化合物から選ばれる少な
くとも一種の化合物を繰り返し単位とし、少なくとも一
種のアニオンをドーパントとして含む導電性高分子と二
酸化マンガンからなる請求項1記載の固体電解コンデン
サの製造方法。
(7) Manufacturing the solid electrolytic capacitor according to claim 1, wherein the solid electrolyte layer is composed of a conductive polymer containing at least one type of compound selected from heterocyclic compounds as a repeating unit and at least one type of anion as a dopant, and manganese dioxide. Method.
(8)複素環式化合物がピロール、チオフェンあるいは
それらの誘導体である請求項7記載の固体電解コンデン
サの製造方法。
(8) The method for manufacturing a solid electrolytic capacitor according to claim 7, wherein the heterocyclic compound is pyrrole, thiophene, or a derivative thereof.
(9)弁金属がアルミニウム、タンタルもしくはチタン
から選ばれる一種である請求項1記載の固体電解コンデ
ンサの製造方法。
(9) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the valve metal is one selected from aluminum, tantalum, and titanium.
JP7604790A 1990-03-12 1990-03-26 Manufacture of solid-state electrolytic capacitor Pending JPH03276621A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7604790A JPH03276621A (en) 1990-03-26 1990-03-26 Manufacture of solid-state electrolytic capacitor
US07/667,988 US5140502A (en) 1990-03-12 1991-03-12 Solid electrolytic capacitors and method for manufacturing the same
EP19910302032 EP0447165A3 (en) 1990-03-12 1991-03-12 Solid electrolytic capacitors and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7604790A JPH03276621A (en) 1990-03-26 1990-03-26 Manufacture of solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03276621A true JPH03276621A (en) 1991-12-06

Family

ID=13593879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7604790A Pending JPH03276621A (en) 1990-03-12 1990-03-26 Manufacture of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03276621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636126B2 (en) * 1972-02-24 1981-08-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636126B2 (en) * 1972-02-24 1981-08-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US5140502A (en) Solid electrolytic capacitors and method for manufacturing the same
US6128180A (en) Solid electrolytic capacitor using a conductive polymer film
US5117332A (en) Solid electrolytic capacitors and method for manufacturing the same
KR20210156847A (en) Solid Electrolytic Capacitors
JPS61240625A (en) Solid electrolytic capacitor
JPH03276621A (en) Manufacture of solid-state electrolytic capacitor
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JP4066473B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2853376B2 (en) Manufacturing method of capacitor
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
KR100753612B1 (en) Solid Electrolyte Capacitor and Method for Producing the Same
JP2000228331A (en) Manufacture of electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JP3548040B2 (en) Solid electrolytic capacitors
JP2694454B2 (en) Solid electrolytic capacitors
JPH1174155A (en) Manufacture of solid electrolytic capacitor
JP3500068B2 (en) Electrolytic capacitor and method of manufacturing the same
JPH0266923A (en) Solid electrolytic capacitor
JP2776113B2 (en) Manufacturing method of capacitor
JPH0453117A (en) Solid electrolytic capacitor and its manufacture
JPH03285323A (en) Solid electrolytic capacitor
JPH0614466Y2 (en) Chip type solid electrolytic capacitor
JP3851015B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02132815A (en) Solid electrolytic capacitor and manufacture thereof