JPH03276565A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH03276565A
JPH03276565A JP2078395A JP7839590A JPH03276565A JP H03276565 A JPH03276565 A JP H03276565A JP 2078395 A JP2078395 A JP 2078395A JP 7839590 A JP7839590 A JP 7839590A JP H03276565 A JPH03276565 A JP H03276565A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
oxygen
plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2078395A
Other languages
Japanese (ja)
Inventor
Noritatsu Sawada
沢田 昇龍
Takayuki Hizawa
桧沢 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2078395A priority Critical patent/JPH03276565A/en
Publication of JPH03276565A publication Critical patent/JPH03276565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate manufacture by laminating cell units on both faces of a thin zirconia ceramic, feeding the fuel gas to a porous conducting material of one of the cell units to form a fuel chamber, and feeding the oxygen- containing gas to a porous conducting material of the other to form an oxygen chamber. CONSTITUTION:Multiple cell units 14 each provided with plate-shaped porous conducting materials 13a, 13b on both faces of a thin zirconia ceramic (zirconia plate) 12 are laminated via inter-connectors 15. The fuel gas such as H2 gas or CO gas is fed to one porous conducting material 13a of each cell unit 14 to form a fuel chamber 16, and the oxygen-containing gas such as air is fed to the other porous conducting material 13b to form an oxygen chamber 17. Individual component members are formed into a flat shape, and the machining of the component members is facilitated.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、燃料電池、特にいわゆる第3世代と称され
る固体電解質型燃料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to fuel cells, and particularly to so-called third generation solid oxide fuel cells.

「従来の技術」 燃料電池は、水素や一酸化炭素等の通常燃料として用い
られる化学物質を活物質として用いる電池である。すな
わち燃料の酸化反応を電気化学的に行なわせ、その酸化
過程における自由エネルギー変化を直接的に電気エネル
ギーに変換する装置であって、原理的に高いエネルギー
変換効率か期待てきることから、その実用化に向けて種
々の研究がなされている。
"Prior Art" A fuel cell is a battery that uses, as an active material, a chemical substance normally used as a fuel, such as hydrogen or carbon monoxide. In other words, it is a device that electrochemically performs the oxidation reaction of fuel and directly converts the free energy change in the oxidation process into electrical energy. Various studies are being conducted toward the realization of

このような燃料電池は、使用する電解質および作動温度
によって、第一世代(リン酸塩型、低温型)、第二世代
(溶融炭酸塩型、中温型)および第三世代(固体電解質
型、高温型)に分類され、現在までは第一、第二世代を
中心に開発が進められてきた。
Depending on the electrolyte used and the operating temperature, such fuel cells can be of first generation (phosphate type, low temperature type), second generation (molten carbonate type, medium temperature type) and third generation (solid electrolyte type, high temperature type). Until now, development has been focused on the first and second generations.

一方、より高い効率での発電か可能とされている第三世
代の固体電解質型燃料電池についても国内外で研究が進
められてきている。現在までのところ、この第三世代の
固体電解質型燃料電池の具体的なセル構造としては、チ
ューブ型と平板型か知られている。
On the other hand, research is progressing domestically and internationally on third-generation solid oxide fuel cells, which are believed to be capable of generating electricity with higher efficiency. To date, the specific cell structures of this third generation solid oxide fuel cell are known as tube type and flat plate type.

これらのうち、平板型はチューブ型に比べ、無駄のない
構造とすることができ、小型化が可能である。
Among these, the flat plate type can have a leaner structure and can be made smaller than the tube type.

この平板型燃料電池の代表的なものとしては、第5図に
示すモノリシック型燃料電池か知られている。このモノ
リシック型燃料電池は、安定化ジルコニア等の酸化物イ
オン導電性材料を波板状に成形した固体電解質1の一面
にアノード2を形成し、他面にカソード3を形成してセ
ル4を構成し、このセル4を、インターコネクタ5を介
して多数積層して構成されている。また各セル4には、
燃料ガスを流す燃料室6と酸素含有ガスを流す酸素室7
とが交互に形成されている。
A monolithic fuel cell shown in FIG. 5 is known as a typical type of this flat plate fuel cell. In this monolithic fuel cell, an anode 2 is formed on one side of a solid electrolyte 1 made of a corrugated plate-shaped oxide ion conductive material such as stabilized zirconia, and a cathode 3 is formed on the other side to form a cell 4. However, a large number of cells 4 are stacked together via interconnectors 5. Also, in each cell 4,
A fuel chamber 6 through which fuel gas flows and an oxygen chamber 7 through which oxygen-containing gas flows.
are formed alternately.

「発明が解決しようとする課題」 しかしながら、このモノリシック型燃料電池は、上述し
たように波板状に成形した固体電解質lを用いているこ
とから、セルの形成や多数のセルの積層が非常に難しく
、作製が困難であった。
``Problem to be solved by the invention'' However, since this monolithic fuel cell uses a solid electrolyte formed into a corrugated plate shape as described above, it is extremely difficult to form cells and stack a large number of cells. It was difficult and difficult to manufacture.

またセル自体の機械的強度が低いために壊れ易く、実用
化か困難であった。
In addition, the cell itself has low mechanical strength and is easily broken, making it difficult to put it into practical use.

この発明は、上記事情に鑑みてなされたもので、製造が
容易であり、機械的強度にも優れた固体電解質型燃料電
池の提供を目的としている。
This invention was made in view of the above circumstances, and aims to provide a solid oxide fuel cell that is easy to manufacture and has excellent mechanical strength.

「課題を解決するf二めの手段− この発明の固体電解質型燃料電池は、固体電解質となる
薄板状ジルコニアセラミックスの両面に、板状の多孔質
導電物質が設けられ!ニセルユニットが、インターコネ
クタを介して複数個積層されてなり、それぞれのセルユ
ニットの一方の多孔質導電物質に燃料ガスを供給して燃
料室を形成し、他方の多孔質導電物質に酸素含有ガスを
供給して酸素室を形成して構成し、上記課題を解消した
"Second Means to Solve the Problem - The solid oxide fuel cell of the present invention has a plate-shaped porous conductive material provided on both sides of a thin plate-shaped zirconia ceramic serving as a solid electrolyte! A plurality of cell units are stacked together via connectors, and fuel gas is supplied to one porous conductive material of each cell unit to form a fuel chamber, and oxygen-containing gas is supplied to the other porous conductive material to generate oxygen. The above problem was solved by forming and configuring the chamber.

「作用」 この発明の固体電解質型燃料電池は、各セルユニットの
薄板ジルコニアセラミックスの一方の面側の多孔質導電
物質に燃料ガスを供給して燃料室を形成し、他方の面側
の多孔質導電物質に酸素含有ガスを供給して酸素室を形
成することによって、これら多孔質導電物質の間あるい
は薄板状ジルコニアセラミックスの両面に形成された電
極の間に起電力が生じる。そしてこの発明の固体電解質
型燃料電池にあっては、各構成部材か全て平板状である
ので、各構成部材の加工が容易となる。
"Function" In the solid oxide fuel cell of the present invention, fuel gas is supplied to the porous conductive material on one side of the thin zirconia ceramic of each cell unit to form a fuel chamber, and the porous conductive material on the other side is By supplying an oxygen-containing gas to the conductive material to form an oxygen chamber, an electromotive force is generated between the porous conductive materials or between the electrodes formed on both surfaces of the thin plate-like zirconia ceramic. In the solid oxide fuel cell of the present invention, since all of the constituent members are flat, each constituent member can be easily processed.

マに薄板状ジルコニアセラミックスを多孔質導電物質で
挾むことにより、薄く脆弱なジルコニアセラミックスが
補強され、全体を組み立てfニ時に機械的強度か強く、
組み立て工程も簡単である。
By sandwiching thin plate-shaped zirconia ceramics between porous conductive materials, the thin and fragile zirconia ceramics are reinforced, and the mechanical strength is increased when the whole is assembled.
The assembly process is also simple.

さらに各層の厚みを変更することが容易であり、各層を
薄く形成すれば、従来の平板型燃料電池よりも薄型化、
小型化が可能となる。
Furthermore, it is easy to change the thickness of each layer, and by forming each layer thinner, it can be made thinner than a conventional flat plate fuel cell.
Miniaturization becomes possible.

「実施例」 箪1図および第2図は、本発明の一実施例を示す図であ
って、図中符号IIは固体電解質型燃料電池(以下、燃
料電池という)である。
Embodiment FIG. 1 and FIG. 2 are diagrams showing an embodiment of the present invention, and reference numeral II in the figures indicates a solid oxide fuel cell (hereinafter referred to as a fuel cell).

この燃料電池11は、薄板状ジルコニアセラミックス(
以下、ジルコニア板という)12の両面に、板状の多孔
質導電物質13a、13bが設けられたセルユニシト1
4が、インターコネクタ15を介して複数個積層されて
構成されている。
This fuel cell 11 is made of thin plate-like zirconia ceramics (
A cell unit 1 (hereinafter referred to as a zirconia plate) in which plate-shaped porous conductive materials 13a and 13b are provided on both sides of the zirconia plate 12.
4 are stacked together via an interconnector 15.

それぞれのセルユニット14の一方の多孔質導電物質+
3aには、H,ガスやCOガスなどの燃料ガスか供給さ
れて燃料室16か形成され、他方の多孔質導電物質+3
bには、空気なとの酸素含有ガスか供給されて酸素室1
7か形成されている。
One porous conductive material of each cell unit 14 +
A fuel gas such as H, gas or CO gas is supplied to 3a to form a fuel chamber 16, and the other porous conductive material +3
An oxygen-containing gas such as air is supplied to oxygen chamber 1.
7 is formed.

」二記ンルコニア板12は、固体電解質(酸化物イオン
導電体)として機能するもので、二酸化ノルコニウムを
母体としこれにイツトリアやカルノアなどの安定化剤を
添加した安定化ジルコニアの薄板材が好適に使用される
。このジルコニア板は、緻密に焼結されてガス透過性の
無い材料を使用することが望ましい。このジルコニア板
が緻密てないと、ガスが透過して燃料もしくは酸素が十
分イオン化されないことになる。緻密に焼結されたジル
コニア板は、高温(1000°C程度)で比較的高い酸
化物イオン導電性を示し、安定で機械的強度も強く、ま
fコ比較的安価であり、燃料電池用固体電解質材料とし
て特に優れている。
The luconia plate 12 functions as a solid electrolyte (oxide ion conductor), and is preferably a thin plate material of stabilized zirconia made of norconium dioxide as a matrix and to which a stabilizer such as yttria or Carnoy is added. used. It is desirable to use a material that is densely sintered and has no gas permeability as the zirconia plate. If this zirconia plate is not dense, gas will pass through it and fuel or oxygen will not be sufficiently ionized. Densely sintered zirconia plates exhibit relatively high oxide ion conductivity at high temperatures (approximately 1000°C), are stable and have strong mechanical strength, are relatively inexpensive, and are a solid material for fuel cells. Particularly excellent as an electrolyte material.

また上記多孔質導電物質13a、13bは、通気性があ
り導電性が良好であるとともに、燃料カスが供給されて
燃料室16となる側のものは、還元雰囲気で安定である
必要があり、空気などの酸素含有ガスか供給されて酸素
室17となる側のものは、1000℃の酸素の存在する
雰囲気に耐えうる耐酸化性が必要である。
In addition, the porous conductive materials 13a and 13b must have good air permeability and conductivity, and the side to which fuel scum is supplied and which will become the fuel chamber 16 must be stable in a reducing atmosphere, and must be air-permeable. The side to which an oxygen-containing gas such as the like is supplied and becomes the oxygen chamber 17 needs to have oxidation resistance that can withstand an atmosphere containing oxygen at 1000°C.

これらの多孔質導電物質13a、I3bとして好適な材
料を例示すれば、燃料室16側の多孔質導電物質13a
としては、ニッケルやコバルトの単体もしくは合金を、
粉末冶金などの手法によって多孔質に形成した金属多孔
質材料やニッケルとジルコニアのサーメットなどの材料
が好適に使用される。また酸素室17側の多孔質導電物
質13bとしてはLaMn0:+、L aS rM n
o 3、L aN I 03、L aC003などの導
電性セラミックスや、高価格であるが白金などの高融点
の貴金属などが使用される。
Examples of suitable materials for these porous conductive materials 13a and I3b include the porous conductive material 13a on the fuel chamber 16 side;
As for nickel or cobalt alone or alloy,
Materials such as porous metal materials formed porous by methods such as powder metallurgy and cermets of nickel and zirconia are preferably used. Further, as the porous conductive material 13b on the oxygen chamber 17 side, LaMn0:+, LaS rM n
Conductive ceramics such as O 3, LaN I 03, and LaC003, and expensive noble metals with high melting points such as platinum are used.

また上ε己インターコネクタ15は、セルユニット14
を多数個直列接続するために、前段のセルユニット14
のアノードとなる酸素室17側の多孔質導電物質13b
と、次段のセルユニット14のカソードとなる燃料室1
6側の多孔質導電物質13aとを電気的に接続するとと
もに、燃料室16と酸素室17とを分離するためのもの
である。
In addition, the upper ε self interconnector 15 is connected to the cell unit 14.
In order to connect a large number of cell units in series, the previous stage cell unit 14
The porous conductive material 13b on the oxygen chamber 17 side serves as an anode.
and the fuel chamber 1 which becomes the cathode of the next stage cell unit 14.
This is for electrically connecting the porous conductive material 13a on the side 6 and separating the fuel chamber 16 and the oxygen chamber 17.

このインターコネクタ15には、良好な導電性を有し、
還元雰囲気および高温酸化雰囲気で安定でかつガス透過
性の無い板状材が使用され、特にL aCro 3また
はこれにSrを加えたセラミックス薄板材が好適に使用
される。
This interconnector 15 has good conductivity,
A plate material that is stable in a reducing atmosphere and a high temperature oxidizing atmosphere and has no gas permeability is used, and in particular, LaCro 3 or a ceramic thin plate material with Sr added thereto is preferably used.

このように構成されfこ燃料電池11は、各セルユニッ
ト14のジルコニア板12の一方の面側の多孔質導電物
質13aにH,ガス、COガスなどの燃料ガスを供給し
て燃料室16を形成し、他方の面側の多孔質導電物質1
3bに空気なとの酸素含有カスを供給して酸素室17を
形成することにより、これら多孔質導電物質13a、1
3bかそれぞれカソードおよびアノードとなり、これら
の間に起電力が生じる。さらにこの燃料電池IIでは、
多数のセルユニット14がインターコネクタ15によっ
て直列に接続されており、燃料電池11の最外側の両面
に無気孔の電極を設け、これらを外部回路を通して接続
することにより、電力を取り出すことができる。
The fuel cell 11 constructed in this way supplies a fuel gas such as H, gas, or CO gas to the porous conductive material 13a on one side of the zirconia plate 12 of each cell unit 14 to open the fuel chamber 16. and porous conductive material 1 on the other side.
These porous conductive materials 13a, 1
3b becomes a cathode and an anode, respectively, and an electromotive force is generated between them. Furthermore, in this fuel cell II,
A large number of cell units 14 are connected in series by interconnectors 15, and electric power can be extracted by providing nonporous electrodes on both outermost surfaces of the fuel cell 11 and connecting these through an external circuit.

この燃料電池11にあっては、各構成部材か全て平板状
であるので、各構成部材の加工か容易であり、ま1コ各
構成部材を多数積層して燃料電池llを形成する組み立
て工程も簡単であることがら、燃料電池の製造が容易と
なり、低コスト化を図ることがてきる。
In this fuel cell 11, since all the constituent members are flat, it is easy to process each constituent member, and the assembly process of stacking a large number of each constituent member to form the fuel cell 11 is also easy. Since it is simple, manufacturing of the fuel cell becomes easy and costs can be reduced.

また薄板状のジルコニア板12の両面に板状の多孔質導
電物質を設けたことにより脆弱なジルコニア板12が補
強され、燃料電池【l全体の機械的強度が強くなるので
、実用性のある燃料電池を構成することができる。
In addition, by providing a plate-shaped porous conductive material on both sides of the thin zirconia plate 12, the fragile zirconia plate 12 is reinforced, and the mechanical strength of the entire fuel cell is increased, making it a practical fuel. A battery can be constructed.

さらに各層の厚みを変更することが容易であり、各層を
薄く形成すれば、従来の平板型燃料電池よりも薄型化、
小型化か可能となる。
Furthermore, it is easy to change the thickness of each layer, and by forming each layer thinner, it can be made thinner than a conventional flat plate fuel cell.
It becomes possible to downsize.

第3図は、この発明の他の実施例を示すものであって、
符号18は燃料電池である。この燃料電池18はご先の
実施例での燃料電池11とほぼ同様の構成要素を備えて
構成されている他、ジルコニア板I2の一方の面側にカ
ソード19を形成し、他方の面側にアノード20本弁2
爾1.ナー雷≦付・ソIしフェア板21を用いて構成さ
れている。
FIG. 3 shows another embodiment of the invention,
Reference numeral 18 is a fuel cell. This fuel cell 18 is constructed with almost the same components as the fuel cell 11 in the previous embodiment, and also has a cathode 19 formed on one side of the zirconia plate I2 and an anode on the other side. 20 valves 2
1. It is constructed by using a fair plate 21 with inner and outer lightning.

上記カソード19およびアノ−1;’ 20は、高い電
子導電率をもち、ジルフェア板12との接着性かよ(、
適当な気孔を有したものか使用される。
The cathode 19 and the anode 1;' 20 have high electronic conductivity and are adhesive to the Zilfair plate 12.
A material with appropriate pores is used.

カソード19としては還元雰囲気で安定な多孔質ニッケ
ルやニッケルとジルコニアのサーメツト材が好適に用い
られ、アノード20としてはLaMnO3、LaSrM
nO3か好適に使用される。
As the cathode 19, porous nickel or a cermet material of nickel and zirconia, which is stable in a reducing atmosphere, is suitably used, and as the anode 20, LaMnO3, LaSrM
nO3 is preferably used.

この燃料電池18は、先の実施例での燃料電池11と同
様に、各セルユニソ1−14のジルコニア板12の一方
の面側の多孔質導電物質+ 3 al、:Htガス、C
Oガスなどの燃料カスを供給して燃料室16を形成し、
他方の面側の多孔質導電物質13bに空気などの酸素含
有カスを供給して酸素室17を形成することにより、ジ
ルコニア板12を挾んで設けられたカソード19とアノ
ード20間に起電力が生じる。第4図に示すように燃料
ガスとしてH,、Coを用いた場合について、これを化
学式で示せば、 アノード:Ot  −20”−(1,)■ (ジルコニ
ア板) カソード: H,+CO−H,0士CO2(2)アノー
ド側て02か解離して02−が生じ、固体電解質中を通
過する。その結果としてe−の流れが生じて起電力とな
る。
Similar to the fuel cell 11 in the previous embodiment, this fuel cell 18 is made of a porous conductive material + 3 al, :Ht gas, C
A fuel chamber 16 is formed by supplying fuel residue such as O gas,
By supplying oxygen-containing waste such as air to the porous conductive material 13b on the other side to form the oxygen chamber 17, an electromotive force is generated between the cathode 19 and the anode 20, which are provided with the zirconia plate 12 in between. . As shown in Figure 4, when H,, Co is used as the fuel gas, the chemical formula is as follows: Anode: Ot -20''-(1,) (zirconia plate) Cathode: H, +CO-H , 0 - CO2 (2) On the anode side, 02 dissociates to produce 02-, which passes through the solid electrolyte.As a result, a flow of e- is generated and an electromotive force is generated.

さらにこの燃料電池18では、多数のセルユニットがイ
ンターコネクタ15によって直列に接続されており、第
4図に示すように、燃料電池18の最外側の両面に無気
孔の電極22を設け、これらを外部回路を通して接続す
ることにより、電力を取り出すことができる。
Further, in this fuel cell 18, a large number of cell units are connected in series by an interconnector 15, and as shown in FIG. Power can be extracted by connecting through an external circuit.

この燃料電池18は、先の実施例での燃料電池11と同
様の効果が得られる。
This fuel cell 18 provides the same effects as the fuel cell 11 in the previous embodiment.

「発明の効果」 以上説明したように、本発明の固体電解質型燃料電池に
あっては、各構成部材が全て平板状であるので、各構成
部材の加工が容易であり、また各構成部材を多数積層し
て燃料電池を形成する組み立て工程も簡単であることか
ら、燃料電池の製造が容易となり、低コスト化を図るこ
とができる。
"Effects of the Invention" As explained above, in the solid oxide fuel cell of the present invention, since all of the constituent members are flat, it is easy to process each constituent member, and each constituent member can be easily processed. Since the assembly process of stacking a large number of fuel cells to form a fuel cell is also simple, manufacturing of the fuel cell becomes easy and costs can be reduced.

また薄板状のジルコニア板の両面に板状の多孔質導電物
質を設けたことにより脆弱なジルコニア板が補強され、
燃料電池全体の機械的強度か強くなるので、実用性のあ
る燃料電池を構成することができる。
In addition, by providing a plate-shaped porous conductive material on both sides of the thin zirconia plate, the fragile zirconia plate is reinforced.
Since the mechanical strength of the entire fuel cell is increased, a practical fuel cell can be constructed.

さらに各層の厚みを変更することが容易であり、各層を
薄く形成すれば、従来の平板型燃料電池よりも薄型化、
小型化が可能となる。
Furthermore, it is easy to change the thickness of each layer, and by forming each layer thinner, it can be made thinner than a conventional flat plate fuel cell.
Miniaturization becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の一実施例を示すもので
あって、第1図は燃料電池の断面図、第2図は第1図の
A部拡大図、第3図および第4図は本発明の他の実施例
を示すものであって、第3図は燃料電池の断面図、第4
図はこの燃料電池の作動原理を説明するための概略構成
図、第5図は従来の平板型燃料電池の一例を示す断面図
である。 11.18・・・・・・燃料電池(固体電解質型燃料電
池)12・・・・・ジルコニア板 3 ・・−多孔質導電物質 4・・・・セルユニット 5・・ インターコネクタ 6− ・・燃料室 7・・・・・・酸素室 9・・・・カソード(燃料極) 0・ ・・アノード(酸素極)
1 and 2 show an embodiment of the present invention, in which FIG. 1 is a sectional view of a fuel cell, FIG. 2 is an enlarged view of part A in FIG. 1, and FIGS. 4 shows another embodiment of the present invention, FIG. 3 is a sectional view of the fuel cell, and FIG. 4 is a sectional view of the fuel cell.
The figure is a schematic configuration diagram for explaining the operating principle of this fuel cell, and FIG. 5 is a sectional view showing an example of a conventional flat plate fuel cell. 11.18 Fuel cell (solid electrolyte fuel cell) 12 Zirconia plate 3 Porous conductive material 4 Cell unit 5 Interconnector 6- Fuel chamber 7...Oxygen chamber 9...Cathode (fuel electrode) 0...Anode (oxygen electrode)

Claims (1)

【特許請求の範囲】[Claims] 固体電解質となる薄板状ジルコニアセラミックスの両面
に、板状の多孔質導電物質が設けられたセルユニットが
、インターコネクタを介して複数個積層されてなり、そ
れぞれのセルユニットの一方の多孔質導電物質に燃料ガ
スを供給して燃料室を形成し、他方の多孔質導電物質に
酸素含有ガスを供給して酸素室を形成したことを特徴と
する固体電解質型燃料電池。
A plurality of cell units each having a plate-shaped porous conductive material provided on both sides of a thin plate-shaped zirconia ceramic serving as a solid electrolyte are stacked together via interconnectors, and the porous conductive material on one side of each cell unit A solid oxide fuel cell characterized in that a fuel chamber is formed by supplying fuel gas to the other porous conductive material, and an oxygen chamber is formed by supplying an oxygen-containing gas to the other porous conductive material.
JP2078395A 1990-03-27 1990-03-27 Solid electrolyte fuel cell Pending JPH03276565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078395A JPH03276565A (en) 1990-03-27 1990-03-27 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078395A JPH03276565A (en) 1990-03-27 1990-03-27 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH03276565A true JPH03276565A (en) 1991-12-06

Family

ID=13660829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078395A Pending JPH03276565A (en) 1990-03-27 1990-03-27 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH03276565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515225A (en) * 2006-12-28 2010-05-06 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Interconnecting member for solid oxide fuel cell comprising metal and titanate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515225A (en) * 2006-12-28 2010-05-06 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Interconnecting member for solid oxide fuel cell comprising metal and titanate

Similar Documents

Publication Publication Date Title
US9455453B2 (en) Fuel cell, and fuel cell stack
JPH03241670A (en) Solid electrolyte type fuel cell
US8652709B2 (en) Method of sealing a bipolar plate supported solid oxide fuel cell with a sealed anode compartment
EP1889650B1 (en) Electrochemical devices
JP2015183252A (en) Cell stack and electrolytic module, and electrolytic apparatus
JP2003263994A (en) Solid electrolyte fuel cell
JP4512911B2 (en) Solid oxide fuel cell
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
JP7236966B2 (en) Electrochemical reaction cell stack
JPH03276565A (en) Solid electrolyte fuel cell
US7803493B2 (en) Fuel cell system with separating structure bonded to electrolyte
JP2002358980A (en) Solid electrolyte fuel cell
JPH0644981A (en) Flat plate-shaped solid electrolyte fuel cell
JPH07145492A (en) Steam electrolytic cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH0462757A (en) Solid electrolyte type fuel cell
JP2013257973A (en) Solid oxide fuel cell stack
JPH0294365A (en) Solid electrolyte fuel cell
JP7278241B2 (en) electrochemical reaction single cell
JP7245210B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP2010153212A (en) Electrochemical device
JP4513396B2 (en) Solid oxide fuel cell
WO2018146809A1 (en) Electrochemical cell stack
JPH06150958A (en) Solid electrolyte fuel cell