JPH03275656A - Production of n,n-dimethylacetamide - Google Patents

Production of n,n-dimethylacetamide

Info

Publication number
JPH03275656A
JPH03275656A JP2073380A JP7338090A JPH03275656A JP H03275656 A JPH03275656 A JP H03275656A JP 2073380 A JP2073380 A JP 2073380A JP 7338090 A JP7338090 A JP 7338090A JP H03275656 A JPH03275656 A JP H03275656A
Authority
JP
Japan
Prior art keywords
trimethylamine
rhodium
dimethylacetamide
reaction
elemental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2073380A
Other languages
Japanese (ja)
Other versions
JP2780425B2 (en
Inventor
Kazuo Tanaka
和夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2073380A priority Critical patent/JP2780425B2/en
Publication of JPH03275656A publication Critical patent/JPH03275656A/en
Application granted granted Critical
Publication of JP2780425B2 publication Critical patent/JP2780425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound in high yield even under low reaction pressure by reacting trimethylamine with carbon monoxide in the presence of a catalyst consisting of elemental rhodium and elemental iodine and/or bromine. CONSTITUTION:N,N-dimethylacetamide useful as a solvent can be produced by reacting trimethylamine with carbon monoxide in the presence of a catalyst consisting of elemental rhodium as the main catalyst component and elemental iodine and/or bromine as a cocatalyst component under a carbon monoxide partial pressure of >=5kg/cm<2> (preferably 10-100kg/cm<2>) at 100-350 deg.C (preferably 150-300 deg.C). The amount of the elemental rhodium is 10-5 to 1 atom (preferably 10<-3> to 10<-1> atom) per 1mol of trimethylamine and the atomic ratio of elemental iodine or bromine to elemental rhodium is 0.1-100 (preferably 1-20).

Description

【発明の詳細な説明】 (産業上の利用分野〉 N、 N−ジメチルアセトアミドは、沸点及び引火点が
高く熱的及び化学的に安定であり、且つ各種無機及び有
機化合物に対する強力な溶解力を有する極性溶媒となる
為、繊維や樹脂の溶剤、医薬品や写真薬等の各種反応溶
剤として工業的に広汎な用途をもつ有用な化合物である
Detailed Description of the Invention (Industrial Application Field) N,N-dimethylacetamide has a high boiling point and flash point, is thermally and chemically stable, and has a strong dissolving power for various inorganic and organic compounds. Because it is a polar solvent, it is a useful compound that has a wide range of industrial uses as a solvent for fibers and resins, and as a solvent for various reactions such as pharmaceuticals and photographic chemicals.

(従来の技術及び課題点) 従来、N、 N−ジメチルアセトアミドの工業的な製造
法は、出発原料としてジメチルアミンを用いている。
(Prior Art and Problems) Conventionally, industrial methods for producing N,N-dimethylacetamide use dimethylamine as a starting material.

一般にジメチルアミンは、メタノールとアンモニアとか
らの脱水反応によって製造されるが、この際に平衡論上
からモノメチル、ジメチル、及びトリメチルなる3種の
アミンが生成することが避けられず、又実際上は3種の
アミンのうちトリメチルアミンが最も多く生成する。
Generally, dimethylamine is produced by a dehydration reaction from methanol and ammonia, but at this time, it is unavoidable from the equilibrium theory that three types of amines, monomethyl, dimethyl, and trimethyl, are produced, and in practice, Among the three types of amines, trimethylamine is produced the most.

しかしながら、大量に副生ずるトリメチルアミンには工
業的な需要は殆どない為に、通常はこの副生トリメチル
アミンを上記反応系へ再循環し、不均化反応によりジメ
チルアミン、モノメチルアミンとする操作が連続的に繰
り返される。
However, since there is almost no industrial demand for trimethylamine, which is produced in large quantities as a by-product, the process is usually to recycle this by-product trimethylamine to the above reaction system and convert it into dimethylamine and monomethylamine through a disproportionation reaction. repeated.

したがって、需要の少ないトリメチルアミンを循環再使
用することなく他の有用化合物に変える為の原料として
使用することができれば、メチルアミン製造工業に著し
い合理化をもたらすことが可能となり、その工業的意義
は大きい。
Therefore, if trimethylamine, which is in low demand, can be used as a raw material for converting it into other useful compounds without recycling it, it will be possible to bring significant rationalization to the methylamine manufacturing industry, and it will have great industrial significance.

トリメチルアミンと一酸化炭素を反応させることによる
N、 N−ジメチルアセトアミドの合或法としては、特
公昭54−11286 、米国特許3407231、ヨ
ーロッパ特許185823が知られているが、いずれも
コバルト触媒を用いて反応を実施するものであり、高い
反応圧力を要すること、反応率及び選択率が充分でない
こと等から工業的には満足される方法とは云えないもの
であった。
Japanese Patent Publication No. 54-11286, U.S. Pat. This method cannot be said to be industrially satisfactory because it requires a high reaction pressure, and the reaction rate and selectivity are insufficient.

(課題点を解決するための手段) 本発明者は、トリメチルアミンと一酸化炭素を反応させ
てN、N−ジメチルアセトアミドを合成するに当り、ロ
ジウム触媒系を用いることにより低い反応圧力下におい
ても高収率を以てN、 N−ジメチルアセトアミドを製
造し得ることを見出し、本発明を完成させることができ
た。
(Means for Solving the Problems) The present inventors have discovered that by using a rhodium catalyst system when reacting trimethylamine and carbon monoxide to synthesize N,N-dimethylacetamide, high It was discovered that N,N-dimethylacetamide could be produced with good yield, and the present invention was completed.

即ち本発明は、トリメチルアミンと一酸化炭素とを反応
させるに際して、ロジウム元素とヨウ素及び/又は臭素
元素とから構成される触媒系を使用することを特徴とす
るN、N−ジメチルアセトアミドの製造法である。
That is, the present invention is a method for producing N,N-dimethylacetamide, which is characterized in that a catalyst system composed of rhodium element and iodine and/or bromine element is used when reacting trimethylamine and carbon monoxide. be.

以下に、本発明の方法について詳しく説明する。The method of the present invention will be explained in detail below.

本発明の方法において主触媒として使用されるロジウム
元素は、反応に際してカルボニル化合物を形成しうる化
合物であればよく、例えばロジウム金属、塩化ロジウム
、臭化ロジウム、ヨウ化ロジウム、酢酸ロジウム、酸化
ロジウム等のロジウム含有化合物、又は各種錯体の形態
で使用される。
The rhodium element used as the main catalyst in the method of the present invention may be any compound that can form a carbonyl compound during the reaction, such as rhodium metal, rhodium chloride, rhodium bromide, rhodium iodide, rhodium acetate, rhodium oxide, etc. rhodium-containing compounds or in the form of various complexes.

本発明の方法における助触媒としてのヨウ素又は臭素元
素は、それぞれ単体として、又は化合物の形態で使用さ
れものであり、例えばヨウ素、ヨウ化水素、ヨウ化ナト
リウム、ヨウ化カリウム、ヨウ化メチル、ヨウ化エチル
、ヨウ化テトラメチルアンモニウム、ヨウ化テトラメチ
ルホスホニウム等、及び臭素、臭化水素、臭化す) I
Jウム、臭化カリウム、臭化メチル、臭化エチル、臭化
テトラメチルアンモニウム、臭化テトラメチルホスホニ
ウム等である。
The iodine or bromine element as a cocatalyst in the method of the present invention is used as a single substance or in the form of a compound, such as iodine, hydrogen iodide, sodium iodide, potassium iodide, methyl iodide, iodine I
These include potassium bromide, methyl bromide, ethyl bromide, tetramethylammonium bromide, and tetramethylphosphonium bromide.

本発明の方法における主触媒としてのロジウム元素の使
用量は、トリメチルアミン1モル当りの原子比で10−
5〜1、好ましくは10−3〜10の範囲である。 ロ
ジウム元素の使用量がこれより多くても差し支えないが
経済的でなく、又少ない場合には反応速度が低下し好ま
しくない。
The amount of rhodium used as the main catalyst in the method of the present invention is 10 - atomic ratio per mole of trimethylamine.
It is in the range of 5-1, preferably 10-3-10. There is no problem if the amount of rhodium element used is greater than this, but it is not economical, and if it is less than this, the reaction rate decreases, which is not preferable.

本発明の方法における助触媒としてのヨウ素又は臭素元
素の使用量は、ロジウム元素に対する原子比で0,1〜
10o1好ましくは1〜2oの範囲である。 ヨウ素又
は臭素元素の使用量がこれより多くても差し支えないが
経済的でなく、又少ない場合には反応速度が低下し好ま
しくない。
The amount of iodine or bromine used as a cocatalyst in the method of the present invention is 0.1 to 0.1 to
10o1, preferably in the range of 1 to 2o. It is acceptable if the amount of iodine or bromine used is greater than this, but it is not economical, and if it is less than this, the reaction rate decreases, which is not preferable.

又、助触媒としてヨウ素又は臭素を組合せて使用するこ
ともでき、このときには両者の合計使用量が上記範囲内
にあればよい。
Further, iodine or bromine may be used in combination as a co-catalyst, and in this case, the total amount of both used may be within the above range.

本発明の方法を実施するに当たっては、特に溶媒を使用
しなくとも反応は進行するが、工業プロセスとしては適
当な溶媒を使用するのが好ましく効果的である。
In carrying out the method of the present invention, the reaction proceeds even without the use of a solvent, but for industrial processes it is preferable and effective to use a suitable solvent.

本発明の方法に使用される溶媒としては、N。The solvent used in the method of the present invention is N.

N−ジメチルホルムアミド、N、N−ジメチルアセトア
ミド、N−メチルピロリドン等のアミド類、ベンゼン、
トルエン、ヘキサン、オクタン等の炭化水素類、ジエチ
ルエーテル、ジオキサン、テトラヒドロフラン等のエー
テル類、酢酸メチル、酢酸エチル等のエステル類、及び
酢酸、酪酸等の有機酸類等が用いられが、中でもアミド
類が好ましく、特に環状アミド類が優れた効果を示す。
Amides such as N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, benzene,
Hydrocarbons such as toluene, hexane and octane, ethers such as diethyl ether, dioxane and tetrahydrofuran, esters such as methyl acetate and ethyl acetate, and organic acids such as acetic acid and butyric acid are used, among which amides are used. Preferably, cyclic amides exhibit particularly excellent effects.

本発明の方法に使用される溶媒の使用量は、特に制限は
ないが、トリメチルアミン1重量部当り10重量部未満
、好ましくは0.5〜5重量部の範囲である。
The amount of solvent used in the method of the present invention is not particularly limited, but is less than 10 parts by weight, preferably in the range of 0.5 to 5 parts by weight, per 1 part by weight of trimethylamine.

本発明の方法に用いる一酸化炭素は、窒素、メタン等の
不活性ガスが混入していても差し支えなか、−酸化炭素
分圧として5 Kg/cm2以上、好ましくは10〜1
00 Kg/cm2の範囲である。 これより高い圧力
は実用的でなく、又低い場合にはジメチルアセトアミド
の収率が低く好ましくない。
The carbon monoxide used in the method of the present invention may be mixed with an inert gas such as nitrogen or methane, and the -carbon oxide partial pressure is 5 Kg/cm2 or more, preferably 10 to 1
00 Kg/cm2. A pressure higher than this is not practical, and a pressure lower than this is undesirable because the yield of dimethylacetamide is low.

本発明の方法における反応温度は、100〜350℃、
好ましくは150〜300t’の範囲であり、これより
低すぎると反応が進行せず、高すぎると副生酸物が増加
し好ましくない。
The reaction temperature in the method of the present invention is 100 to 350°C,
It is preferably in the range of 150 to 300 t'; if it is too low, the reaction will not proceed, and if it is too high, the amount of by-products will increase, which is not preferred.

本発明の方法における反応圧力は、 反応時間は触媒量
、温度及び圧力にょるが、通常は0.3〜20時間であ
り、好ましくは0.3〜5時間である。
The reaction pressure in the method of the present invention is: The reaction time depends on the amount of catalyst, temperature and pressure, but is usually 0.3 to 20 hours, preferably 0.3 to 5 hours.

又、本発明の方法による反応を実施するに当たっては、
回分式、連続式のいずれの反応方法も採用される。
Furthermore, in carrying out the reaction according to the method of the present invention,
Either batch or continuous reaction methods may be employed.

以上、本発明の方法を実施して得られた反応液について
は、未反応トリメチルアミン及び触媒成分は回収し反応
に循環使用すると共に、蒸留法を適用すれば容易に製品
N、 N−ジメチルアセトアミドを分離回収できる。
As described above, in the reaction solution obtained by carrying out the method of the present invention, unreacted trimethylamine and catalyst components are recovered and recycled for use in the reaction, and the product N,N-dimethylacetamide can be easily obtained by applying the distillation method. Can be separated and recovered.

〔実施例〕〔Example〕

次に、実施例により本発明を具体的に説明するが、本発
明の方法はこれらの実施例により限定されるものではな
い。
Next, the present invention will be specifically explained with reference to Examples, but the method of the present invention is not limited to these Examples.

各実施例において、生成物の定量はガスクロマトグラフ
ィーにより行なった。
In each example, the product was quantified by gas chromatography.

実施例1 内容積100m lのハステロイC製板とう式オートク
レーブに、トリメチルアミン4.0g5N−メチルピロ
リドン8.0g、塩化ロジウム0.18g、ヨウ化メチ
ル0.58gを仕込み、−酸化炭素を20Kg/cm2
となるよう圧入し、270℃で3時間反応させた。
Example 1 4.0 g of trimethylamine, 8.0 g of N-methylpyrrolidone, 0.18 g of rhodium chloride, and 0.58 g of methyl iodide were charged into a Hastelloy C plate type autoclave with an internal volume of 100 ml, and -carbon oxide was charged at 20 kg/cm2.
It was press-fitted so that it would become, and it was made to react at 270 degreeC for 3 hours.

反応後オートクレーブを冷却し、残留ガスをパージ後、
生成物をガスクロマトグラフィーにより内部標準法で分
析した。
After the reaction, the autoclave is cooled and residual gas is purged.
The product was analyzed by gas chromatography using the internal standard method.

その結果、トリメチルアミンの反応率は72.2%であ
り、N、 N−ジメチルアセトアミドへの選択率は77
.7モル%であった。 副生物としてN、 N−ジメチ
ルホルムアミド及びN−メチルアセトアミドが生成し、
選択率はそれぞれ1.1モル%及び6モル%であった。
As a result, the reaction rate of trimethylamine was 72.2%, and the selectivity to N,N-dimethylacetamide was 77%.
.. It was 7 mol%. N,N-dimethylformamide and N-methylacetamide are produced as by-products,
The selectivities were 1.1 mol% and 6 mol%, respectively.

実施例2 内容積100m1のハステロイC製板とう式オートクレ
ーブに、トリメチルアミン4.0g5N−メチルピロリ
ドン8.Og 、 [Rh(CO)2CL]20.13
g、ヨウ化メチル0.58gを仕込み、−酸化炭素を2
0Kg/cm2となるよう圧入し、270℃で3時間反
応させた。
Example 2 In a Hastelloy C plate type autoclave with an internal volume of 100 m1, 4.0 g of trimethylamine and 8.0 g of 5N-methylpyrrolidone were added. Og, [Rh(CO)2CL]20.13
g, 0.58 g of methyl iodide, and -carbon oxide of 2
It was press-fitted so that the concentration was 0 kg/cm2, and the reaction was carried out at 270°C for 3 hours.

反応後オートクレーブを冷却し、残留ガスをパージ後、
生成物をガスクロマトグラフィーにより内部標準法で分
析した。
After the reaction, the autoclave is cooled and residual gas is purged.
The product was analyzed by gas chromatography using the internal standard method.

その結果、トリメチルアミンの反応率は42.4%であ
り、N、 N−ジメチルアセトアミドへの選択率は89
.0モル%であった。 副生物としてN、 N−ジメチ
ルホルムアミド及びN−メチルアセトアミドが生成し、
選択率はそれぞれ3.7モル%及び4.7モル%であっ
た。
As a result, the reaction rate of trimethylamine was 42.4%, and the selectivity to N,N-dimethylacetamide was 89%.
.. It was 0 mol%. N,N-dimethylformamide and N-methylacetamide are produced as by-products,
The selectivities were 3.7 mol% and 4.7 mol%, respectively.

実施例3 内容積100m lのハステロイC製板とう式オートク
レーブに、トリメチルアミン4.0g、N−メチルピロ
リドン8.0g、ヨウ化ロジウム0.35gを仕込み、
−酸化炭素を20Kg/cm’となるよう圧入し、27
0℃で3時間反応させた。
Example 3 4.0 g of trimethylamine, 8.0 g of N-methylpyrrolidone, and 0.35 g of rhodium iodide were placed in a Hastelloy C plate type autoclave with an internal volume of 100 ml.
- Press-fit carbon oxide to 20 kg/cm', 27
The reaction was carried out at 0°C for 3 hours.

反応後オートクレーブを冷却し、残留ガスをパージ後、
生成物をガスクロマトグラフィーにより内部標準法で分
析した。
After the reaction, the autoclave is cooled and residual gas is purged.
The product was analyzed by gas chromatography using the internal standard method.

その結果、トリメチルアミンの反応率は18.5%であ
り、N、 N−ジメチルアセトアミドへの選択率は84
.6モル%であった。 副生物としてN、 N−ジメチ
ルホルムアミド及びN−メチルアセトアミドが生戻し、
選択率はそれぞれ7.6モル%及び2.7モル%であっ
た。
As a result, the reaction rate of trimethylamine was 18.5%, and the selectivity to N,N-dimethylacetamide was 84%.
.. It was 6 mol%. N,N-dimethylformamide and N-methylacetamide are recovered as by-products,
The selectivities were 7.6 mol% and 2.7 mol%, respectively.

実施例4 内容積100m1のハステロイC製板とう式オートクレ
ーブに、トリメチルアミン4.0gXN−メチルピロリ
ドン8.0g、塩化ロジウム0.18g、ヨウ化リチウ
ム1. Olgを仕込み、−酸化炭素20Kg/cm 
2となるよう圧入し、270℃で3時間反応させた。
Example 4 In a Hastelloy C plate type autoclave with an internal volume of 100 m1, 4.0 g of trimethylamine, 8.0 g of N-methylpyrrolidone, 0.18 g of rhodium chloride, and 1.0 g of lithium iodide were placed. Prepare Olg, -carbon oxide 20Kg/cm
2 and reacted at 270°C for 3 hours.

反応後オートクレーブを冷却し、残留ガスをパージし、
生成物をガスクロマトグラフィーにより内部標準法で分
析した。
After the reaction, cool the autoclave, purge the residual gas,
The product was analyzed by gas chromatography using the internal standard method.

その結果、トリメチルアミンの反応率は31.9%であ
り、N、 N−ジメチルアセトアミドへの選択率は81
.4モル%であった。 副生物としてN、  N−ジメ
チルホルムアミド及びN−メチルアセトアミドが生成し
、選択率はそれぞれ7.1モル%及び8.1モル%であ
った。
As a result, the reaction rate of trimethylamine was 31.9%, and the selectivity to N,N-dimethylacetamide was 81%.
.. It was 4 mol%. N,N-dimethylformamide and N-methylacetamide were produced as by-products, with selectivities of 7.1 mol% and 8.1 mol%, respectively.

(発明の効果) 本発明によれば、低圧下でトリメチルアミンをカルボニ
ル化し、収率よ<N、N−ジメチルアセトアミドを製造
することができる。
(Effects of the Invention) According to the present invention, trimethylamine can be carbonylated under low pressure to produce N,N-dimethylacetamide with a yield as low as <N,N-dimethylacetamide.

Claims (1)

【特許請求の範囲】[Claims] トリメチルアミンと一酸化炭素とを反応させてN,N−
ジメチルアセトアミドを合成するに当り、ロジウム元素
とヨウ素及び/又は臭素元素とから構成される触媒系を
使用することを特徴とするN,N−ジメチルアセトアミ
ドの製造法。
By reacting trimethylamine with carbon monoxide, N,N-
1. A method for producing N,N-dimethylacetamide, which comprises using a catalyst system composed of rhodium element and iodine and/or bromine element in synthesizing dimethylacetamide.
JP2073380A 1990-03-26 1990-03-26 Method for producing N, N-dimethylacetamide Expired - Fee Related JP2780425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073380A JP2780425B2 (en) 1990-03-26 1990-03-26 Method for producing N, N-dimethylacetamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073380A JP2780425B2 (en) 1990-03-26 1990-03-26 Method for producing N, N-dimethylacetamide

Publications (2)

Publication Number Publication Date
JPH03275656A true JPH03275656A (en) 1991-12-06
JP2780425B2 JP2780425B2 (en) 1998-07-30

Family

ID=13516529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073380A Expired - Fee Related JP2780425B2 (en) 1990-03-26 1990-03-26 Method for producing N, N-dimethylacetamide

Country Status (1)

Country Link
JP (1) JP2780425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328132A (en) * 2008-07-28 2008-12-24 上海化学试剂研究所 Continuous production method of N,N-dimethylacetamide
EP2189441A1 (en) 2008-11-21 2010-05-26 Taminco Process for preparing secondary amides by carbonylation of a corresponding tertiary amine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003491B (en) * 2007-01-22 2012-12-26 上海化学试剂研究所 Method for preparing N,N - dimethyl acetamide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328132A (en) * 2008-07-28 2008-12-24 上海化学试剂研究所 Continuous production method of N,N-dimethylacetamide
EP2189441A1 (en) 2008-11-21 2010-05-26 Taminco Process for preparing secondary amides by carbonylation of a corresponding tertiary amine
WO2010057874A1 (en) * 2008-11-21 2010-05-27 Taminco Process for preparing secondary amides by carbonylation of a corresponding tertiary amine
US7960585B2 (en) 2008-11-21 2011-06-14 Taminco Process for preparing secondary amides by carbonylation of a corresponding tertiary amine
JP2012509294A (en) * 2008-11-21 2012-04-19 タミンコ Process for the preparation of secondary amides by carbonylation of corresponding tertiary amines

Also Published As

Publication number Publication date
JP2780425B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
Driver et al. A rare, low-valent alkylamido complex, a diphenylamido complex, and their reductive elimination of amines by three-coordinate intermediates
Blaser et al. The palladium-catalysed arylation of activated alkenes with aroyl chlorides
JPS5913487B2 (en) Method for producing carboxylic acid from organic halides
BRPI0613818A2 (en) method for reductively aminating an aldehyde or ketone starting compound, method, method for reductively aminating an alicyclic dialdehyde or alicyclic diketone compound, and continuous or semi-continuous method for reductively aminating an aldehyde or ketone starting compound
JPH03275656A (en) Production of n,n-dimethylacetamide
JPS63295520A (en) Production of unsymmetrical biphenyl derivative
JPS61280462A (en) Manufacture of carbamate ester
US5625096A (en) Hydroxycarbonylation of butadiene
US4424396A (en) Process for the preparation substituted anilino acids
Petrov Chemistry of N-substituted 2, 2-difluoro-3, 3-bis (trifluoromethyl) aziridines
US4380670A (en) Process for producing 1,3,5-triaminobenzene
JPS62187434A (en) Production of diphenylcarboxylic acid ester
JPS6153255A (en) Manufacture of carbamate ester
JPS632958A (en) Production of allyl type amine
JPS61130299A (en) Production of 5-fluorocytidine compound hydrochloride
JPS6122034A (en) Preparation of tetramethylbiphenyl
JP3752044B2 (en) Method for producing 1,6-octadiene
JP2002145809A (en) Method for producing 1, 3-dibromoadamantane
JPS6143338B2 (en)
JP3477933B2 (en) Manufacturing method of adiponitrile
JPS5921855B2 (en) Production method of malonic acid diesters
JPS62263140A (en) Production of alpha-phenylpropionic acid derivative
JP2022188828A (en) Method for producing oxystyrene compound having plurality of ether substituents
JPS61180727A (en) Production of aromatic compound having chlorodifluoromethyl group
JPS6030665B2 (en) Method for producing α-ketoamidoimines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees