JPH0327478A - Arithmetic circuit - Google Patents

Arithmetic circuit

Info

Publication number
JPH0327478A
JPH0327478A JP1161749A JP16174989A JPH0327478A JP H0327478 A JPH0327478 A JP H0327478A JP 1161749 A JP1161749 A JP 1161749A JP 16174989 A JP16174989 A JP 16174989A JP H0327478 A JPH0327478 A JP H0327478A
Authority
JP
Japan
Prior art keywords
multiplication
outputs
selector
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1161749A
Other languages
Japanese (ja)
Inventor
Ryohei Kumagai
熊谷 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ezel Inc
Original Assignee
Ezel Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezel Inc filed Critical Ezel Inc
Priority to JP1161749A priority Critical patent/JPH0327478A/en
Publication of JPH0327478A publication Critical patent/JPH0327478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To make it possible to process two or more processing at a time by providing a distributing means which is provided with inputs connected respectively to the outputs of a multiplying part to obtain the result of the multiplication of digital data by a numerical value and leads these inputs to the optional one or plural outputs and an integrating means which integrates numerically the outputs of the distributing means into plural systems. CONSTITUTION:A selector 20 is provided with N input terminals which is the same as the number of the groups of the multiplication of the multiplying part 10, and is provided with output terminals whose number is N which is equal to the number of the input terminals or N' which is greater than N, and leads the multiplied result inputted to each input terminal to the optional output terminal or distributes it to the optional plural output terminals. A first and a second integrating parts 30, 40 are provided with N or N' input terminals of the same number as the number of the output terminals of the selector 20, and integrate the multiplied result led to the input terminal as executing addition, subtration or other calculation to it. Thus, this circuit can be applied to extensive image processing, and the image processing system of high processing speed and high cost performance can be constructed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は演算回路に係り、特にデジタル映像処理システ
ムにおけるリアルタイムの映像処理・表示やリアルタイ
ムの画像解析等に有刀な演算回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an arithmetic circuit, and particularly to an arithmetic circuit useful for real-time video processing and display, real-time image analysis, etc. in a digital video processing system.

〔従来の技術〕[Conventional technology]

従来、例えば、入力画像から抽出された特徴によりその
画像を認識する画像処理システム等において、処理結果
の精巧さ、再現性、定量性および処理の多様さの理由に
より、デジタル処理系がしばしば用いられる。このデジ
タル処理系では、映像を画素の集合として取り扱う必要
があり、画素に関する演算は膨大なものとなる。例えば
512×512画素、RGB各8ビットの画素について
粒度分布の測定を行うためには、処理速度20MIPS
程度の超大型コンピュータを用いて計算したとしても数
秒の処理時間が必要であり、リアルタイム処理には十分
な速さではない。そこで、画像処理のための専用ICに
より映像処理の高速化が図られたものもあるが、この専
用ICの用途は極めて狭く、広範囲の映像処理には適用
できない。
Conventionally, digital processing systems have often been used, for example, in image processing systems that recognize images based on features extracted from an input image, due to the sophistication, reproducibility, quantitative nature of the processing results, and the diversity of processing. . In this digital processing system, it is necessary to treat the video as a collection of pixels, and the calculations regarding the pixels become enormous. For example, in order to measure the particle size distribution of 512 x 512 pixels with 8 bits each for RGB, the processing speed is 20 MIPS.
Even if the calculations were performed using a very large computer, the processing time would be several seconds, which is not fast enough for real-time processing. Therefore, although there have been attempts to speed up video processing using a dedicated IC for image processing, the purpose of this dedicated IC is extremely narrow and cannot be applied to a wide range of video processing.

したがってこれらの専用ICを用いて映像処理システム
を構築した場合、用途が限定されるため、一般にコスト
パーフォーマンスの低いものとなる。
Therefore, when a video processing system is constructed using these dedicated ICs, the applications are limited and the cost performance is generally low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような従来の問題点を解消すベく創案さ
れたもので、広範な映像処理に適用でき、汎用超大型コ
ンピュータより高速の処理が可能で、なおかつコストパ
フォーマンスの高い映像処理システムを構築するための
演算回路を提供することを目的とする。
The present invention was devised to solve these conventional problems, and provides a video processing system that can be applied to a wide range of video processing, is capable of faster processing than a general-purpose ultra-large computer, and has high cost performance. The purpose is to provide an arithmetic circuit for constructing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る演算回路は、複数のデジタルデータが入力
され、これらのデジタルデータに数値を乗じた結果を求
める乗算部と、この乗算部の出力にそれぞれ接続された
入力を有し、これらの入力を任意の1個または複数の出
力に導き得る分配手段と、この分配手段の出力を、複数
の系統に数値的に統合する統合部とを備えたことを特徴
としている。
The arithmetic circuit according to the present invention has a multiplication section into which a plurality of digital data is input and obtains the result of multiplying these digital data by a numerical value, and inputs respectively connected to the outputs of this multiplication section. The present invention is characterized in that it includes a distribution means that can lead the output to one or more arbitrary outputs, and an integration section that numerically integrates the output of the distribution means into a plurality of systems.

〔実施例〕〔Example〕

以下図示実施例に基づいて本発明を説明する。 The present invention will be explained below based on illustrated embodiments.

第1図において、演算回路は乗算部10、セレクタ20
、第1および第2の統合部30、40を順次接続し、ま
た乗算部10とセレクタ20の間を分岐させるとともに
状態演算部50を接続してなる。
In FIG. 1, the arithmetic circuit includes a multiplier 10 and a selector 20.
, the first and second integration sections 30 and 40 are connected in sequence, and the multiplication section 10 and the selector 20 are branched, and the state calculation section 50 is connected.

乗算部10にはN個のデータ(D.)が入力されおり、
乗算部10は、これらの画素データのそれぞれに適当な
数値(A、)を乗じた結果を、例えばDi=A.XDi
の演算を行って求めるものであり、その演算結果を人力
端子と同数の出力端子に出力する。ここに乗算部10に
おける乗算結果は、必ずしも乗算を行うことにより求め
る必要はなく、乗算結果をあらかじめROM等に記憶し
ておき、その値を読み出すことによっても求めることが
できる。
N pieces of data (D.) are input to the multiplier 10,
The multiplier 10 multiplies each of these pixel data by an appropriate numerical value (A,) and calculates the result, for example, Di=A. XDi
The calculation result is output to the same number of output terminals as the human input terminals. Here, the multiplication result in the multiplication unit 10 does not necessarily need to be obtained by performing multiplication, but can also be obtained by storing the multiplication result in a ROM or the like in advance and reading out the value.

セレクタ20は乗算部10の乗算の組と同数のN個の入
力端子を有し、その出力端子は人力端子と同数のN個ま
たはそれより多<N’個設けられている。セレクタ20
は各入力端子に人力された乗算結果を任意の出力端子に
導き、あるいは任意の複数の出力端子に分配し得る。
The selector 20 has the same number of N input terminals as the multiplication sets of the multiplier 10, and the number of output terminals thereof is the same as the number of human input terminals, or more than N'. selector 20
can direct the multiplication results input to each input terminal to any output terminal or distribute them to any plurality of output terminals.

第1および第2の統合部30、40は、セレクタ20の
出力端子と同数のN個またはN゛個の入力端子を有し、
人力端子に導かれた乗算結果を、3− 4一 加、滅その他の演算を施しつつ統合する。
The first and second integrating sections 30 and 40 have N or N'' input terminals, which is the same number as the output terminals of the selector 20,
The multiplication results led to the manual terminal are integrated while performing 3-4 addition, subtraction, and other operations.

乗算部10、セレクタ20、第1および第2の統合部3
0、40により、数値演算部が構威され、この数値演算
部は、濃度平均、1次微分、2次微分、フィルタ処理等
を行う。
Multiplication section 10, selector 20, first and second integration section 3
0 and 40, a numerical calculation unit is configured, and this numerical calculation unit performs density averaging, first-order differentiation, second-order differentiation, filter processing, and the like.

一方、状態演算部50は乗算部10の出力に対して種々
の処理を施し、連結数、その画素が処理の対象か否かの
指標、オイラー数を求めるためのパラメータT,F,D
,E、処理画素とその近傍の状態を表すコンバレート信
号等を算出する。
On the other hand, the state calculation unit 50 performs various processing on the output of the multiplication unit 10, and calculates the number of connections, an index of whether the pixel is a processing target, and parameters T, F, and D for determining the Euler number.
, E, calculate a converged signal, etc. representing the state of the processed pixel and its vicinity.

第1および第2の統合部30、40と状態演算部50の
出力は、セレクタ60、65に導かれる。
The outputs of the first and second integration sections 30 and 40 and the state calculation section 50 are guided to selectors 60 and 65.

セレクタ60には変換部70、75が接続され、またセ
レクタ65にはメモリ80が接続される。
Conversion sections 70 and 75 are connected to the selector 60, and a memory 80 is connected to the selector 65.

セレクタ60は、状態演算部50および第2の統合部4
0の出力を選択的に変換部70、75に導く。変換部7
0、75は、スタティックRAMあるいはダイナξツク
RAMからなるメモリの出力に軽演算部を接続するとと
もに、この軽演算部の出力をそのメモリの入力に戻して
構威される。
The selector 60 includes the state calculation unit 50 and the second integration unit 4
The output of 0 is selectively guided to converters 70 and 75. Conversion section 7
0 and 75 are constructed by connecting a light arithmetic unit to the output of a memory consisting of a static RAM or a dynamic RAM, and returning the output of this light arithmetic unit to the input of the memory.

これらの変換部70、75は、例えばデータの積算、デ
ータの漸減、データの逐次比較等多様な処理をすること
ができ、また変換部75は、例えば第2の統合部40か
ら各画素の濃度を入力されて濃度のヒストグラムを出力
する。
These conversion units 70 and 75 are capable of performing various processes such as data integration, data gradual reduction, and data successive comparison. Outputs a density histogram based on the input value.

セレクタ65は、状態演算部50および第1の統合部3
0の出力を選択的にメモリ80に導く。
The selector 65 includes the state calculation unit 50 and the first integration unit 3
0 output is selectively routed to memory 80.

メモリ80は状態演算部50および第1の統合部30の
出力結果を格納し、第1の統合部30から出力された例
えば微分値を格納する。
The memory 80 stores the output results of the state calculation section 50 and the first integration section 30, and stores, for example, the differential value output from the first integration section 30.

第2図は、乗算部10、セレクタ20、第1および第2
の統合部30、40の構或を詳細に示すものである。本
実施例は3×3の画素データを処理するように構威され
ており、各画素データに対応して9個の乗算部10が設
けられる。各乗算部10の出力は、それぞれ2つのセレ
クタ20に導かれ選択的に第1あるいは第2の統合部3
0、40に入力される。各統合部30、40は、それぞ
れ複数個(図中、4個ずつ示されている)の演算回路を
直列に接続して構戒される。演算回路は、5一 −6一 入力データに対して例えば加算等の演算を行いつつ数値
的に統合し、演算回路の出力端子の数はセレクタ20か
ら離れた部分に設けられるものほど少なくなる。
FIG. 2 shows the multiplier 10, selector 20, first and second
This figure shows the structure of the integrating sections 30 and 40 in detail. This embodiment is configured to process 3×3 pixel data, and nine multipliers 10 are provided corresponding to each pixel data. The output of each multiplication section 10 is guided to two selectors 20 and selectively sent to the first or second integration section 3.
0 and 40 are input. Each of the integration units 30 and 40 is constructed by connecting a plurality of arithmetic circuits (four shown in the figure) in series. The arithmetic circuit numerically integrates the 51-61 input data while performing arithmetic operations such as addition, and the number of output terminals of the arithmetic circuit decreases as the distance from the selector 20 increases.

次に、本実施例の作用の一例として、画素の濃度のヒス
トグラムを求めつつ微分値を演算する処理について説明
する。
Next, as an example of the operation of this embodiment, a process of calculating a differential value while obtaining a histogram of pixel density will be described.

乗算部10に人力された中央画素データ(濃度を示す)
は、乗算部10においてlを乗じられるとともに第2の
統合部40へ人力され、そのまま変換部75に導かれる
。変換部75は各濃度毎に画素数を積算し、ヒストグラ
ムを求める。また、乗算部10に人力された中央画素周
囲の画素データは、乗算部10において所定の係数を乗
じられるとともに第1の統合部30へ入力され、各演算
回路において加算されつつ統合されて微分値が求められ
る。この微分値はメモリ80に格納される。
Center pixel data (indicating density) manually input to the multiplication unit 10
is multiplied by l in the multiplier 10, inputted manually to the second integration unit 40, and guided directly to the conversion unit 75. The conversion unit 75 integrates the number of pixels for each density and obtains a histogram. In addition, the pixel data around the center pixel manually entered into the multiplication section 10 is multiplied by a predetermined coefficient in the multiplication section 10 and inputted to the first integration section 30, where it is added and integrated in each arithmetic circuit to obtain a differential value. is required. This differential value is stored in memory 80.

しかして、同じ画素データに対してヒストグラムと微分
値が同時に求められ、演算処理速度が向上する。
As a result, a histogram and a differential value are obtained simultaneously for the same pixel data, improving the calculation processing speed.

一般に乗算のための回路はゲート数の大きなものとなり
、乗算回路数が少ないことが望まれるが、この実施例の
ように、乗算回路の数すなわち入力数はパラメータの数
に等しく最小値に設定されているため、一定パラメータ
数について最小の回路構或になっている。
Generally, a circuit for multiplication has a large number of gates, and it is desirable to have a small number of multiplication circuits, but as in this embodiment, the number of multiplication circuits, that is, the number of inputs, is set to a minimum value equal to the number of parameters. Therefore, the circuit structure is the minimum for a given number of parameters.

統合部30、40内の演算は階層的に行われ、各階層に
おいて同時に異なる演算が行われて次段に渡されるパイ
プライン処理となっている。このパイプライン処理の採
用により、演算回路全体として演算速度は著しく向上す
る。
The calculations in the integration units 30 and 40 are performed hierarchically, and different calculations are performed simultaneously in each layer and are passed to the next stage in a pipeline process. By employing this pipeline processing, the calculation speed of the entire calculation circuit is significantly improved.

また本実施例は、最初に乗算を行ってその結果を統合部
の任意の入力端子に導き、あるいは分配するように構威
されているので、高いゲート効率が実現され、また、回
路自体が極めてシンプルな構或であるため、その拡張、
改良も容易である。
Furthermore, in this embodiment, multiplication is performed first and the result is guided or distributed to any input terminal of the integration section, so high gate efficiency is achieved, and the circuit itself is extremely Due to its simple structure, its expansion,
Improvement is also easy.

なお入力画素データは3×3の8近傍のデータに限定さ
れるものではなく、4近傍の2×2の画素やより少ない
画素、あるいは8近傍よりも多い画素に対しても本発明
は有効であり、特に人力画一7一 8 素データ数が増える程その有効性は顕著になる。
Note that the input pixel data is not limited to data in 8 neighborhoods of 3×3, and the present invention is effective for 2×2 pixels in 4 neighborhoods, fewer pixels, or more pixels than 8 neighborhoods. In particular, as the number of raw data increases, its effectiveness becomes more pronounced.

また、上記実施例において演算回路は画素データを処理
するとして説明したが、画素データに限定されるもので
はなく、本発明は全てのデジタルデータの処理システム
に適用することができる。
Furthermore, although the arithmetic circuit has been described as processing pixel data in the above embodiment, it is not limited to pixel data, and the present invention can be applied to all digital data processing systems.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、ゲート効率が高く、かつ
回路構威の柔軟性および拡張性の高い回路構威を有し、
また、同時に2以上の処理が可能な演算回路が得られる
As described above, the present invention has a circuit structure with high gate efficiency and high flexibility and expandability of the circuit structure,
Furthermore, an arithmetic circuit capable of simultaneously performing two or more processes can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る演算回路の一実施例を示すブロッ
ク図、 第2図は数値演算部の構或を示すブロック図である。 10・・・乗算部 20・・・セレクタ 30・・・第1の統合部 40・・・第2の統合部 9
FIG. 1 is a block diagram showing an embodiment of an arithmetic circuit according to the present invention, and FIG. 2 is a block diagram showing the structure of a numerical calculation section. 10...Multiplication unit 20...Selector 30...First integration unit 40...Second integration unit 9

Claims (1)

【特許請求の範囲】[Claims] (1)複数のデジタルデータが入力され、これらのデジ
タルデータに数値を乗じた結果を求める乗算部と、 この乗算部の出力にそれぞれ接続された入力を有し、こ
れらの入力を任意の1個または複数の出力に導き得る分
配手段と、 この分配手段の出力を、複数の系統に数値的に統合する
統合部と を備えた演算回路。
(1) A multiplier that receives a plurality of digital data and calculates the result of multiplying these digital data by a numerical value, and has inputs connected to the outputs of this multiplier, and allows any one of these inputs to be connected to the output of the multiplier. Or an arithmetic circuit comprising a distribution means that can lead to a plurality of outputs, and an integration section that numerically integrates the output of the distribution means into a plurality of systems.
JP1161749A 1989-06-24 1989-06-24 Arithmetic circuit Pending JPH0327478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161749A JPH0327478A (en) 1989-06-24 1989-06-24 Arithmetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161749A JPH0327478A (en) 1989-06-24 1989-06-24 Arithmetic circuit

Publications (1)

Publication Number Publication Date
JPH0327478A true JPH0327478A (en) 1991-02-05

Family

ID=15741157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161749A Pending JPH0327478A (en) 1989-06-24 1989-06-24 Arithmetic circuit

Country Status (1)

Country Link
JP (1) JPH0327478A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129890A (en) * 1983-12-19 1985-07-11 Matsushita Electric Ind Co Ltd Digital signal processor
JPS63187373A (en) * 1987-01-29 1988-08-02 Iizeru:Kk Arithmetic circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129890A (en) * 1983-12-19 1985-07-11 Matsushita Electric Ind Co Ltd Digital signal processor
JPS63187373A (en) * 1987-01-29 1988-08-02 Iizeru:Kk Arithmetic circuit

Similar Documents

Publication Publication Date Title
US4213150A (en) Real-time edge processing unit
EP0150060A2 (en) Multifunctional image processor
DE69435047T2 (en) Circuit and method for parallel addition and averaging
JPH1185466A (en) Processor
JPS6053349B2 (en) image processing processor
US6189021B1 (en) Method for forming two-dimensional discrete cosine transform and its inverse involving a reduced number of multiplication operations
JPH06243161A (en) Discreteness cosine converting circuit
US6643412B1 (en) Method and apparatus for high speed convolution
JPH0327478A (en) Arithmetic circuit
CN112765540A (en) Data processing method and device and related products
JPH06132781A (en) Picture processing digital filter
Taha et al. Efficient implementation of smoothing filters using fpga
CN111985628B (en) Computing device and neural network processor comprising same
JPH0329061A (en) Arithmetic circuit
JPS63187373A (en) Arithmetic circuit
JPH0320880A (en) Conversion circuit
CN116227507B (en) Arithmetic device for performing bilinear interpolation processing
US4987557A (en) System for calculation of sum of products by repetitive input of data
US20210397864A1 (en) Hardware Accelerator for Integral Image Computation
JPS62221076A (en) Picture processor
Kawada et al. An approach for applying large filters on large images using FPGA
JP2806436B2 (en) Arithmetic circuit
JPH04364525A (en) Parallel arithmetic unit
JPH0310320A (en) Arithmetic circuit
CS269263B1 (en) Method of image's digital filtering and connection for realization of this method