JPH03273874A - Torus-type supersonic motor - Google Patents

Torus-type supersonic motor

Info

Publication number
JPH03273874A
JPH03273874A JP2075201A JP7520190A JPH03273874A JP H03273874 A JPH03273874 A JP H03273874A JP 2075201 A JP2075201 A JP 2075201A JP 7520190 A JP7520190 A JP 7520190A JP H03273874 A JPH03273874 A JP H03273874A
Authority
JP
Japan
Prior art keywords
vibrating body
annular
vibrating
ultrasonic motor
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2075201A
Other languages
Japanese (ja)
Other versions
JP2864479B2 (en
Inventor
Takahiro Nishikura
西倉 孝弘
Katsu Takeda
克 武田
Masanori Sumihara
正則 住原
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2075201A priority Critical patent/JP2864479B2/en
Publication of JPH03273874A publication Critical patent/JPH03273874A/en
Application granted granted Critical
Publication of JP2864479B2 publication Critical patent/JP2864479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a machining accuracy by enabling machining of a vibrating body to be in a plane shape for simplification by providing a recessed part on a surface which is partially in contact with a traveling body for a width of the vibrating body. CONSTITUTION:A first elastic body 1 constitutes a torus-shaped vibrating body 3 along with a piezoelectric body 2 and a recessed part 4 is provided at the inside which does not reach an outer diameter in a width of a plane of the tours-shaped vibrating body 3. A vibrating body 5 is in contact with this vibrating body 3 through a friction material 8 by pressing. The amount of displacement of a vibration displacement in the radial direction of the torus- shaped plate vibrating body 3 becomes larger toward the outside since a primary vibration mode is in use. However, since mechanical rigidity changes in proportion to a power of three of the plate thickness by providing the recessed part 4 at the inside, the amount of displacement can be flattened in the radial direction so that a stable contact can be achieved even when the center is shifted due to poor accuracy of shaft. Also, since the traveling body is driven at the inside where the amplitude of the vibration body 3 is small, stable property against fluctuation of load can be achieved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体の弾性振動を用いて駆動力を発生する超
音波モータの構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of an ultrasonic motor that generates driving force using elastic vibrations of a piezoelectric body.

従来の技術 近年、圧電セラミック等の圧電体を用いた振動体に弾性
振動を励振し、これを駆動力とした超音波モータが注目
されている。
2. Description of the Related Art In recent years, ultrasonic motors have attracted attention in which elastic vibrations are excited in a vibrating body using a piezoelectric material such as a piezoelectric ceramic, and the vibrations are used as a driving force.

以下、図面を参照しながら超音波モータの従来技術につ
いて詳細に説明する。
Hereinafter, the conventional technology of an ultrasonic motor will be explained in detail with reference to the drawings.

第6図は径方向1次、周方向3次以上の振動モードで励
振される円環型超音波モータの切り欠き斜視図であり、
円環形の第1弾性体lに円環膨圧電体2を貼り合せて振
動体3を構成している。振動体3上には円環状に等間隔
に突起体9が設けられている。8は耐磨耗性材料の摩擦
材、10は第2弾性体であり、互いに貼り合せられて移
動体5を構成している。移動体5は摩擦材8を介して振
動体3と加圧接触している。圧電体2に電界を印加する
と振動体3の周方向に曲げ振動の進行波が励振され、移
動体5を駆動する。尚、同図中の矢印Aは移動体50回
転方向を示す。
FIG. 6 is a cutaway perspective view of an annular ultrasonic motor excited in a vibration mode of first order in the radial direction, third order in the circumferential direction or higher;
A vibrating body 3 is constructed by bonding an annular expanding piezoelectric body 2 to a first annular elastic body l. Projections 9 are provided on the vibrating body 3 in an annular shape at equal intervals. 8 is a friction material made of a wear-resistant material, and 10 is a second elastic body, which are pasted together to form the movable body 5. The movable body 5 is in pressure contact with the vibrating body 3 via the friction material 8 . When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 3, thereby driving the movable body 5. Note that arrow A in the figure indicates the rotation direction of the moving body 50.

第7図は第6図の円環型超音波モータに使用した圧電体
2の電極構造の一例を示している。同図では円周方向に
9波の弾性波が励振されるようにしである。AおよびB
はそれぞれ2分の1波長相当の小領域から成る電極群で
、Cは4分の3波長相当、Dは4分の1波長相当の電極
である。電極CおよびDは電極群AとBに位置的に4分
の1波長(=90度)の位相差を作るために設けている
FIG. 7 shows an example of the electrode structure of the piezoelectric body 2 used in the annular ultrasonic motor shown in FIG. In the figure, nine elastic waves are excited in the circumferential direction. A and B
are electrode groups each consisting of a small region corresponding to a half wavelength, C is an electrode corresponding to a three-quarter wavelength, and D is an electrode corresponding to a quarter wavelength. Electrodes C and D are provided to create a positional phase difference of 1/4 wavelength (=90 degrees) between electrode groups A and B.

電極AとB内の隣り合う小電極部は互いに反対に厚み方
向に分極されている。圧電体2の第1弾性体1との接着
面は、第7図に示された面と反対の面であり、電極はペ
タ電極である。駆動時には、電極群AおよびBは同図に
斜線で示したように、それぞれ短絡して用いられる。
Adjacent small electrode portions in electrodes A and B are polarized oppositely to each other in the thickness direction. The adhesive surface of the piezoelectric body 2 with the first elastic body 1 is the surface opposite to the surface shown in FIG. 7, and the electrode is a peta electrode. During driving, electrode groups A and B are used while being short-circuited, as indicated by diagonal lines in the figure.

以上のように構成された円環型超音波モータの圧電体2
の電極AおよびBに V+=VsXsin(ωt)        −−−(
1)V2 =Ve X cos(ωt)       
 −−−(2)ただし、VII:電圧の瞬時値 ω:角周波数 t:時間 で表される電圧V、および■2をそれぞれ印加すれば、
振動体3には ξ=ξe X (cos(ωt) X cos(kx)
+5in(ωt)x 5in(kx)):ξ5Xcos
(ωt−kx)      −−−(3)ただし ξ:
曲げ振動の振幅値 ξ[l:曲げ振動の瞬時値 に:波数(2π/λ) λ:波長 X:位置 で表せる、円周方向に進行する曲げ振動の進行波が励振
される。
Piezoelectric body 2 of the annular ultrasonic motor configured as above
V+=VsXsin(ωt) ---(
1) V2 = Ve X cos(ωt)
--- (2) However, if VII: voltage instantaneous value ω: angular frequency t: voltage V expressed in time, and ■2 are applied, respectively,
In the vibrating body 3, ξ=ξe X (cos(ωt) X cos(kx)
+5in(ωt) x 5in(kx)): ξ5Xcos
(ωt-kx) ---(3) However, ξ:
Bending vibration amplitude value ξ [l: instantaneous value of bending vibration: wave number (2π/λ) λ: wavelength

第8図は振動体3の表面のA点が進行波の励起によって
、長軸2W、短軸2uの楕円運動をし、振動体3上に加
圧して設置された移動体5が、楕円の頂点近傍で接触す
ることにより、摩擦力により波の進行方向とは逆方向に
V:ω×uの速度で運動する様子を示している。
Fig. 8 shows that point A on the surface of the vibrating body 3 moves in an ellipse with a long axis 2W and a short axis 2u due to the excitation of the traveling wave, and the moving body 5 placed under pressure on the vibrating body 3 moves in an ellipse. This figure shows how the waves move at a speed of V:ω×u in the direction opposite to the direction of wave propagation due to frictional force due to contact near the apex.

このような構成の場合、モータの高速化を図るために、
横方向変位Uの拡大を目的とした突起体9を、等間隔で
しかも円周状に振動体3の幅全体にわたって移動体5と
の接触面に設けている。
In such a configuration, in order to increase the speed of the motor,
Projections 9 for the purpose of increasing the lateral displacement U are provided at regular intervals and in a circumferential manner over the entire width of the vibrating body 3 on the contact surface with the movable body 5.

発明が解決しようとする課題 しかしながら、振動体3に突起体9を配設することは加
工上の問題がある。例えば、フライスで加工する場合に
突起体9と振動体3の付は根の機械的強度が弱く加工に
おいて注意が必要となり、結果的に加工時間が長くなる
という課題があり、また成形で作る場合には、突起の先
端の移動体5との接触面精度がでにくいため、接触面の
研磨が必要であった。さらに、振動体3の厚みと突起体
9の高さに対する精度は、振動における共振特性、つま
り弾性進行波の励振において各定在波成分の振幅比率や
共振周波数のずれを生じるというように直接特性に影響
し、厚みとともに突起体9の高さに対する加工精度への
要求が非常に厳しいという課題がある。
Problems to be Solved by the Invention However, providing the protrusions 9 on the vibrating body 3 poses problems in processing. For example, when processing with a milling cutter, the mechanical strength of the root of the protrusion 9 and the vibrating body 3 is weak and care must be taken during processing, resulting in a longer processing time. In this case, the contact surface of the tip of the protrusion with the movable body 5 is difficult to achieve precision, so it was necessary to polish the contact surface. Furthermore, the accuracy with respect to the thickness of the vibrating body 3 and the height of the protrusion 9 is determined by the resonance characteristics in vibration, that is, the direct characteristics such as deviations in the amplitude ratio and resonance frequency of each standing wave component during excitation of an elastic traveling wave. There is a problem in that there are very strict requirements for processing accuracy with respect to both the thickness and the height of the protrusion 9.

また、突起体9の設置によりモータの高速化は得られる
が、突起の数に対応したコギングが特性に現れ、制御特
性に悪影響を及ぼす。そこで突起体9の数を増やせは制
御特性は向上するが、機械強度や加工性に問題が発生し
、その面からも限界がある。
Furthermore, although the provision of the protrusions 9 increases the speed of the motor, cogging corresponding to the number of protrusions appears in the characteristics, which adversely affects the control characteristics. Therefore, increasing the number of protrusions 9 improves control characteristics, but problems arise in mechanical strength and workability, and there are limits in that respect as well.

また、移動体5との接触面において、突起体9のない平
板状の振動体の場合、振動体の振幅は10μm以下であ
り、移動体5との加圧接触を均一に、しかも安定に精度
よく行うことはできないため、移動体5と振動体3の接
触位置がバラバラで安定したモータ特性が得られないと
いう課題がある。さらに、接触の不安定による可聴音の
発生という課題もあった。
In addition, in the case of a flat vibrating body without protrusions 9 on the contact surface with the movable body 5, the amplitude of the vibrating body is 10 μm or less, making pressure contact with the movable body 5 uniform and stable. Since this cannot be done well, there is a problem that the contact positions between the movable body 5 and the vibrating body 3 are different, making it impossible to obtain stable motor characteristics. Furthermore, there was the problem that audible sounds were generated due to unstable contact.

そこで、本発明は上記従来の課題を解決する円環型超音
波モータを提供することを目的としている。
Therefore, an object of the present invention is to provide an annular ultrasonic motor that solves the above-mentioned conventional problems.

課題を解決するための手段 本発明は、円環形の第1弾性体及び円環形の圧電体が貼
り合わされた振動体と、円環形の摩擦材及び円環形の第
2弾性体が貼り合わされた移動体とが加圧接触され、前
記圧電体に電界を印加することにより前記振動体の周方
向に振動の進行波を励振して、前記移動体を駆動する円
環型超音波モータにおいて、前記振動体の前記移動体と
の接触面に、前記振動体の外周縁及び/又は内周縁に到
達しない凹部を形成したものである。
Means for Solving the Problems The present invention provides a vibrating body in which a first annular elastic body and a toroidal piezoelectric body are bonded together, and a movable body in which a toroidal friction material and a second toroidal elastic body are bonded together. In an annular ultrasonic motor that is brought into pressure contact with a body and drives the moving body by applying an electric field to the piezoelectric body to excite a traveling wave of vibration in the circumferential direction of the vibrating body, the vibration A recessed portion that does not reach the outer peripheral edge and/or the inner peripheral edge of the vibrating body is formed on the contact surface of the body with the moving body.

作用 本発明の円環型超音波モータは、円環形の第1弾性体及
び円環形の圧電体が貼り合わされた振動体と、円環形の
摩擦材及び円環形の第2弾性体が貼り合わされた移動体
とが加圧接触され、前記圧電体に電界を印加することに
より前記振動体の周方向に振動の進行波を励振して、前
記移動体を駆動するものであり、しかも前記振動体の前
記移動体との接触面に、前記振動体の外周縁及び/又は
内周縁に到達しない凹部を形成したことにより、出力特
性が優れたものとなる。
Function: The annular ultrasonic motor of the present invention includes a vibrating body in which a first annular elastic body and a toroidal piezoelectric body are bonded together, and a vibrating body in which a toroidal friction material and a second toroidal elastic body are bonded together. The piezoelectric body is brought into pressure contact with the piezoelectric body, and by applying an electric field to the piezoelectric body, a traveling wave of vibration is excited in the circumferential direction of the vibrating body to drive the movable body, and furthermore, the vibration of the vibrating body is By forming a recess that does not reach the outer circumferential edge and/or inner circumferential edge of the vibrating body on the contact surface with the movable body, excellent output characteristics can be achieved.

実施例 以下、図面に従って本発明に係る円環型超音波モータの
一実施例について詳細な説明を行う。
EXAMPLE Hereinafter, an example of the annular ultrasonic motor according to the present invention will be described in detail with reference to the drawings.

第1図(a)、  (b)は本発明の円環型超音波モー
タの振動体の平面図とその端面図である。同図において
、第1弾性体1は圧電体2と共に円環状の振動体3を構
成し、円環状の振動体3平面の幅において外径には到達
しない内側に凹部4が設けられている。凹部4は、第1
図のように円周方向に対して等間隔に設ける方が好まし
いが、この限りではない。
FIGS. 1(a) and 1(b) are a plan view and an end view of a vibrating body of an annular ultrasonic motor according to the present invention. In the figure, the first elastic body 1 constitutes an annular vibrating body 3 together with a piezoelectric body 2, and a recess 4 is provided inside the annular vibrating body 3, which does not reach the outer diameter in the width of the plane of the annular vibrating body 3. The recess 4 is the first
Although it is preferable to provide them at equal intervals in the circumferential direction as shown in the figure, this is not a limitation.

上記のように円環状の振動体3に外径には到達しない凹
部4を設けた振動体3に、第6図のように摩擦材8を介
して、移動体5が加圧接触されている。
As shown in FIG. 6, a movable body 5 is brought into pressurized contact with the vibrating body 3, which has a concave portion 4 that does not reach the outer diameter, as described above, via a friction material 8. .

凹部4の形状は、第2図(a)に示すように一部球状に
くりぬかれたもの、第2図(b)に示すように直方体状
にくりぬかれたもの、又は、第2図(C)に示すのよう
にV字状に鋸のようにくりぬかれたもの等各種考えられ
るがこの限りではない。
The shape of the recess 4 may be partially hollowed out into a spherical shape as shown in FIG. 2(a), hollowed out into a rectangular parallelepiped shape as shown in FIG. ) As shown in the figure, various types of V-shape hollowed out like a saw can be considered, but this is not the only option.

第3図に、円環状の板の振動体における半径方向の振動
変位分布を示すように、1次の振動モードを使う関係上
、外側に行くほど変位量が大きくなっている。しかし、
内側に凹部4を設けることにより板厚の3乗に比例して
機械的剛性が変化するため変位量を半径方向に対して平
坦化できるので、軸精度による偏芯に対しても安定な接
触が可能となる。一方、振動体3の振幅の小さい内側で
移動体を駆動するため負荷の変動に対して安定である。
As shown in FIG. 3, the distribution of vibration displacement in the radial direction in the annular plate vibrating body shows that the amount of displacement increases toward the outside because the first-order vibration mode is used. but,
By providing the recess 4 on the inside, the mechanical rigidity changes in proportion to the cube of the plate thickness, so the amount of displacement can be flattened in the radial direction, so stable contact can be achieved even against eccentricity due to shaft accuracy. It becomes possible. On the other hand, since the moving body is driven inside the vibrating body 3 where the amplitude is small, it is stable against load fluctuations.

次に、本発明に係る円環型超音波モータの一実施例の作
用について述べる。
Next, the operation of an embodiment of the annular ultrasonic motor according to the present invention will be described.

上述のような簡単な、基本的には平板である円環状の振
動体3で構成することにより、従来のように加工上の課
題(精度、コスト等)が解決される。また、凹部4の寸
法形状には精度を必要としないため、低コスト化が可能
な粉末冶金のような一体成形も可能となる。
By constructing the vibrating body 3 with a simple annular vibrating body 3 which is basically a flat plate as described above, processing problems (accuracy, cost, etc.) can be solved as in the past. Furthermore, since the dimensions and shape of the recessed portion 4 do not require precision, integral molding using powder metallurgy, which can reduce costs, is also possible.

なお四部4の深さは、移動体5が加圧によって、振動体
3側に変形する型具上であれば、基本的にそれ以上の凹
部4の深さは特に必要でない。
The depth of the four parts 4 is basically not particularly required if the moving body 5 is on a mold that deforms toward the vibrating body 3 side by applying pressure.

更に、凹部4の数は自由に設定できるため、数を増やす
ことによってコギングなとの少ない安定した特性のモー
タを得ることができる。
Furthermore, since the number of recesses 4 can be set freely, by increasing the number, a motor with stable characteristics with less cogging can be obtained.

また、凹部4の引っかかりなどによる摩擦抵抗の増加が
あるので、特性の安定性や高トルク側での従来のような
滑りによる出力の急激な変動のない優れた円環型超音波
モータを得ることができる。
Furthermore, since there is an increase in frictional resistance due to catching in the recess 4, etc., it is desirable to obtain an excellent annular ultrasonic motor with stable characteristics and without sudden fluctuations in output due to slipping on the high torque side. I can do it.

従来のように突起体による振動体に対する部分的な機械
的剛性の変化や厚みの変化による共振特性への影響が非
常に小さくてき、弾性進行波駆動時に、可聴音の発生や
回転むらの原因となる不要な定在波成分の発生が皆無と
なる。
Unlike conventional methods, the influence of local mechanical rigidity changes and thickness changes on the vibrating body due to protrusions on the resonance characteristics has become extremely small, and this has made it possible to eliminate the causes of audible noise and uneven rotation during elastic traveling wave drive. There is no generation of unnecessary standing wave components.

第4図は、凹部6を円環状の振動体3に対して、内径に
は到達しないように振動体3の外側に凹部6を設けた他
の実施例である。そして、移動体5を外側の凹部6に加
圧接触させることにより、第3図に示したように振幅最
大点て駆動できるため、高速化が図れるとともに、半径
比倍だけトルクが拡大でき、モータの高出力化が達成で
きる。
FIG. 4 shows another embodiment in which the recess 6 is provided outside the annular vibrating body 3 so as not to reach the inner diameter thereof. By bringing the movable body 5 into pressure contact with the outer recess 6, it can be driven with the maximum amplitude as shown in FIG. high output can be achieved.

又、第5図は、上記の凹部4や凹部6に対して、円環状
の振動体3の中央部に外周縁や内周縁ここ到達しないよ
うに凹部7を設け、この凹部7に移動体5を加圧接触さ
せる他の実施例である。この構成により、凹部4や凹部
6によって得られる効果が同時に得られるものである。
Further, in FIG. 5, a recess 7 is provided in the center of the annular vibrating body 3 so that the outer peripheral edge and the inner peripheral edge do not reach the above-mentioned recess 4 and recess 6. This is another embodiment in which the two are brought into pressure contact. With this configuration, the effects obtained by the recesses 4 and 6 can be obtained at the same time.

尚、凹部4.6.7は移動体5の振動体3との接触面に
設ける構成でもよいことは言うまでもない。この時、振
動体3の凹部4.6.7は必ずしも必要ではない。
It goes without saying that the recesses 4.6.7 may be provided on the contact surface of the movable body 5 with the vibrating body 3. At this time, the recess 4.6.7 of the vibrating body 3 is not necessarily required.

発明の効果 本発明では、振動体の幅に対して部分的に移動体との接
触面に凹部を設けることにより、振動体の加工が平板状
と簡単となり加工精度が得やすい。
Effects of the Invention In the present invention, by providing a concave portion in the contact surface with the movable body in a portion of the width of the vibrating body, the vibrating body can be easily machined into a flat plate shape, and machining accuracy can be easily obtained.

また、凹部による引っかかりなどによって機械出力の伝
達が効率よく行えるために、安定性がよく、信頼性の高
い、さらにコギングや可聴音の発生のない出力特性の優
れた円環型超音波モータが実現できるものである。
In addition, mechanical output can be transmitted efficiently by catching in recesses, etc., resulting in an annular ultrasonic motor that is stable and reliable, and has excellent output characteristics without cogging or audible noise. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明に係る円環型超音波モータの一実
施例の振動体の平面図、第1図(b)はそのA−A’端
面図、第2図(a)、 (b)、 (c)は同実施例の
凹部の形状例を示す断面図、第3図は円環型超音波モー
タの薄板における半径方向の振動変位分布を示す図、第
4図(a)は本発明の他の実施例の振動体の平面図、第
4図(b)はそのA−A’端面図、第5図(a)は本発
明の他の実施例の振動体の平面図、第5図(b)はその
A−A’端面図、第6図は従来の円環型超音波モータの
切り欠き斜視図、第7図は第6図の超音波モータに用い
た圧電体の形状と電極構造を示す平面図、第8図は超音
波モータの動作原理の説明図である。 2・・・圧電体、3・・・振動体、4.6.7・・・凹
部、5・・・移動体、8・・・摩擦材。 第1図 (a) 第2図 周方向 A−A’ jr*](3)図 第 3 図 牛 イ蚤。 第5図 (a) A−A’  立声bdb隔d 第 図 (a) 第 図 第 7 図 △ 第 図
FIG. 1(a) is a plan view of a vibrating body of an embodiment of an annular ultrasonic motor according to the present invention, FIG. 1(b) is an AA' end view thereof, FIG. 2(a), (b) and (c) are cross-sectional views showing an example of the shape of the concave portion of the same example, Fig. 3 is a view showing the radial vibration displacement distribution in the thin plate of the annular ultrasonic motor, and Fig. 4 (a) is a plan view of a vibrating body according to another embodiment of the present invention, FIG. 4(b) is an AA' end view thereof, and FIG. 5(a) is a plan view of a vibrating body according to another embodiment of the present invention. , FIG. 5(b) is an A-A' end view thereof, FIG. 6 is a cutaway perspective view of a conventional annular ultrasonic motor, and FIG. 7 is a piezoelectric body used in the ultrasonic motor of FIG. 6. FIG. 8 is a plan view showing the shape and electrode structure of the ultrasonic motor, and FIG. 8 is an explanatory diagram of the operating principle of the ultrasonic motor. 2... Piezoelectric body, 3... Vibrating body, 4.6.7... Concave portion, 5... Moving body, 8... Friction material. Fig. 1 (a) Fig. 2 Circumferential direction A-A' jr*] (3) Fig. 3 Cow lining. Figure 5 (a) A-A' Standing bdb interval d Figure (a) Figure 7 Figure △ Figure

Claims (4)

【特許請求の範囲】[Claims] (1)円環形の第1弾性体及び円環形の圧電体が貼り合
わされた振動体と、円環形の摩擦材及び円環形の第2弾
性体が貼り合わされた移動体とが加圧接触され、前記圧
電体に電界を印加することにより前記振動体の周方向に
振動の進行波を励振して、前記移動体を駆動する円環型
超音波モータにおいて、 前記振動体の前記移動体との接触面に、前記振動体の外
周縁及び/又は内周縁に到達しない凹部を形成したこと
を特徴とする円環型超音波モータ。
(1) A vibrating body in which a first annular elastic body and a piezoelectric body in an annular shape are bonded together, and a movable body in which a friction material in a toroidal shape and a second elastic body in a toric shape are bonded together are pressed into contact with each other, In an annular ultrasonic motor that drives the movable body by applying an electric field to the piezoelectric body to excite a traveling wave of vibration in the circumferential direction of the vibrating body, the vibrating body contacts the movable body. An annular ultrasonic motor, characterized in that a concave portion that does not reach the outer circumferential edge and/or the inner circumferential edge of the vibrating body is formed in the surface.
(2)凹部は、前記振動体の前記移動体との接触面の径
方向の内径側にあり、外周縁には到達しないことを特徴
とする請求項1記載の円環型超音波モータ。
(2) The annular ultrasonic motor according to claim 1, wherein the recess is located on the inner diameter side in the radial direction of the contact surface of the vibrating body with the movable body, and does not reach the outer peripheral edge.
(3)凹部は、前記振動体の前記移動体との接触面の径
方向の外径側にあり、内周縁には到達しないことを特徴
とする請求項1記載の円環型超音波モータ。
(3) The annular ultrasonic motor according to claim 1, wherein the recess is located on the outer diameter side in the radial direction of the contact surface of the vibrating body with the movable body, and does not reach the inner peripheral edge.
(4)凹部は、前記振動体の前記移動体との接触面にあ
り、前記振動体の外周縁及び内周縁に到達しないことを
特徴とする請求項1記載の円環型超音波モータ。
(4) The annular ultrasonic motor according to claim 1, wherein the recess is located on a contact surface of the vibrating body with the movable body and does not reach an outer circumferential edge and an inner circumferential edge of the vibrating body.
JP2075201A 1990-03-22 1990-03-22 Annular ultrasonic motor Expired - Fee Related JP2864479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075201A JP2864479B2 (en) 1990-03-22 1990-03-22 Annular ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075201A JP2864479B2 (en) 1990-03-22 1990-03-22 Annular ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH03273874A true JPH03273874A (en) 1991-12-05
JP2864479B2 JP2864479B2 (en) 1999-03-03

Family

ID=13569345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075201A Expired - Fee Related JP2864479B2 (en) 1990-03-22 1990-03-22 Annular ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2864479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035276B2 (en) 2008-02-08 2011-10-11 Nikon Corporation Vibration actuator, lens barrel and camera

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412492U (en) * 1987-07-10 1989-01-23
JPH0186489U (en) * 1987-11-27 1989-06-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412492U (en) * 1987-07-10 1989-01-23
JPH0186489U (en) * 1987-11-27 1989-06-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035276B2 (en) 2008-02-08 2011-10-11 Nikon Corporation Vibration actuator, lens barrel and camera

Also Published As

Publication number Publication date
JP2864479B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JPH01129782A (en) Ultrasonic motor
JPH03273874A (en) Torus-type supersonic motor
KR100661311B1 (en) Piezoelectric ultrasonic motor
JPH01177877A (en) Oscillatory wave motor
JP3001956B2 (en) Disk type ultrasonic motor
JPS63277482A (en) Ultrasonic motor
JP2623863B2 (en) Ultrasonic motor
JPS60174078A (en) Piezoelectric motor
JPS62193569A (en) Ultrasonic motor
JPS63240382A (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JPH03273878A (en) Supersonic motor
JP3001957B2 (en) Annular ultrasonic motor
JPS62196085A (en) Ultrasonic motor
JP2543144B2 (en) Ultrasonic motor
JPH08223947A (en) Ultrasonic motor
JPS63283475A (en) Ultrasonic motor
JP2000245175A (en) Vibration actuator
JP2543145B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JP2537848B2 (en) Ultrasonic motor
JPH0480633B2 (en)
JP2523634B2 (en) Ultrasonic motor
JPS60183982A (en) Piezoelectric motor
JPH0475472A (en) Ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees