JPH03273031A - Conductive molding and its production - Google Patents

Conductive molding and its production

Info

Publication number
JPH03273031A
JPH03273031A JP7087890A JP7087890A JPH03273031A JP H03273031 A JPH03273031 A JP H03273031A JP 7087890 A JP7087890 A JP 7087890A JP 7087890 A JP7087890 A JP 7087890A JP H03273031 A JPH03273031 A JP H03273031A
Authority
JP
Japan
Prior art keywords
conductive
fine particles
parts
particles
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7087890A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ide
和彦 井出
Jun Satake
順 佐武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP7087890A priority Critical patent/JPH03273031A/en
Publication of JPH03273031A publication Critical patent/JPH03273031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Chemically Coating (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To facilitate the formation of a molding having good and stable conductivity by coating particles of a curable thermoplastic substance with a conductive substance, optionally adding a curing agent to them, and molding and curing the mixture under applied pressure and heat. CONSTITUTION:Particles of a curable thermoplastic substance (e.g. epoxy resin particles or crosslinkable acrylic resin particles) are prepared. A layer of a conductive substance (e.g. a silver plating or a nickel plating) is formed on the surface of each particle by electroless plating or the like. A curing agent (e.g. dicyandiamide) is optionally added to the particles, and the resulting mixture is molded and cured under applied pressure and heated to obtain a conductive molding. This molding does not undergo any change in it conductivity with temperature, humidity, stress, etc., and can be desirably used for a conductive disc or the like.

Description

【発明の詳細な説明】 「発明の目的」 〔産業上の利用分野〕 本発明は、加圧及びまたは加熱することにより成型が可
能で、良好で安定な導電性を発現することができる導電
性成型物及びその製造方法に関する。
Detailed Description of the Invention "Object of the Invention" [Industrial Application Field] The present invention is directed to a conductive material that can be molded by applying pressure and/or heat and exhibits good and stable conductivity. This invention relates to a molded product and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来、樹脂あるいはセラミックスの表面を導電性物質、
特に金属により被覆した導電性粉体は、導電ベースト用
フィラー、電磁シールド材用フィラー等としで用いられ
ている。これらのものは、通常該導電性粉体をバインダ
ー中に分散させて用いられる。
Conventionally, the surface of resin or ceramics was coated with a conductive material,
In particular, conductive powder coated with metal is used as filler for conductive bases, filler for electromagnetic shielding materials, and the like. These materials are usually used by dispersing the conductive powder in a binder.

これらのものは、金属微粒子をフィラーとして用いる場
合に比べると、単位容積当りの金属量が少量ですみ、ま
たバインダーとの比重差が小さいため分散安定性に優る
が、粒子同士の凝集、沈降等を完全に防止することは困
難である。また、バインダー中における該粒子同士の接
触により導電性あるいは電磁波遮蔽性等を得ているため
、粒子の接触の仕方によって上記特性が変化するもので
ある。従って、使用する環境、例えば、温度、湿度、応
力あるいはバインダー樹脂の劣化等によって上記特性が
変化し、安定した電気的あるいは磁気的特性を発現する
ことが困難であった。これは、導電性微粒子を非alt
性であるバインダーにより固着せしめ、該導電性微粒子
同士の接触により導通を保つ方法においては避は難い現
象であると考えられる。
Compared to the case where metal fine particles are used as a filler, these materials require a small amount of metal per unit volume and have a small difference in specific gravity with the binder, so they have superior dispersion stability, but they do not cause agglomeration or sedimentation of the particles. It is difficult to completely prevent this. Further, since conductivity or electromagnetic wave shielding properties are obtained through contact between the particles in the binder, the above-mentioned characteristics change depending on the way the particles come into contact with each other. Therefore, the above characteristics change depending on the environment in which it is used, such as temperature, humidity, stress, or deterioration of the binder resin, making it difficult to exhibit stable electrical or magnetic characteristics. This makes conductive fine particles non-alt.
This phenomenon is considered to be unavoidable in the method of fixing the conductive particles with a binder and maintaining conductivity by contacting the conductive fine particles with each other.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、効果的で安定な導電性物質層の接触を確保し
、外部環境による影響を受けにくい導電性成型物を得る
ことを目的とし、鋭意研究を行なった結果、均質な導電
性物質層を表面に有する硬化性樹脂等の微粒子を結着、
硬化させてなる全(新規な導電性成型物及びその製造方
法を見いだすに至ったものである。
The present invention was developed as a result of extensive research aimed at ensuring effective and stable contact between conductive material layers and obtaining conductive molded products that are less susceptible to the effects of the external environment. Binds fine particles such as curable resin on the surface,
We have discovered a new conductive molded product and its manufacturing method.

「発明の構成」 〔課題を解決するための手段〕 本発明は、良好な導電性を容易に発現できる成型物及び
その製造方法として、硬化可能な熱可塑性を有する物質
からなる微粒子を、導電性物質層で被覆した後、必要に
応じて硬化剤を添加し、加圧及び加熱して成型、架橋せ
しめて得られる導電性成型物、導電性物質層が、無電解
めっきにより形成された金属層である導電性成型物に、
さらに、硬化性樹脂が、エポキシ系化合物及びまたはア
クリル系重合体である導電性成型物である。また、導電
性成型物の製造方法に関する。
"Structure of the Invention" [Means for Solving the Problems] The present invention provides a molded product that can easily exhibit good electrical conductivity and a method for producing the same, in which fine particles made of a curable thermoplastic substance are used to A conductive molded product obtained by coating with a material layer, adding a curing agent as necessary, molding and crosslinking by applying pressure and heating, and a metal layer in which the conductive material layer is formed by electroless plating. A conductive molded product that is
Furthermore, it is a conductive molded article in which the curable resin is an epoxy compound and/or an acrylic polymer. The present invention also relates to a method for manufacturing a conductive molded article.

即ち、硬化可能な硬化性樹脂からなる微粒子表面にit
性動物質層形成せしめた後、該微粒子を加熱及び加圧融
着させ、更に架橋反応により粒子内部の樹脂等を硬化せ
しめることにより堅牢な導電性成型物を提供するもので
ある。
That is, it is applied to the surface of fine particles made of a curable resin.
After forming the sexual substance layer, the fine particles are fused under heat and pressure, and the resin inside the particles is further cured by a crosslinking reaction, thereby providing a robust conductive molded product.

本成型物の場合、導電性微粒子を非導電性のバインダー
により固着させたものとは異なり、粒子界面の接触によ
り導通を確保し、同時に微粒子内部の樹脂同士の融着を
生じせしめ架橋反応により強固な連続構造を形成し導通
バスの保全を行なう成型物である。従って、粒界では必
ず導電性が確保され、外的因子による影響を低減させる
ことが可能となるものである。この様な構造は、導電性
物質層を設けるべき8微粒子として熱可塑性樹脂を用い
ても形成することが出来るが、耐熱性、耐溶剤性1機械
的強度等が要求される場合には、樹脂の軟化、溶解等が
起こるため使用できないことがあり、この様な場合には
本発明により開示した方法により成型物を得ることが有
効である。
In the case of this molded product, unlike those in which conductive fine particles are fixed with a non-conductive binder, conduction is ensured by contact at the particle interface, and at the same time, the resins inside the fine particles are fused together and strengthened by crosslinking reaction. This is a molded product that forms a continuous structure and maintains the conductive bus. Therefore, conductivity is always ensured at the grain boundaries, making it possible to reduce the influence of external factors. Such a structure can also be formed by using thermoplastic resin as the fine particles on which the conductive material layer is to be provided, but if heat resistance, solvent resistance, mechanical strength, etc. are required, resin may be used. It may become unusable due to softening, dissolution, etc., and in such cases, it is effective to obtain a molded product by the method disclosed in the present invention.

以下、本発明の詳細について順次説明する。The details of the present invention will be sequentially explained below.

本発明で使用される硬化可能な熱可塑性を有する物質と
しては、常温で固体でありまた加熱等により硬化可能な
ものであれば特に制限はなく、熱硬化性樹脂、低分子量
有機物質等である。なお、硬化剤を予め含んでも、また
含有しなくてもよい。これらの物質としては、例えばエ
ポキシ樹脂、架橋性(メタ)アクリル系樹脂、架橋性ビ
ニル/(メタ)アクリル共重合体樹脂、架橋性ポリエス
テル系樹脂、ブロック型ポリウレタン樹脂等を例として
挙げることが出来る。エポキシ樹脂としてはビスフェノ
ールA型エポキシ樹脂、ノボラック型エポキシ樹脂、脂
環式エポキシ樹脂等を単一あるいは2種以上の混合物と
して用いることができ、また、硬化剤としては、通常エ
ポキシ樹脂の硬化に用いられるもので常温で固体であれ
ば特に制限はなく、芳香族アミン、ジシアンジアミド、
ジヒドラジド、酸無水物、イミダゾール誘導体等を用い
ることが出来るが、上記のものに限定されるものではな
い、上記硬化剤は、予めエポキシ樹脂と溶融混練してお
いてもよく、また、エポキシ樹脂微粒子と硬化剤微粒子
をトライブレンドして用いてもよい。架橋性(メタ)ア
クリル系樹脂、架橋性ビニル系/(メタ)アクリル系共
重合体樹脂としては、(メタ)アクリル酸、(メタ)ア
クリル酸エステル1 ビニル系モノマー等とグリシジル
メタクリレート等のグリシジル基を有する七ツマ−やN
−メチロールアクリルアミド、N−メトキシメチルアク
リルアミド、N−ブトキシメチルアクリルアミド等のア
クリルアミド誘導体等との共重合体等を用いることがで
き、必要に応じて硬化剤を併用することもできる。また
、多価金属によるイオン架橋を利用することもできる。
The curable thermoplastic substance used in the present invention is not particularly limited as long as it is solid at room temperature and can be cured by heating, etc., such as thermosetting resins, low molecular weight organic substances, etc. . Note that the curing agent may or may not be included in advance. Examples of these substances include epoxy resins, crosslinkable (meth)acrylic resins, crosslinkable vinyl/(meth)acrylic copolymer resins, crosslinkable polyester resins, and block polyurethane resins. . As the epoxy resin, bisphenol A type epoxy resin, novolak type epoxy resin, alicyclic epoxy resin, etc. can be used singly or as a mixture of two or more types, and as the curing agent, it is usually used for curing the epoxy resin. There is no particular restriction as long as it is solid at room temperature, such as aromatic amines, dicyandiamide,
Dihydrazides, acid anhydrides, imidazole derivatives, etc. can be used, but the curing agent is not limited to those mentioned above. A tri-blend of curing agent and curing agent fine particles may be used. Crosslinkable (meth)acrylic resins and crosslinkable vinyl/(meth)acrylic copolymer resins include (meth)acrylic acid, (meth)acrylic acid esters, vinyl monomers, etc., and glycidyl groups such as glycidyl methacrylate. Nanatsuma and N with
-Copolymers with acrylamide derivatives such as -methylol acrylamide, N-methoxymethyl acrylamide, N-butoxymethyl acrylamide, etc. can be used, and a curing agent can also be used in combination if necessary. Ionic crosslinking using polyvalent metals can also be used.

架橋性ポリエステル系樹脂としては、メラミン硬化、ブ
ロックイソシアナート硬化、酸無水物硬化3エポキシ硬
化、不飽和ポリエステルの過酸化物硬化等の方法により
架橋するものを用いることが出来る。ブロック型ポリウ
レタンとしては、末端若しくは側鎖にイソシアナート基
を有するポリウレタンプレポリマーのイソシアナート基
に、活性水素化合物、例えばアミド類、カルボン酸、フ
ェノール類1重亜硫酸塩等を反応させて安定化した物等
を用いることができ、樹脂の軟化温度、ブロックの解離
温度等を考慮し適宜選択して用いることが出来る。また
、必要に応じて硬化剤を併用してもよい。尚、上記の物
はあくまでも例であり、これらに限定されるものではな
い。
As the crosslinkable polyester resin, those that can be crosslinked by methods such as melamine curing, blocked isocyanate curing, acid anhydride curing 3-epoxy curing, and peroxide curing of unsaturated polyester can be used. Block-type polyurethanes are stabilized by reacting active hydrogen compounds such as amides, carboxylic acids, phenol monobisulfites, etc. with the isocyanate groups of polyurethane prepolymers having isocyanate groups at the terminals or side chains. They can be selected and used as appropriate in consideration of the softening temperature of the resin, the dissociation temperature of the block, etc. Further, a curing agent may be used in combination as necessary. Incidentally, the above-mentioned items are merely examples, and the invention is not limited thereto.

本発明で用いられる硬化可能な熱可塑性を有する物質か
らなる微粒子は、粒径が1μm以上1mm以下のものを
用いることが望ましい。粒径が小さすぎると、粒子表面
に実用的な膜厚で導電性物質層を設けるためには多大な
量の導電性物質が必要となり経済性に劣る。また、粒径
が大き過ぎると、加圧・加熱により生じる8微粒子の変
形が大きくなりすぎるため、その変形に導電性物質層が
追従できなくなり、導電性物質層に大規模な破壊が生じ
、導電性を確保することが困難となる。この様な粒径を
もつ微粒子を得る方法としては、機械的粉砕や、溶液と
したものを貧溶媒中に投入して行なう再沈澱法等を用い
ることもでき、必要であれば分級操作を行なってもよい
The fine particles made of a curable thermoplastic substance used in the present invention preferably have a particle size of 1 μm or more and 1 mm or less. If the particle size is too small, a large amount of conductive material will be required to provide a conductive material layer with a practical thickness on the particle surface, resulting in poor economic efficiency. In addition, if the particle size is too large, the deformation of the 8 fine particles caused by pressurization and heating will become too large, making it impossible for the conductive material layer to follow the deformation, causing large-scale destruction of the conductive material layer, and causing conductive It becomes difficult to ensure sex. To obtain fine particles with such a particle size, mechanical pulverization or reprecipitation method in which a solution is poured into a poor solvent can be used, and if necessary, a classification operation can be used. It's okay.

次に、上記のようにして得た微粒子の表面に設ける導電
性物質層について次に説明する。本発明において使用さ
れる導電性物質層としては特に制限はなく、無電解金属
めっき法により得られる金属層、導電性金属酸化物の蒸
着による導電層等を例として挙げることが出来るが、導
電性物質の可撓性の見地から、無電解金属めっき層を用
いることがより好適である。無電解めっきされる金属と
しては、コバルト。
Next, the conductive material layer provided on the surface of the fine particles obtained as described above will be described below. The conductive material layer used in the present invention is not particularly limited, and examples thereof include a metal layer obtained by electroless metal plating, a conductive layer formed by vapor deposition of a conductive metal oxide, etc. From the standpoint of material flexibility, it is more preferable to use an electroless metal plating layer. Cobalt is a metal that can be electrolessly plated.

ニッケル、銅、銀、金、白金及びこれらの金属同士また
はこれらの金属とホウ素、窒素、リン、バナジウム、マ
ンガン、鉄2亜鉛、モリブデン、スズ、タングステン、
レニウム、テルル等との共析物等を例として挙げること
ができる。硬化可能な熱可塑性を有する物質からなる微
粒子に無電解めっきを行なう場合には、通常の前処理を
施すことは当然であるが、通常前処理として行なわれる
脱脂工程、エッチング工程、センシタイジング工程、キ
ヤタライジング工程、アクセラレイティング工程のうち
、脱脂工程及びエツチング工程は省いてもよい。
Nickel, copper, silver, gold, platinum, and these metals with each other or with boron, nitrogen, phosphorus, vanadium, manganese, iron, zinc, molybdenum, tin, tungsten,
Examples include eutectoids with rhenium, tellurium, etc. When performing electroless plating on fine particles made of a hardenable thermoplastic substance, it is natural to perform the usual pretreatment, but the degreasing process, etching process, and sensitizing process that are usually performed as pretreatments are necessary. , the catalystizing process, and the accelerating process, the degreasing process and the etching process may be omitted.

また、微粒子の表面処理を行なう場合、粒子の凝集が問
題となる場合がしばしばあり、このことを防ぐために、
界面活性剤やアルコール等で例示される水溶性有機溶媒
等を少量存在させることもできる。
In addition, when performing surface treatment on fine particles, particle agglomeration often becomes a problem, and to prevent this,
A small amount of a water-soluble organic solvent such as a surfactant or alcohol may also be present.

また、微粒子が微細な気泡を核として塊状に凝集してい
る場合には、上記の対策の他に減圧により脱泡してもよ
い。また、微粒子上に均一な無電解金属層を設けるため
には、めっき液により粒子が良好に濡れていることが必
要であり、予め金属塩、錯形成剤安定剤等を含有する水
溶液に樹脂微粒子を十分に浸漬させた後に還元剤を投入
する等により還元処理を行なうことが好ましい。
Further, in the case where the fine particles are aggregated into a lump with fine air bubbles as the nucleus, defoaming may be performed by reducing the pressure in addition to the above-mentioned measures. In addition, in order to form a uniform electroless metal layer on the fine particles, it is necessary that the particles are well wetted by the plating solution. It is preferable to carry out a reduction treatment by, for example, adding a reducing agent after sufficiently immersing the material.

次に、本発明器こおいて硬化可能な熱可塑性を有する物
質の微粒子を導電性物質層で被覆する方法について無電
解めっき法を一例として挙げて説明するが、これに限定
されるものではない。
Next, the method of coating fine particles of a hardenable thermoplastic substance with a conductive material layer in the present invention will be explained using an electroless plating method as an example, but the method is not limited thereto. .

〔硬化可能な熱可塑性微粒子の前処理〕硬化可能な熱可
塑性を有する物質の微粒子に以下のような手順で前処理
を施す。
[Pretreatment of hardenable thermoplastic fine particles] Fine particles of a hardenable thermoplastic substance are pretreated in the following procedure.

(1)センシタイジング工程 5nCIz 2Hz0  5〜20 g/ j!HC1
5〜50g/l の水溶液に攪拌しながら1〜10分間浸漬(2)水洗・
濾過 この時、乾燥させない方が次工程での分散性に優れる。
(1) Sensitizing process 5nCIz 2Hz0 5~20 g/j! HC1
Immerse in an aqueous solution of 5 to 50 g/l for 1 to 10 minutes while stirring (2) Wash with water.
At this time of filtration, it is better not to dry it for better dispersibility in the next step.

(3)キャタライジング工程 PdCl 20.5〜Ig/l? HCl       10〜200 g/ 1の水溶液
に攪拌しながら1〜10分間浸漬(4)水洗・濾過 この時、乾燥させない方が次工程での分散性に優れる。
(3) Catalyzing process PdCl 20.5~Ig/l? Immersion in an aqueous solution of 10 to 200 g/1 HCl for 1 to 10 minutes while stirring (4) Washing and filtration At this time, not drying will result in better dispersibility in the next step.

(5)アクセラレイティング工程 H2SO410〜100g/j! の水溶液に攪拌しながら1〜10分間浸漬(6)水洗・
濾過 この時、乾燥させない方が次工程での分散性に優れる。
(5) Accelerating process H2SO410~100g/j! Soak in an aqueous solution for 1 to 10 minutes while stirring (6) Wash with water.
At this time of filtration, it is better not to dry it for better dispersibility in the next step.

〔金属層の形成〕[Formation of metal layer]

(1)めっき液への浸漬 前処理済み樹脂微粒子を還元反応が進行しないような条
件でめっき液に浸漬し、必要に応じて界面活性剤、水溶
性有機溶媒の添加、あるいは減圧による脱泡を行なう。
(1) Immersion in the plating solution The pre-treated resin particles are immersed in the plating solution under conditions that prevent the reduction reaction from proceeding, and if necessary, add a surfactant, a water-soluble organic solvent, or defoam by reducing the pressure. Let's do it.

(2)還元操作 上記懸濁液に、還元剤の添加や加熱等の処置を施し、還
元反応を進行させ金属層を析出させる。
(2) Reduction operation The suspension is subjected to treatments such as addition of a reducing agent and heating to advance the reduction reaction and deposit a metal layer.

(3)水洗・濾過 (4)乾燥 上記に例示した方法等により前処理を施した硬化可能な
熱可塑性を有する物質の微粒子は、通常用いられる無電
解めっき法を適用することにより粒子表面に導電性物質
層を形成することが出来る。めっき膜厚には特に制限は
ないが、所望する比抵抗値により適宜調整される。−例
を挙げれば、10’Ω・C11以下程度の比抵抗値を得
たい場合には、粒径にも依存するが、硬化可能な熱可塑
性微粒子90gに対し10g以上の金属層を形成させる
ことが望ましい。
(3) Washing and filtration (4) Drying Fine particles of a hardenable thermoplastic material that has been pretreated using the methods exemplified above can be coated with conductive particles by applying a commonly used electroless plating method. It is possible to form a sexual material layer. There is no particular restriction on the thickness of the plating film, but it may be adjusted as appropriate depending on the desired specific resistance value. - For example, if you want to obtain a specific resistance value of about 10'Ω・C11 or less, you should form a metal layer of 10 g or more for 90 g of hardenable thermoplastic fine particles, although it depends on the particle size. is desirable.

次に、表面に導電性物質層を有する硬化可能な熱可塑性
微粒子を固着させる方法について説明する。
Next, a method for fixing curable thermoplastic fine particles having a conductive material layer on the surface will be explained.

該微粒子の固着は、加圧及び加熱により行なわれるが、
得られる同着体の導電性を損なわないような方法であれ
ば特に制限はない。加圧により固着を行なう場合には、
微粒子の硬度、微粒子の形状、導電性物質層の膜厚等に
より加える圧力を適宜選択して行なう。また、この時同
時に加熱して同着させることもできるが、加熱温度は、
樹脂の軟化温度、熔融粘度等を考慮し決定される。軟化
温度を逼かに越えた温度まで加熱を行ない溶融した樹脂
が流動性を持つようになると、成型物表面が溶融樹脂層
により覆われることがあり、導電性を発現しないことが
ある。
The fine particles are fixed by applying pressure and heating,
There are no particular limitations on the method as long as it does not impair the conductivity of the resulting coadherent. When fixing by applying pressure,
The pressure to be applied is appropriately selected depending on the hardness of the fine particles, the shape of the fine particles, the thickness of the conductive material layer, etc. Also, at this time, it is possible to simultaneously heat and adhere, but the heating temperature is
It is determined by considering the softening temperature, melt viscosity, etc. of the resin. If the molten resin becomes fluid by heating to a temperature that significantly exceeds its softening temperature, the surface of the molded product may be covered with a layer of molten resin and may not exhibit electrical conductivity.

また、加熱温度が低すぎると、微粒子同士の融着あるい
は微粒子の変形が不十分で、固着が行なわれない場合が
ある。加熱を行なう場合には、硬化可能な熱可塑性微粒
子の軟化温度、溶融粘度、微粒子の形状、導電性物質層
の膜厚等により適宜加熱温度を調整する必要がある。
Furthermore, if the heating temperature is too low, the fusion of the fine particles or the deformation of the fine particles may be insufficient, and fixation may not take place. When heating is performed, it is necessary to adjust the heating temperature appropriately depending on the softening temperature of the curable thermoplastic fine particles, melt viscosity, shape of the fine particles, thickness of the conductive material layer, etc.

また、本発明における導電性成型物は、表面に導電性物
質層を有する微粒子のみの固着により得ることも出来る
が、成型物の表面となる部位のみに、導電性物質層を有
する硬化可能な微粒子を存在せしめ、固着させることに
より得ることもできる。例えば、モールディング型内部
に、導電性物質層を有する熱可塑性を有する物質の微粒
子よりなる層を形成せしめた後、熱可塑性微粒子を成型
することにより、表面のみに導電性を有する成型物を得
ることが出来る。
Further, the conductive molded product of the present invention can be obtained by fixing only fine particles having a conductive material layer on the surface, but curable fine particles having a conductive material layer only on the surface of the molded product. It can also be obtained by making it exist and fixing it. For example, by forming a layer of fine particles of a thermoplastic substance having a conductive substance layer inside a molding mold and then molding the thermoplastic fine particles, a molded product having conductivity only on the surface can be obtained. I can do it.

この場合、成型物の内部となるべきものは必ずしも導電
性物質層を有する硬化可能な熱可塑性微粒子である必要
はなく、硬化可能な熱可塑性微粒子と固着し得るもので
あれば良い。また、第1層として表面に導電性物質層を
有する熱可塑性微粒子からなる層を設け、第2層として
第1層と加圧及びまたは加熱により固着し得る物質から
なる層を設け、第3層として表面に導電性物質層を有す
る熱可塑性微粒子からなる層を設け、これを加圧及びま
たは加熱により相互に固着せしめることにより表面が導
電性を有する板状あるいはフィルム状成型物を得ること
も可能である。
In this case, what should become the inside of the molded product does not necessarily have to be curable thermoplastic fine particles having a conductive material layer, but may be anything that can adhere to the curable thermoplastic fine particles. Further, a layer made of thermoplastic fine particles having a conductive material layer on the surface is provided as the first layer, a layer made of a substance that can be fixed to the first layer by pressure and/or heating is provided as the second layer, and a third layer is provided. It is also possible to obtain a plate-like or film-like molded product with a conductive surface by providing a layer of thermoplastic fine particles with a conductive material layer on the surface and fixing them to each other by applying pressure and/or heating. It is.

次に、本発明の詳細な説明を実施例に示すが、本発明は
以下の例によりなんら制限されるものではない。なお、
実施例中で用いら・れる「部」は、いずれの場合も重量
部を示す。〔実施例〕 実施例 1 エピコート1007  (油化シェルエポキシ社製)を
ターボミルにより粉砕し、平均約50μmの微粒子を得
た。この微粒子100部に前述した方法により前処理を
施し、次いで下記の組成の水溶液に攪拌・分散した。
Next, a detailed explanation of the present invention will be shown in Examples, but the present invention is not limited in any way by the following Examples. In addition,
"Parts" used in the examples indicate parts by weight in all cases. [Example] Example 1 Epicoat 1007 (manufactured by Yuka Shell Epoxy Co., Ltd.) was pulverized using a turbo mill to obtain fine particles with an average size of about 50 μm. 100 parts of these fine particles were pretreated by the method described above, and then stirred and dispersed in an aqueous solution having the following composition.

硝酸銀            18部水      
            300部35Xアンモニア水
 褐色沈澱が溶解するまで添加エチルアルコール   
   50部 次に、更にエポキシ樹脂微粒子の分散性を向上させるた
めに、水流アスピレータにより減圧し、脱泡を行なった
。これを常圧に戻し、マグネティックスターうにより十
分攪拌を行ないながら、35%ホルマリン10部を含有
する水溶液100部を徐々に添加し、約20分間遠元反
応を進行させる。水で数回デカンテーションする事によ
り溶存塩類を除去し、加熱乾燥して銀めっきエポキシ樹
脂微粒子を得た。
Silver nitrate 18 parts water
300 parts 35X ammonia water Add ethyl alcohol until brown precipitate dissolves
50 partsNext, in order to further improve the dispersibility of the epoxy resin fine particles, the pressure was reduced using a water aspirator to defoam. The pressure was returned to normal, and 100 parts of an aqueous solution containing 10 parts of 35% formalin was gradually added while sufficiently stirring with a magnetic star, and the centrifugal reaction was allowed to proceed for about 20 minutes. Dissolved salts were removed by decantation with water several times, and the mixture was heated and dried to obtain silver-plated epoxy resin particles.

この微粒子100部に、硬化剤として1−シアノエチル
−2−メチルイミダゾール(四国化成製キュアゾール2
MZ−CN)  o、  1部をトライブレンドし、こ
の混合物1部をプレス圧約100kg−f/cm2で加
圧成形し、厚さ約2.5mmの円板状加圧成形物を得た
1-cyanoethyl-2-methylimidazole (Curesol 2 manufactured by Shikoku Kasei Co., Ltd.) was added to 100 parts of the fine particles as a curing agent.
1 part of MZ-CN) o was triblended, and 1 part of this mixture was pressure-molded at a press pressure of about 100 kg-f/cm2 to obtain a disk-shaped press-molded product with a thickness of about 2.5 mm.

次いでこの円盤状成型物を150℃で1時間加熱し硬化
処理を施し、導電性ディスクを得た。このディスクをメ
チルエチルケトンに15分間浸漬し、変化を見た。
Next, this disk-shaped molded product was heated at 150° C. for 1 hour to undergo a hardening treatment, thereby obtaining a conductive disk. This disk was immersed in methyl ethyl ketone for 15 minutes and changes were observed.

実施例2 エピコート1007  (油化シェルエポキシ社製)を
ターボミルにより粉砕し、平均約50μ−の微粒子を得
た。この微粒子100部に前述した方法により前処理を
施し、次いで下記の組成の水溶液に攪拌・分散した。
Example 2 Epicoat 1007 (manufactured by Yuka Shell Epoxy Co., Ltd.) was pulverized using a turbo mill to obtain fine particles with an average size of about 50 μ-. 100 parts of these fine particles were pretreated by the method described above, and then stirred and dispersed in an aqueous solution having the following composition.

塩化ニッケル        39部 クエン酸ナトリウム     142部次亜リン酸ナト
リウム     27部ホウ酸           
77部 水                 800部エチル
アルコール     100部次に、更にエポキシ樹脂
微粒子の分散性を向上させるために、水流アスピレータ
により減圧し、脱泡を行なった。
Nickel chloride 39 parts Sodium citrate 142 parts Sodium hypophosphite 27 parts Boric acid
77 parts Water 800 parts Ethyl alcohol 100 parts Next, in order to further improve the dispersibility of the epoxy resin fine particles, the pressure was reduced using a water aspirator to perform defoaming.

これを常圧に戻し、マグネティックスターラにより十分
撹拌を行ないながら、80℃の湯浴中で約30分間遠元
反応を進行させる。反応が終了したら、水で数回デカン
テーションする事により溶存塩類を除去し、加熱乾燥し
てニッケルめっきエポキシ微粒子を得た。この微粒子1
00部に硬化剤として1−シアノエチル−2−メチルイ
ミダゾール(四国化成製キュアゾール2MZ−CN) 
 0. 1部をトライブレンドし、この混合物1部をプ
レス圧約50kg−f/cm2. 75℃で加熱・加圧
成形し、厚さ約0.3mmのフィルム状成形物を得た。
The pressure was returned to normal, and the distant reaction was allowed to proceed for about 30 minutes in a water bath at 80° C. while sufficiently stirring with a magnetic stirrer. After the reaction was completed, dissolved salts were removed by decantation with water several times, and nickel-plated epoxy fine particles were obtained by heating and drying. This fine particle 1
00 parts and 1-cyanoethyl-2-methylimidazole (Curezol 2MZ-CN manufactured by Shikoku Kasei Co., Ltd.) as a curing agent.
0. One part was triblended and one part of this mixture was pressed at a pressure of about 50 kg-f/cm2. It was heated and pressure molded at 75°C to obtain a film-like molded product with a thickness of about 0.3 mm.

次いでこのフィルム状成型物を150℃で1時間加熱し
硬化処理を施し、導電性フィルムを得た。このフィルム
をメチルエチルケトンに15分間浸漬し、変化を見た。
Next, this film-shaped molded product was heated at 150° C. for 1 hour to perform a curing treatment to obtain a conductive film. This film was immersed in methyl ethyl ketone for 15 minutes and changes were observed.

実施例3 21セパラブルフラスコにトルエン660部を入れ下8
0℃に加熱し、N2ガスを吹き込みながら約30分間攪
拌を続ける。これにアゾビスイソブチロニトリル4部、
メタクリル酸メチル140部、アクリル酸ローブチル1
40部、N−メトキシメチルアクリルアミド20部の混
合物を滴下管から約2時間で徐々に添加する。液温を8
0℃に保ったまま約2時間反応を進行させ、アゾビスイ
ソブチロニトリル1部を溶解したトルエン20部を添加
し2時間反応を進行させた後、アゾビスイソブチロニト
リル1部を溶解したトルエン20部を添加し、更に2時
間80℃で反応を進行させ、不揮発分30重量%の重合
体溶液を得た。この重合体溶液をトルエンで適宜希釈し
、メタノール中に徐々に添加する事により再沈澱を行な
い、樹脂微粒子を得た。この微粒子100部に前述した
方法により前処理を施し、次いで下記の組成の水溶液に
攪拌・分散した。
Example 3 21 Put 660 parts of toluene into a separable flask and
Heat to 0° C. and continue stirring for about 30 minutes while blowing N2 gas. To this, 4 parts of azobisisobutyronitrile,
140 parts of methyl methacrylate, 1 part of lobate acrylate
A mixture of 40 parts of N-methoxymethylacrylamide and 20 parts of N-methoxymethylacrylamide is gradually added via a dropping tube over a period of about 2 hours. Liquid temperature 8
The reaction was allowed to proceed for about 2 hours while being maintained at 0°C, 20 parts of toluene in which 1 part of azobisisobutyronitrile was dissolved was added, and the reaction was allowed to proceed for 2 hours, after which 1 part of azobisisobutyronitrile was dissolved. 20 parts of toluene was added thereto, and the reaction was further allowed to proceed at 80° C. for 2 hours to obtain a polymer solution with a nonvolatile content of 30% by weight. This polymer solution was appropriately diluted with toluene and gradually added to methanol to perform reprecipitation to obtain fine resin particles. 100 parts of these fine particles were pretreated by the method described above, and then stirred and dispersed in an aqueous solution having the following composition.

硝酸銀           40部 水                  300部35
χアンモニア水 褐色沈澱が溶解するまで添加エチルア
ルコール      50部 次に、更に樹脂微粒子の分散性を向上させるために、水
流アスピレータにより減圧し、脱泡を行なった。これを
常圧に戻し、マグネテインクスターラにより十分攪拌を
行ないながら、35%ホルマリン22部を含有する水溶
液100部を徐々に添加し、約20分間遠元反応を進行
させる。水で数回デカンテションする事により溶存塩類
を除去し、加熱乾燥して銀めっきアクリル樹脂微粒子を
得た。この微粒子1部をプレス圧約100kg−f/c
m”で加圧成形し、厚さ約2.5+ea+の円板状加圧
成形物を得た。次いでこの円盤状成型物を100℃で1
時間加熱し硬化処理を施し、導電性ディスクを得た。こ
のディスクをメチルエチルケトンに15分間浸漬し、変
化を見た。
Silver nitrate 40 parts Water 300 parts 35
χ Aqueous ammonia Added 50 parts of ethyl alcohol until the brown precipitate was dissolved.Next, in order to further improve the dispersibility of the resin particles, the pressure was reduced using a water aspirator to defoam. The pressure was returned to normal, and while stirring sufficiently with a magnetic stirrer, 100 parts of an aqueous solution containing 22 parts of 35% formalin was gradually added, and the centrifugal reaction was allowed to proceed for about 20 minutes. Dissolved salts were removed by decanting with water several times, and the mixture was dried by heating to obtain silver-plated acrylic resin fine particles. One part of these fine particles was pressed at a pressure of about 100 kg-f/c.
m" to obtain a disk-shaped press-molded product with a thickness of about 2.5+ea+. Next, this disk-shaped molded product was heated at 100°C
A conductive disk was obtained by heating and curing for a period of time. This disk was immersed in methyl ethyl ketone for 15 minutes and changes were observed.

比較例 1 1I!セパラブルフラスコにトルエン378部を入れ、
N2ガスを吹き込みながら、80℃に加熱する。
Comparative example 1 1I! Put 378 parts of toluene in a separable flask,
Heat to 80°C while blowing N2 gas.

これに、スチレン 320部、アクリルM2−ヒドロキ
シエチル 60部1 アクリル酸 20部、およびAI
BN  2部の混合物を撹拌しながら約2時間で滴下す
る。滴下終了後、3時間おきにAIBNを10重量%含
むトルエン 10部2回を添加し、更に2時間反応を続
け、不蓮発分約50重量%の樹脂溶液を得た。この樹脂
溶液200部に銀粉(F−14デメトロン社製)25部
を加え、分散させ、銀分散ペーストを得た。このペース
トをテフロン板上にキャストし、トルエンを概ね揮発さ
せた後、100℃で30分間乾燥しフィルムを得た。こ
のフィルムをメチルエチルケトンに15分間浸漬し、変
化を見た。
To this, 320 parts of styrene, 60 parts of acrylic M2-hydroxyethyl, 20 parts of acrylic acid, and AI
A mixture of 2 parts of BN is added dropwise with stirring over about 2 hours. After the dropwise addition was completed, 10 parts of toluene containing 10% by weight of AIBN was added twice every 3 hours, and the reaction was continued for an additional 2 hours to obtain a resin solution containing about 50% by weight of Furen fraction. 25 parts of silver powder (manufactured by F-14 Demetron) was added to 200 parts of this resin solution and dispersed to obtain a silver dispersed paste. This paste was cast on a Teflon plate, and after most of the toluene was volatilized, it was dried at 100° C. for 30 minutes to obtain a film. This film was immersed in methyl ethyl ketone for 15 minutes and changes were observed.

比較例2 比較例1で合成した樹脂溶液をメタノール中に添加して
再沈澱を行ない、樹脂微粒子を得た。この微粒子100
部に前述した方法により前処理を施し、次いで下記の組
成の水溶液に攪拌・分散した。
Comparative Example 2 The resin solution synthesized in Comparative Example 1 was added to methanol and reprecipitated to obtain resin fine particles. This fine particle 100
The sample was pretreated by the method described above, and then stirred and dispersed in an aqueous solution having the composition shown below.

硝酸銀           40部 水                  300部35
χアンモニア水 褐色沈澱が溶解するまで添加エチルア
ルコール      50部 次に、更に樹脂微粒子の分散性を向上させるために、水
流アスピレータにより減圧し、脱泡を行なった。これを
常圧に戻し、マグネテインクスターラにより十分攪拌を
行ないながら、35%ホルマリン22部を含有する水溶
液100部を徐々に添加し、約20分間遠元反応を進行
させる。水で数回デカンテーションする事により溶存塩
類を除去し、加熱乾燥して銀めっきアクリル樹脂微粒子
を得た。この微粒子1部をプレス圧約100kg−f/
ca+!で加圧成形し、厚さ約2.5−mの円板状加圧
成形物を得た。次いでこの円盤状成型物を100℃で1
時間加熱し融着処理を施し、導電性ディスクを得た。こ
のディスクをメチルエチルケトンに15分間浸漬し、変
化を見た。
Silver nitrate 40 parts Water 300 parts 35
χ Aqueous ammonia Added 50 parts of ethyl alcohol until the brown precipitate was dissolved.Next, in order to further improve the dispersibility of the resin particles, the pressure was reduced using a water aspirator to defoam. The pressure was returned to normal, and while stirring sufficiently with a magnetic stirrer, 100 parts of an aqueous solution containing 22 parts of 35% formalin was gradually added, and the centrifugal reaction was allowed to proceed for about 20 minutes. Dissolved salts were removed by decantation with water several times, and the mixture was heated and dried to obtain silver-plated acrylic resin fine particles. One part of these fine particles was pressed at a pressure of about 100 kg-f/
ca+! A disc-shaped press-molded product with a thickness of about 2.5 m was obtained. Next, this disc-shaped molded product was heated at 100°C for 1
A conductive disk was obtained by heating for a period of time and performing a fusion treatment. This disk was immersed in methyl ethyl ketone for 15 minutes and changes were observed.

以下に上記実施例及び比較例により得た成型物の比抵抗
値及びメチルエチルケトン浸漬による変化をまとめて示
す。
The specific resistance values of the molded products obtained in the above Examples and Comparative Examples and the changes caused by immersion in methyl ethyl ketone are summarized below.

Claims (4)

【特許請求の範囲】[Claims] 1.硬化可能な熱可塑性を有する物質からなる微粒子を
、導電性物質層で被覆した後、必要に応じて硬化剤を添
加し、加圧及び加熱して成型、硬化せしめてなることを
特徴とする導電性成型物。
1. A conductive material made of fine particles made of a hardenable thermoplastic substance, coated with a conductive material layer, a hardening agent added if necessary, molded and hardened by applying pressure and heating. Sex moldings.
2.導電性物質層が、無電解めっきにより形成された金
属層であることを特徴とする請求項1記載の導電性成型
2. The conductive molded article according to claim 1, wherein the conductive material layer is a metal layer formed by electroless plating.
3.硬化性樹脂が、エポキシ系化合物またはアクリル系
重合体であることを特徴とする請求項1または2記載の
導電性成型物。
3. 3. The conductive molded article according to claim 1, wherein the curable resin is an epoxy compound or an acrylic polymer.
4.硬化可能な熱可塑性を有する物質からなる微粒子を
、導電性物質層で被覆した後、必要に応じて硬化剤を添
加し、加圧及び加熱して成型、硬化することを特徴とす
る導電性成型物の製造方法
4. Conductive molding characterized by coating fine particles made of a curable thermoplastic substance with a layer of conductive material, adding a curing agent if necessary, molding and curing by applying pressure and heating. method of manufacturing things
JP7087890A 1990-03-20 1990-03-20 Conductive molding and its production Pending JPH03273031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7087890A JPH03273031A (en) 1990-03-20 1990-03-20 Conductive molding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7087890A JPH03273031A (en) 1990-03-20 1990-03-20 Conductive molding and its production

Publications (1)

Publication Number Publication Date
JPH03273031A true JPH03273031A (en) 1991-12-04

Family

ID=13444247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7087890A Pending JPH03273031A (en) 1990-03-20 1990-03-20 Conductive molding and its production

Country Status (1)

Country Link
JP (1) JPH03273031A (en)

Similar Documents

Publication Publication Date Title
JP4563110B2 (en) Method for producing conductive fine particles
US4719145A (en) Catalytic process and systems
KR20130057459A (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JPS61126150A (en) Filler for producing plastic compound and its production
US4888209A (en) Catalytic process and systems
JP4412669B2 (en) Coated conductive particles, conductive material, anisotropic conductive adhesive, and anisotropic conductive joint structure
KR101713015B1 (en) Graphene Coated Conductive particles, and conductive materials including the same
CN114260450B (en) Silver-plated micron-sized particles and preparation method and application thereof
JP2017183200A (en) Conductive particle, anisotropic conductive material and connection structure
JPS61210183A (en) Method for providing metal film to surface of polymer
EP0141528B1 (en) Conducting or catalysing a chemical reation on a surface especially electroless metal deposition and catalyst systems used therein
Liu et al. Study on the synthetic mechanism of monodispersed polystyrene-nickel composite microspheres and its application in facile synthesis of epoxy resin-based anisotropic conductive adhesives
JPS63190204A (en) Conducting fine pellet
Yu et al. Self-healing electromagnetic interference shielding composite based on Diels–Alder chemistry
JP4108340B2 (en) Conductive silica-based particles
JPH0238108B2 (en)
CN108461172A (en) A kind of conducting particles and its preparation method and application
JPH03273031A (en) Conductive molding and its production
Chen et al. The copper sulfide coating on polyacrylonitrile with a chelating agent of ethylenediaminetetraacetic acid by an electroless deposition method and its EMI shielding effectiveness
JPH0519241B2 (en)
KR100813614B1 (en) Conductive ball for anisotropic conductive film and method of preparing same
JP2008021513A (en) Conductive magnetic powder
JPH03257171A (en) Conductive molding and production thereof
KR100772358B1 (en) Conductive particle and anisotropic conductive adhesives using the same
JP2005044518A (en) Conductive particle, conductive material, anisotropic conductive film, and conductive connection structure