JP2008021513A - Conductive magnetic powder - Google Patents

Conductive magnetic powder Download PDF

Info

Publication number
JP2008021513A
JP2008021513A JP2006191800A JP2006191800A JP2008021513A JP 2008021513 A JP2008021513 A JP 2008021513A JP 2006191800 A JP2006191800 A JP 2006191800A JP 2006191800 A JP2006191800 A JP 2006191800A JP 2008021513 A JP2008021513 A JP 2008021513A
Authority
JP
Japan
Prior art keywords
magnetic powder
metal
conductive magnetic
conductive
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006191800A
Other languages
Japanese (ja)
Inventor
Masaru Nakagawa
勝 中川
Hirokazu Oda
博和 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2006191800A priority Critical patent/JP2008021513A/en
Publication of JP2008021513A publication Critical patent/JP2008021513A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemically Coating (AREA)
  • Hard Magnetic Materials (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive magnetic powder with weight saved with conductivity and strength originating from metal or metal alloy sustained, and capable of obtaining an anisotropic conductive material easy to be put under orientation control. <P>SOLUTION: In the conductive magnetic powder made of a hollow-shaped material consisting of metal, metal alloy or metal oxide, the metal contains gold. The conductive magnetic powder has a coercive force of 1 to 500 Oe, a mass saturation magnetization of 0.1 to 55 emu/g, and, preferably, an aspect ratio (a length of the conductive magnetic powder / an outer diameter of the conductive magnetic powder) of 2 to 100. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は導電性磁性粉体に関するものであり、特には、金属又は金属合金に由来する導電性及び強度を維持したまま軽量化を実現でき、磁場印加による配向制御しやすい異方導電材料を得ることのできる、導電性磁性粉体に関する。   The present invention relates to a conductive magnetic powder, and in particular, an anisotropic conductive material that can achieve weight reduction while maintaining conductivity and strength derived from a metal or metal alloy and that is easy to control orientation by applying a magnetic field. The present invention relates to a conductive magnetic powder that can be used.

極細径の金属繊維は、燃料電池や二次電池等の極板、触媒、触媒担体、ディスプレイ用電極、携帯電話用電極等に広く用いられている。そして、特に燃料電池や二次電池等の高性能化を図る手段として、電極材料の表面積の拡大及び触媒効率の向上が求められている。電極材料の表面積を拡大するために、界面活性剤により形成された繊維状分子集合体や高分子が紡糸された繊維を鋳型として用いる鋳型法による中空形物の製造方法が提案されている。   Ultrafine metal fibers are widely used for electrode plates such as fuel cells and secondary batteries, catalysts, catalyst carriers, display electrodes, mobile phone electrodes, and the like. In particular, as a means for improving the performance of fuel cells, secondary batteries, etc., it is required to increase the surface area of the electrode material and improve the catalyst efficiency. In order to increase the surface area of the electrode material, a method for producing a hollow article by a casting method using a fibrous molecular assembly formed of a surfactant or a fiber spun with a polymer as a casting has been proposed.

上述のような中空金属繊維を製造する方法として、例えば、特許文献1には、芯剤を金属めっきで被覆してから芯剤を除去する方法が開示されている。該特許文献1に記載の方法においては、金属めっきの種類を変えることにより、種々の金属の特性を活かした中空形状材料を得ることができる。例えば、Niめっきを施すことにより、Niが有する触媒性能を活用することが期待できる。   As a method for producing the hollow metal fiber as described above, for example, Patent Document 1 discloses a method of removing a core agent after coating the core agent with metal plating. In the method described in Patent Document 1, by changing the type of metal plating, it is possible to obtain a hollow material that takes advantage of the characteristics of various metals. For example, by applying Ni plating, it can be expected to utilize the catalytic performance of Ni.

一方、異方導電材料として、例えば、パーソナルコンピュータ、パーソナルデジタルアシスタンス、携帯電話、液晶テレビ等の電子機器において、隣接する複数の基板を電気的に接続したり、半導体素子等を基板に電気的に接着したりするために、相対向する基板や電極端子の間に挟み込み圧着して用いられる材料が知られている。導電性材料は、バインダー樹脂や接着剤等と混合(混練)することにより、例えば、異方導電性シート、異方導電性フィルム、異方導電性塗料、異方導電性接着剤、異方導電性粘着剤、異方導電性ペースト、異方導電性インク等の異方導電材料として用いられている。   On the other hand, as an anisotropic conductive material, for example, in electronic devices such as personal computers, personal digital assistance, mobile phones, and liquid crystal televisions, a plurality of adjacent substrates are electrically connected, or a semiconductor element is electrically connected to the substrate. In order to bond them, there are known materials that are used by being sandwiched and pressed between opposing substrates and electrode terminals. The conductive material is mixed (kneaded) with a binder resin, adhesive, etc., for example, anisotropic conductive sheet, anisotropic conductive film, anisotropic conductive paint, anisotropic conductive adhesive, anisotropic conductive It is used as an anisotropic conductive material such as a conductive adhesive, anisotropic conductive paste, and anisotropic conductive ink.

このような異方導電材料に用いられる材料としては、金属微粒子が用いられることが一般的であるが、金属粒子は比重が大きく形状が不定形であり、バインダー樹脂や接着剤中に均一に分散しない場合があり、このような場合は、得られる異方導電材料の導電性にムラが生じる原因になる。   As a material used for such an anisotropic conductive material, metal fine particles are generally used, but metal particles have a large specific gravity and an irregular shape, and are uniformly dispersed in a binder resin or an adhesive. In such a case, unevenness may be caused in the conductivity of the obtained anisotropic conductive material.

このため、金属粒子に代え、軽量で粒子径の均一なガラスビーズ、グラスファイバー等の芯材粒子の表面に、例えば無電解めっき法により金属めっきを施し、金属めっき層(導電層)が形成された導電性粒子が用いられている。しかし、このようなものは、金属めっき層が剥離したり、導電性粒子同士が凝集したりしやすいため、凝集を破壊する工程が必要となるが、この工程においてめっき剥離を生じるという問題もある。このため、電気抵抗が増大してしまうという問題があった。   For this reason, instead of metal particles, the surface of the core particles such as glass beads and glass fibers having a light and uniform particle diameter is subjected to metal plating by, for example, electroless plating to form a metal plating layer (conductive layer). Conductive particles are used. However, since such a metal plating layer is easily peeled off or the conductive particles are easily agglomerated, a step for breaking the agglomeration is necessary, but there is also a problem that plating peeling occurs in this step. . For this reason, there existed a problem that an electrical resistance will increase.

上記問題を解決するための異方導電材料も知られている(特許文献1)。しかし、これは球体ないし球体に近い形状であり、導電方向に対して異方的に配列したり、精密に接触・絶縁性を制御したりすることは困難であった。近年においては、電子機器が小型化する傾向にあり、粒子が大きくなると隣り合う接点間でのショートの確率が大きくなったり、反対に粒子径が小さいと接触抵抗が大きくなったりするなどの問題があり、実用されていないのが実状であった。
このように、近年における電子機器の進歩、発展に伴って要求される、異方導電材料としては、金属又は金属合金に由来する導電性と強度を維持したまま軽量化が実現され、配向制御をしやすいことが要求される。
An anisotropic conductive material for solving the above problem is also known (Patent Document 1). However, this is a sphere or a shape close to a sphere, and it has been difficult to arrange it anisotropically with respect to the direction of conduction, or to precisely control contact and insulation. In recent years, there is a tendency for electronic devices to be miniaturized, and there are problems such as the probability of short-circuit between adjacent contacts increases when the particle size increases, and conversely the contact resistance increases when the particle size is small. Yes, it was not actually used.
As described above, anisotropic conductive materials required with the progress and development of electronic devices in recent years have achieved weight reduction while maintaining conductivity and strength derived from metals or metal alloys, and orientation control is achieved. It is required to be easy to do.

特開2003−193335号公報JP 2003-193335 A 特開2004−165019号公報JP 2004-165019 A Materials Science and Engineering, A158 (1992) 1-6Materials Science and Engineering, A158 (1992) 1-6 Journal of Power Sources, 50(1994) 21-25Journal of Power Sources, 50 (1994) 21-25

従って、本発明の目的は、金属又は金属合金に由来する導電性及び強度を維持したまま軽量化を実現でき、配向制御しやすい異方導電材料を得ることのできる、導電性磁性粉体を提供することにある。   Accordingly, an object of the present invention is to provide a conductive magnetic powder capable of achieving weight reduction while maintaining conductivity and strength derived from a metal or metal alloy, and capable of obtaining an anisotropic conductive material that is easy to control orientation. There is to do.

上記目的を達成するため、本発明者らは鋭意検討した結果、金属、金属合金又は金属酸化物からなる中空形状材料からなる導電性磁性粉体において、上記金属に金を含ませることにより、上記目的を達成し得るという知見を得た。   In order to achieve the above object, the present inventors have intensively studied. As a result, in the conductive magnetic powder made of a hollow material made of a metal, a metal alloy, or a metal oxide, The knowledge that the purpose can be achieved was obtained.

本発明は上記知見に基づいてなされたものであり、金属、金属合金又は金属酸化物からなる中空形状材料からなる導電性磁性粉体であって、上記金属が金を含むことを特徴とする導電性磁性粉体を提供するものである。
上記導電性磁性粉体は、保磁力が1〜500Oeであり、質量飽和磁化が0.1〜55emu/gであり、アスペクト比(導電性磁性粉体の長さ/導電性磁性粉体の外径)が2〜100であるであることが好ましい。
The present invention has been made based on the above knowledge, and is a conductive magnetic powder made of a hollow material made of a metal, a metal alloy or a metal oxide, wherein the metal contains gold. Magnetic powder is provided.
The conductive magnetic powder has a coercive force of 1 to 500 Oe, a mass saturation magnetization of 0.1 to 55 emu / g, and an aspect ratio (length of the conductive magnetic powder / outside of the conductive magnetic powder. (Diameter) is preferably 2 to 100.

上記導電性磁性粉体は、好ましくは、(A)繊維状物を形成し得る両性化合物を水に溶解して両性化合物水溶液を調製し、該両性化合物水溶液から繊維状物を形成させ、繊維状物含有水溶液を得る工程;(B)上記繊維物含有水溶液中の上記繊維状物を金属、金属合金又は金属酸化物で被覆し、次いで、金又は金化合物で被覆し、繊維状物で形成された芯材と金属、金属合金又は金属酸化物で形成された外装材とを含有する被覆繊維状物を形成する工程;(C)上記工程(B)で得られた被覆繊維状物の芯材を溶解するか、上記被覆繊維状物の芯材を溶解した後に外装材を焼成するか、又は上記被覆繊維状物を焼成して芯材を除去することにより、金属、金属合金又は金属酸化物と、金又は金化合物とで形成された中空状材料を得る工程により製造される。   The conductive magnetic powder is preferably prepared by dissolving (A) an amphoteric compound capable of forming a fibrous material in water to prepare an amphoteric compound aqueous solution, forming a fibrous material from the amphoteric compound aqueous solution, (B) The fibrous material in the fibrous material-containing aqueous solution is coated with a metal, a metal alloy or a metal oxide, and then coated with gold or a gold compound to form a fibrous material. Forming a coated fibrous material containing a core material and an exterior material formed of a metal, metal alloy or metal oxide; (C) a core material of the coated fibrous material obtained in the step (B) Metal, a metal alloy, or a metal oxide by dissolving the core material of the coated fibrous material, firing the exterior material, or firing the coated fibrous material and removing the core material And a step of obtaining a hollow material formed of gold or a gold compound. It is produced.

上記両性化合物としては、下記一般式(1)で示される化合物が挙げられる。   Examples of the amphoteric compounds include compounds represented by the following general formula (1).

Figure 2008021513
(式中、Rは水素又は炭素数1〜10の直鎖又は分岐状のアルキル基であり、mは1〜20の整数である。)
上記工程(B)は、好ましくは無電解めっきにより行われる。
上記工程(B)における金属又は金属合金は、好ましくはNi、Ni合金又はNi−P合金である。
また、本発明は、体積抵抗率が1.0×10Ω・cm以上の絶縁体中に、本発明の導電性磁性粉体が分散してなる異方導電材料を提供する。
Figure 2008021513
(In the formula, R is hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms, and m is an integer of 1 to 20.)
The step (B) is preferably performed by electroless plating.
The metal or metal alloy in the step (B) is preferably Ni, Ni alloy or Ni-P alloy.
The present invention also provides an anisotropic conductive material in which the conductive magnetic powder of the present invention is dispersed in an insulator having a volume resistivity of 1.0 × 10 8 Ω · cm or more.

本発明の導電性磁性粉体は、金属又は金属合金に由来する導電性と強度を維持したまま軽量化を実現することができ、配向制御しやすい異方導電材料を得ることのできるものである。   The conductive magnetic powder of the present invention can achieve weight reduction while maintaining conductivity and strength derived from a metal or metal alloy, and can obtain an anisotropic conductive material that is easy to control orientation. .

以下、本発明の導電性磁性粉体について説明する。
本発明の導電性磁性粉体は、金属、金属合金又は金属酸化物からなる中空形状材料からなる導電性磁性粉体であって、上記金属が金を含むことを特徴とする。
本発明の導電性磁性粉体は、金属、金属合金又は金属酸化物からなる。金属としては、特に限定されるものではないが、本発明の導電性磁性粉体は磁性を有するものであり、ニッケル、コバルト、鉄のいずれかを含むものである。そのような金属、金属合金又は金属酸化物としては、例えば、ニッケル、ニッケル−ホウ素合金、ニッケル−コバルト合金等が挙げられる。ニッケル、コバルト、鉄以外の金属としては、例えば、金、銀、銅、アルミニウム、白金、スズ、鉛、亜鉛、チタン、クロム、マンガン、ジルコニウム、タングステン、インジウム等が挙げられ、金属酸化物としては、これらの酸化物が挙げられる。また、これらの金属には金が含まれる。金の含有量は、上述した効果を発揮するためには、磁性導電性粉体の全質量に対し、0.1〜30質量%であることが好ましく、0.5〜25質量%であることが更に好ましい。また、金以外の金属としては、磁性を有するニッケル、コバルト、鉄を含むことが望ましい。更に好ましい金以外の金属としては、導電性、価格及び中空形状材料として加工する際の加工性に優れることから、ニッケルが好ましい。上記金属、金属合金又は金属酸化物は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。金属としてニッケルを用いた場合、金の含有量は、ニッケル100質量部に対し、好ましくは0.1〜50質量部であり、更に好ましくは1〜40質量部である。金の含有量が上記範囲よりも小さいと、体積抵抗率が大きく、導電性が低下する場合があり、一方、多すぎるとコストが高くなる。
Hereinafter, the conductive magnetic powder of the present invention will be described.
The conductive magnetic powder of the present invention is a conductive magnetic powder made of a hollow material made of metal, metal alloy or metal oxide, wherein the metal contains gold.
The conductive magnetic powder of the present invention is made of metal, metal alloy or metal oxide. Although it does not specifically limit as a metal, The electroconductive magnetic powder of this invention has magnetism, and contains either nickel, cobalt, or iron. Examples of such metal, metal alloy, or metal oxide include nickel, nickel-boron alloy, nickel-cobalt alloy, and the like. Examples of metals other than nickel, cobalt, and iron include gold, silver, copper, aluminum, platinum, tin, lead, zinc, titanium, chromium, manganese, zirconium, tungsten, and indium. And these oxides. These metals include gold. The gold content is preferably 0.1 to 30% by mass and preferably 0.5 to 25% by mass with respect to the total mass of the magnetic conductive powder in order to exert the above-described effects. Is more preferable. Moreover, as metals other than gold, it is desirable to contain nickel, cobalt, and iron which have magnetism. Furthermore, as a preferable metal other than gold, nickel is preferable because it is excellent in conductivity, cost, and workability when processed as a hollow material. The said metal, a metal alloy, or a metal oxide may be used independently, or may be used in combination of 2 or more types. When nickel is used as the metal, the gold content is preferably 0.1 to 50 parts by mass, more preferably 1 to 40 parts by mass with respect to 100 parts by mass of nickel. If the gold content is smaller than the above range, the volume resistivity may be large and the conductivity may be lowered. On the other hand, if the content is too large, the cost becomes high.

本発明の導電性磁性粉体は、保磁力が1〜500Oeであることが好ましく、10〜300Oeであることが更に好ましい。保磁力が1Oe未満である、又は、保磁力が500Oeを超えると磁場を印加して導電性磁性粉体を配向させるとき方向が不揃いとなる場合がある。   The conductive magnetic powder of the present invention preferably has a coercive force of 1 to 500 Oe, and more preferably 10 to 300 Oe. If the coercive force is less than 1 Oe, or the coercive force exceeds 500 Oe, the direction may be uneven when the magnetic field is applied to orient the conductive magnetic powder.

また、本発明の導電性磁性粉体は、飽和磁化が0.1〜55emu/gであることが好ましく、5〜30emu/gであることが更に好ましい。飽和磁化が0.1emu/g未満であると、磁場を印加しても導電性磁性粉体の配向を行うことができない場合があり、一方、55emu/g を超えると、導電性磁性粉体の磁化が大きくなりすぎて、配向した粉体間の距離が大きくなり、異方導電材料の性能を低下させる場合がある。   The conductive magnetic powder of the present invention preferably has a saturation magnetization of 0.1 to 55 emu / g, more preferably 5 to 30 emu / g. If the saturation magnetization is less than 0.1 emu / g, the conductive magnetic powder may not be oriented even when a magnetic field is applied. On the other hand, if the saturation magnetization exceeds 55 emu / g, the conductive magnetic powder may not be oriented. In some cases, the magnetization becomes too large, the distance between the oriented powders becomes large, and the performance of the anisotropic conductive material is deteriorated.

本発明の導電性磁性粉体の保磁力及び飽和磁化を上記範囲とするには、例えば後述する方法によって導電性磁性粉体を製造することによって行なうことができる。   In order to make the coercive force and the saturation magnetization of the conductive magnetic powder of the present invention within the above ranges, for example, the conductive magnetic powder can be produced by the method described later.

また、本発明の導電性磁性粉体は、体積抵抗率が、10〜10−6Ω・cmであることが好ましい。体積抵抗率が10Ω・cm未満であると、異方導電材料に電圧を印加すると抵抗加熱する場合がある。一方、バルク金の体積抵抗率10−6Ω・cmを超えることはない。
本発明の導電性磁性粉体の体積抵抗率を上記範囲とするには、例えば後述する方法によって導電性磁性粉体を製造することによって行なうことができる。
The conductive magnetic powder of the present invention preferably has a volume resistivity of 10 0 to 10 −6 Ω · cm. If the volume resistivity is less than 10 0 Ω · cm, resistance heating may occur when a voltage is applied to the anisotropic conductive material. On the other hand, the volume resistivity of bulk gold does not exceed 10 −6 Ω · cm.
The volume resistivity of the conductive magnetic powder of the present invention can be adjusted to the above range by, for example, producing the conductive magnetic powder by a method described later.

本発明の導電性磁性粉体は、内径が50nm〜5μmであることが好ましい。また、長さは0.5〜50μmであることが好ましく、1〜20μmであることが更に好ましい。内径が50nm未満であると、中空形状として軽量化するという利点が得られにくくなり、一方、5μmを超えると、強度が低下し、異方導電材料作製時に中空形状を維持できなくなる場合がある。また、長さが0.5μm未満であると、電気的な接続にムラができる場合があり、一方、50μmを超えると、配向のモーメントが大きくなり、大きな印加磁場が必要となり、配向を行うのに必要な電磁石の電力量が多くなり、コストが高くなる場合がある。
また、本発明の導電性磁性粉体は、アスペクト比が2〜100であることが好ましく、5〜30であることが更に好ましい。アスペクト比が2未満であると、球形に近くなり、配向制御が困難となる場合があり、一方、100を超えると、配向のモーメントが大きくなり、エネルギー的に配向が困難となる場合がある。
The conductive magnetic powder of the present invention preferably has an inner diameter of 50 nm to 5 μm. Moreover, it is preferable that length is 0.5-50 micrometers, and it is still more preferable that it is 1-20 micrometers. If the inner diameter is less than 50 nm, it is difficult to obtain the advantage of reducing the weight as a hollow shape. On the other hand, if it exceeds 5 μm, the strength is lowered, and the hollow shape may not be maintained when the anisotropic conductive material is produced. If the length is less than 0.5 μm, uneven electrical connection may occur. On the other hand, if the length exceeds 50 μm, the orientation moment increases, and a large applied magnetic field is required. The amount of electric power required for the electromagnet increases in some cases, and the cost may increase.
Moreover, the conductive magnetic powder of the present invention preferably has an aspect ratio of 2 to 100, more preferably 5 to 30. If the aspect ratio is less than 2, it may be close to a sphere and alignment control may be difficult. On the other hand, if it exceeds 100, the moment of alignment increases and alignment may be difficult in terms of energy.

また、本発明の導電性磁性粉体は、肉厚が10nm〜200nmであることが好ましく、20nm〜150nmであることが更に好ましい。肉厚が10nm未満であると、強度が低下する場合があり、一方、200nmを超えると、軽量化のメリットが得にくくなる場合がある、また、中空形状材料とするための鋳型除去が行えない場合がある。   The conductive magnetic powder of the present invention preferably has a thickness of 10 nm to 200 nm, and more preferably 20 nm to 150 nm. If the thickness is less than 10 nm, the strength may decrease. On the other hand, if it exceeds 200 nm, it may be difficult to obtain the advantage of weight reduction, and removal of the mold for forming a hollow shape material cannot be performed. There is a case.

本発明の導電性磁性粉体は、金の含有率が、導電性磁性粉体の全質量に対し、0.01〜30質量%であることが好ましく、0.5〜25質量%であることが更に好ましい。導電性磁性粉体の全質量に対する金の含有率が0.01質量%未満であると、体積抵抗率が大きく、導電性が低下する場合があり、一方、30質量%を超えるとコストが高くなる。
本発明の導電性磁性粉体の金含有率、内径、長さ、肉厚、アスペクト比を上記範囲とする方法に特に制限はないが、例えば、後述する方法によって製造することによって実施可能である。
本発明の導電性磁性粉体は、金属として金を含有するので、金属又は金属合金に由来する導電性と強度を維持したまま軽量化の実現が可能なものとなる。
In the conductive magnetic powder of the present invention, the gold content is preferably 0.01 to 30% by mass, and preferably 0.5 to 25% by mass with respect to the total mass of the conductive magnetic powder. Is more preferable. If the gold content with respect to the total mass of the conductive magnetic powder is less than 0.01% by mass, the volume resistivity may be large and the conductivity may decrease. On the other hand, if it exceeds 30% by mass, the cost is high. Become.
The method for setting the gold content, inner diameter, length, wall thickness, and aspect ratio of the conductive magnetic powder of the present invention in the above ranges is not particularly limited, but can be carried out, for example, by manufacturing by the method described later. .
Since the conductive magnetic powder of the present invention contains gold as a metal, weight reduction can be realized while maintaining the conductivity and strength derived from the metal or metal alloy.

次に、本発明の導電性磁性粉体の好ましい製造方法について説明する。
本発明の導電性磁性粉体は、以下の工程(A)〜(D)からなる製造方法によって製造することができる。
(A)繊維状物を形成し得る両性化合物を水に溶解して両性化合物水溶液を調製し、該両性化合物水溶液から繊維状物を形成させ、繊維状物含有水溶液を得る工程;
(B)上記繊維物含有水溶液中の上記繊維状物を金属、金属合金又は金属酸化物で被覆し、次いで、金又は金化合物で被覆し、繊維状物で形成された芯材と金属、金属合金又は金属酸化物で形成された外装材とを含有する被覆繊維状物を形成する工程;
(C)上記工程(B)で得られた被覆繊維状物の芯材を溶解するか、上記被覆繊維状物の芯材を溶解した後に外装材を焼成するか、又は上記被覆繊維状物を焼成して芯材を除去することにより、金属、金属合金又は金属酸化物と、金又は金化合物とで形成された中空状材料を得る工程。
Next, the preferable manufacturing method of the electroconductive magnetic powder of this invention is demonstrated.
The conductive magnetic powder of the present invention can be produced by a production method comprising the following steps (A) to (D).
(A) A step of preparing an amphoteric compound aqueous solution by dissolving an amphoteric compound capable of forming a fibrous product in water, forming a fibrous product from the amphoteric compound aqueous solution, and obtaining a fibrous product-containing aqueous solution;
(B) The fibrous material in the fibrous material-containing aqueous solution is coated with a metal, a metal alloy or a metal oxide, and then coated with gold or a gold compound. Forming a coated fibrous material containing an exterior material formed of an alloy or metal oxide;
(C) The core material of the coated fibrous material obtained in the step (B) is dissolved, the exterior material is baked after the core material of the coated fibrous material is dissolved, or the coated fibrous material is The process of obtaining the hollow material formed with the metal, the metal alloy, or the metal oxide, and gold | metal | money or a gold compound by baking and removing a core material.

本発明の導電性磁性粉体を製造するのに用いられる、繊維状物を形成し得る両性化合物について説明する。本発明において用いられる両性化合物は、酸性基及び塩基性基を有するものであり、上記酸性基と塩基性基との間で分子間水素結合が形成されるものである。上記酸性基及び塩基性基は、それぞれ分子の末端に有しているものが好ましい。上記酸性基及び塩基性基を有する両性化合物においては、分子内の酸性基と他の分子の塩基性基との間で分子間水素結合が形成され、両性化合物は繊維状の形態となり、繊維状物を形成する。また、本発明において用いられる両性化合物は、例えば水溶液の温度や水素イオン濃度を変化させることにより溶解するものである。このような性質を有する両性化合物を用いることにより、芯材の除去を、焼結せずに溶解により行うことができるという効果があり、この場合は両性化合物を回収することが可能となる。   The amphoteric compound that can form a fibrous material used for producing the conductive magnetic powder of the present invention will be described. The amphoteric compound used in the present invention has an acidic group and a basic group, and an intermolecular hydrogen bond is formed between the acidic group and the basic group. What the said acidic group and basic group have at the terminal of a molecule | numerator is respectively preferable. In the amphoteric compound having the acidic group and the basic group, an intermolecular hydrogen bond is formed between the acidic group in the molecule and the basic group of the other molecule, and the amphoteric compound is in a fibrous form, and is fibrous. Form things. In addition, the amphoteric compound used in the present invention is dissolved by changing the temperature of the aqueous solution or the hydrogen ion concentration, for example. By using an amphoteric compound having such properties, there is an effect that the core material can be removed by melting without sintering, and in this case, the amphoteric compound can be recovered.

本発明において用いられる両性化合物の有する上記酸性基としては特に限定されないが、例えばカルボキシル基、スルホン酸基、ホスホン酸基、フェノール性水酸基及びスルフィン酸基等が挙げられる。また、上記塩基性基としては特に限定されないが、例えば脂肪族塩基性基として1級、2級、3級アミノ基等が挙げられ、例えば芳香族縮合環塩基性基としてピリジル基、ピコリル基、キノリル基、イミダゾイル基及びベンゾイミダゾイル基等が挙げられる。   Although it does not specifically limit as said acidic group which the amphoteric compound used in this invention has, For example, a carboxyl group, a sulfonic acid group, a phosphonic acid group, a phenolic hydroxyl group, a sulfinic acid group etc. are mentioned. Further, the basic group is not particularly limited, and examples thereof include primary, secondary, and tertiary amino groups as aliphatic basic groups. For example, pyridyl group, picolyl group, aromatic condensed ring basic groups, A quinolyl group, an imidazolyl group, a benzoimidazolyl group, etc. are mentioned.

本発明において用いられる両性化合物としては、分子内にカルボキシル基及びピリジル基を有するものが好ましく用いられる。このような化合物としては、水溶液中で繊維状物を形成し得るものであれば特に制限はないが、例えば下記一般式(1)で示されるものが挙げられる。   As the amphoteric compound used in the present invention, those having a carboxyl group and a pyridyl group in the molecule are preferably used. Such a compound is not particularly limited as long as it can form a fibrous material in an aqueous solution, and examples thereof include those represented by the following general formula (1).

Figure 2008021513
Figure 2008021513

上記一般式(1)において、Rは水素又は炭素数1〜10、好ましくは1〜5の直鎖又は分岐状のアルキル基であり、mは1〜20、好ましくは1〜10の整数である。   In the above general formula (1), R is hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, and m is an integer of 1 to 20, preferably 1 to 10. .

本発明において用いられる両性化合物としては、上記一般式(1)で示されるもの以外に、以下の一般式(2)〜(5)で示されるものが挙げられる。   Examples of the amphoteric compounds used in the present invention include those represented by the following general formulas (2) to (5) in addition to those represented by the general formula (1).

Figure 2008021513
Figure 2008021513

Figure 2008021513
Figure 2008021513

Figure 2008021513
Figure 2008021513

Figure 2008021513
Figure 2008021513

上記一般式(1)〜(5)において、Rは水素又は炭素数1〜10、好ましくは1〜5の直鎖又は分岐状のアルキル基であり、mは1〜20、好ましくは1〜10の整数である。   In the above general formulas (1) to (5), R is hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, and m is 1 to 20, preferably 1 to 10. Is an integer.

本発明においては、上述したような芳香環を有する両性化合物が好ましく用いられるが、本発明において用いられる両性化合物としては芳香環を有するものに限定されない。水溶液中で繊維状物を形成し得る両性化合物であれば、特に制限なく用いられる。本発明において用いることのできる両性化合物を更に例示すると、例えばα−ω−アミノ酸、アミノアルキル基とカルボキシル基とが共に置換されたベンゼン誘導体、ナフタレン誘導体、アントラセン誘導体、アゾベンゼン誘導体、スチルベンゼン誘導体及びビフェニル誘導体等が挙げられる。   In the present invention, the amphoteric compounds having an aromatic ring as described above are preferably used, but the amphoteric compounds used in the present invention are not limited to those having an aromatic ring. Any amphoteric compound capable of forming a fibrous material in an aqueous solution can be used without particular limitation. Further examples of amphoteric compounds that can be used in the present invention include, for example, α-ω-amino acids, benzene derivatives in which both aminoalkyl groups and carboxyl groups are substituted, naphthalene derivatives, anthracene derivatives, azobenzene derivatives, stilbenzene derivatives, and biphenyls. Derivatives and the like.

上記工程(A)は、繊維状物を形成し得る両性化合物を水に溶解して両性化合物水溶液を調製し、該両性化合物水溶液から繊維状物を形成させ、繊維状物含有水溶液を得る工程である。なお、両性化合物としては粉末状のものを水又は水性有機溶媒を含む水溶液に溶解して用いることが好ましい。上述したように、本発明の中空形状物の製造方法においては両性化合物を再利用することが可能であり、粉末状のものを用いることにより、中空形状物を得た後の水溶液からの両性化合物の回収率が向上する。   In the step (A), an amphoteric compound capable of forming a fibrous material is dissolved in water to prepare an amphoteric compound aqueous solution, a fibrous material is formed from the amphoteric compound aqueous solution, and a fibrous material-containing aqueous solution is obtained. is there. As the amphoteric compound, it is preferable to use a powdery compound dissolved in water or an aqueous solution containing an aqueous organic solvent. As described above, the amphoteric compound can be reused in the method for producing a hollow shaped product of the present invention, and the amphoteric compound from the aqueous solution after obtaining the hollow shaped product by using a powdery product. The recovery rate is improved.

上記工程(A)においては、まず繊維状物を形成し得る両性化合物を水に溶解して両性化合物水溶液を調製する。上記一般式(I)で示される化合物を例にして、以下に説明すると、上記一般式(I)で示される化合物はpH2〜11の水溶液中では繊維状物を形成し、11を越えるpH、及び2未満のpHの水溶液中では溶解する。従って、11を越えるpH、又は2未満のpHの水溶液に上記一般式(I)で示される化合物を溶解し、両性化合物水溶液を調製する。例えば、上記一般式(I)で示される化合物を水酸化ナトリウム水溶液に溶解する。調製する両性化合物水溶液中の両性化合物の濃度は特に限定はないが、0.1〜10質量%程度にすることが好ましい。なお、両性化合物の濃度は、得ようとする繊維の軸径、長さ等を考慮して決定することが好ましい。また、水酸化ナトリウム水溶液は、そのpHが11を越えるようになる濃度であればよい。   In the step (A), an amphoteric compound aqueous solution is first prepared by dissolving an amphoteric compound capable of forming a fibrous material in water. Taking the compound represented by the general formula (I) as an example, the following description will be given. The compound represented by the general formula (I) forms a fibrous material in an aqueous solution having a pH of 2 to 11, and has a pH exceeding 11. And dissolves in aqueous solutions with a pH of less than 2. Therefore, the compound represented by the general formula (I) is dissolved in an aqueous solution having a pH of more than 11 or less than 2, to prepare an amphoteric compound aqueous solution. For example, the compound represented by the general formula (I) is dissolved in an aqueous sodium hydroxide solution. The concentration of the amphoteric compound in the aqueous amphoteric compound solution to be prepared is not particularly limited, but is preferably about 0.1 to 10% by mass. The concentration of the amphoteric compound is preferably determined in consideration of the axial diameter, length, etc. of the fiber to be obtained. Moreover, the sodium hydroxide aqueous solution should just be the density | concentration from which the pH exceeds 11.

次いで、得られた両性化合物水溶液から繊維状物を形成させ、繊維状物含有水溶液を得る。上記一般式(I)で示される化合物は2〜11のpHにおいては繊維状物を形成するので、上記両性化合物水溶液のpHを2〜11にすることにより、両性化合物水溶液から繊維状物を形成させることができる。両性化合物水溶液のpHを2〜11にする方法としては特に制限はないが、例えば希塩酸等の酸性物質を溶解させた水溶液を滴下することにより実施することができ、また水溶液に二酸化炭素を吹きつけることによっても実施することができる。両性化合物水溶液に二酸化炭素を吹きつけることによって繊維状物を形成する場合、二酸化炭素の吹き込み量は10〜1000ml/分程度で、時間は3時間程度でよい。   Next, a fibrous material is formed from the obtained amphoteric compound aqueous solution to obtain a fibrous material-containing aqueous solution. Since the compound represented by the general formula (I) forms a fibrous material at a pH of 2 to 11, a fibrous material is formed from the amphoteric compound aqueous solution by setting the pH of the amphoteric compound aqueous solution to 2 to 11. Can be made. The method for adjusting the pH of the amphoteric compound aqueous solution to 2 to 11 is not particularly limited. For example, the aqueous solution in which an acidic substance such as dilute hydrochloric acid is dissolved can be dropped, and carbon dioxide is blown onto the aqueous solution. Can also be implemented. When the fibrous material is formed by blowing carbon dioxide onto the amphoteric compound aqueous solution, the amount of carbon dioxide blown may be about 10 to 1000 ml / min, and the time may be about 3 hours.

また、両性化合物水溶液を空気中に放置することにより、空気中の二酸化炭素が両性化合物水溶液に溶解し、水溶液が中和され、繊維状物が形成される。両性化合物水溶液を空気中に放置して空気中の二酸化炭素を両性化合物水溶液に徐々に溶解させることにより、繊維の長さを長くすることができる。両性化合物水溶液を空気中に放置し繊維状物を形成させるには、両性化合物水溶液を約7日間空気中に放置する。   Further, by leaving the amphoteric compound aqueous solution in the air, carbon dioxide in the air is dissolved in the amphoteric compound aqueous solution, the aqueous solution is neutralized, and a fibrous material is formed. The length of the fiber can be increased by leaving the amphoteric compound aqueous solution in the air and gradually dissolving carbon dioxide in the air in the amphoteric compound aqueous solution. To leave the amphoteric compound aqueous solution in the air to form a fibrous material, the amphoteric compound aqueous solution is left in the air for about 7 days.

なお、得られる繊維状物の軸径、長さ等は、繊維状物の形成条件、すなわち両性化合物の濃度、pH、繊維状物の空気中への放置時間等によって変化させることが可能である。
上記工程(A)によって得られる繊維状物含有水溶液中に含まれる繊維状物は、得ようとする導電性磁性粉体の内径及び長さに合わせて、その軸径は50nm〜5μmの程度であることが好ましく、長さは0.5〜50μm程度であることが更にこのましい。ガラス製の粒子を繊維状物含有水溶液に加え、振とうすることにより、長さを均質にすることができる。用いるガラス製粒子の大きさは、100nmから10μmの範囲で均一な大きさのものであればよい。
The shaft diameter, length, and the like of the obtained fibrous material can be changed depending on the formation conditions of the fibrous material, that is, the concentration and pH of the amphoteric compound, the time for which the fibrous material is left in the air, and the like. .
The fibrous material contained in the fibrous material-containing aqueous solution obtained by the step (A) has an axial diameter of about 50 nm to 5 μm in accordance with the inner diameter and length of the conductive magnetic powder to be obtained. It is preferable that the length is about 0.5 to 50 μm. By adding glass particles to the fibrous material-containing aqueous solution and shaking, the length can be made uniform. The size of the glass particles to be used may be a uniform size in the range of 100 nm to 10 μm.

次に、工程(B)について説明する。上記工程(B)は、上記工程(A)により得られた繊維状物含有水溶液中に含まれる繊維状物を金属又は金属合金、金属合金または金属酸化物で被覆し、次いで、金又は金の合金で被覆し、繊維状物で形成された芯材と金を含有する金属又は金属合金又は金属酸化物で形成された外装材とを有する被覆繊維状物を形成する工程である。 Next, the step (B) will be described. In the step (B), the fibrous material contained in the fibrous material-containing aqueous solution obtained in the above step (A) is coated with a metal or metal alloy , metal alloy or metal oxide, and then gold or gold It is a step of forming a coated fibrous material that is coated with an alloy and has a core material formed of a fibrous material and an exterior material formed of a metal or metal alloy or metal oxide containing gold.

上記繊維状物を金属、金属合金又は金属酸化物で被覆する方法としては、従来公知の方法を何ら制限なく用いることができる。繊維状物を金属、金属合金又は金属酸化物で被覆することができれば、いかなる方法を用いてもよいが、本発明においては、金の含有量、保磁力、質量飽和磁化、アスペクト比、長さ、内径、肉厚が上記範囲となるような方法が好ましい。本発明においては無電解めっき法を用いることが好ましい。無電解めっき法により無電解めっき膜を繊維状物上に形成し、繊維状物を金属又は金属合金または金属酸化物で被覆し、繊維状物で形成された芯材と金属又は金属合金または金属酸化物で形成された外装材とを有する被覆繊維状物が形成される。 As a method for coating the fibrous material with a metal, a metal alloy, or a metal oxide, a conventionally known method can be used without any limitation. Any method may be used as long as the fibrous material can be coated with a metal, a metal alloy, or a metal oxide. However, in the present invention, the gold content, coercive force, mass saturation magnetization, aspect ratio, length A method in which the inner diameter and the wall thickness are within the above ranges is preferable. In the present invention, it is preferable to use an electroless plating method. An electroless plating film is formed on a fibrous material by an electroless plating method, and the fibrous material is coated with a metal, a metal alloy, or a metal oxide, and a core material formed with the fibrous material and a metal, a metal alloy, or a metal A coated fibrous material having an exterior material formed of an oxide is formed.

無電解めっき法については、従来公知の方法により実施することができる。以下、無電解めっき法による、繊維状物の金属合金による被覆について簡単に説明する。
無電解めっき法は、触媒付与化工程と無電解めっき工程とに分けられる。以下、ニッケルーリン合金を被覆する場合について説明する。触媒付与化工程は、塩化パラジウムを含有する溶液で触媒化することにより行われる。かかる触媒付与化工程は、めっき膜厚の均一化を達成するために行われる工程である。
The electroless plating method can be performed by a conventionally known method. Hereinafter, the coating of the fibrous material with the metal alloy by the electroless plating method will be briefly described.
The electroless plating method is divided into a catalyst imparting step and an electroless plating step. Hereinafter, the case where the nickel-phosphorus alloy is coated will be described. The catalyst imparting step is performed by catalyzing with a solution containing palladium chloride. This catalyst provision process is a process performed in order to achieve uniformization of the plating film thickness.

ニッケル無電解めっき工程は、一般的にリン酸ニッケル、次亜リン酸ニッケル、硝酸ニッケル、塩化ニッケル、硫酸ニッケル等のニッケル塩を含有する水溶液中でニッケルイオンを還元剤にて金属ニッケルに還元する工程であり、必要に応じて錯化剤、pH調製剤、緩衝剤又は安定化剤等を水溶液中に含有させることが好ましい。次亜リン酸ニッケルを含有する水溶液を用いて、自己触媒的にニッケルイオンを還元させる無電解めっき法がより好ましい。   The nickel electroless plating process generally reduces nickel ions to metallic nickel with a reducing agent in an aqueous solution containing nickel salts such as nickel phosphate, nickel hypophosphite, nickel nitrate, nickel chloride and nickel sulfate. It is a process, and it is preferable that a complexing agent, a pH adjusting agent, a buffering agent, a stabilizing agent, or the like is contained in the aqueous solution as necessary. An electroless plating method in which nickel ions are reduced in an autocatalytic manner using an aqueous solution containing nickel hypophosphite is more preferable.

なお、ニッケル無電解めっき工程において用いられるめっき浴としては、ニッケル塩の濃度が0.1〜20質量%のめっき浴を用いることが好ましく、ニッケル塩の濃度が1〜10質量%のめっき浴を用いることが更に好ましい。
また、本発明の工程(B)における無電解めっきによる繊維状物の金属材による被覆は、2段階の工程で行うことが好ましく、1段階目の工程においてはニッケル塩濃度の低いめっき浴を用い、2段階目の工程においてはニッケル塩濃度の高いめっき浴を用いることが更に好ましい。このような、ニッケル濃度の異なるめっき浴を用いた、2段階工程で無電解めっきを行うことによりめっき膜厚が更に均一なものとなるので、2段階工程により無電解めっきを行うことが好ましい。
The plating bath used in the nickel electroless plating step is preferably a plating bath having a nickel salt concentration of 0.1 to 20% by mass, and a plating bath having a nickel salt concentration of 1 to 10% by mass. More preferably, it is used.
In addition, the coating of the fibrous material by the electroless plating in the step (B) of the present invention with the metal material is preferably performed in a two-step process, and a plating bath having a low nickel salt concentration is used in the first step. In the second step, it is more preferable to use a plating bath having a high nickel salt concentration. By performing electroless plating in a two-step process using such plating baths having different nickel concentrations, the plating film thickness becomes more uniform. Therefore, electroless plating is preferably performed in a two-step process.

上記ニッケル無電解めっき工程を実施する際のめっき浴のpHは好ましくは4.5〜7であり、更に好ましくは5〜6である。めっき浴のpHが5未満であるとめっき速度が遅くなる場合があり、またpHが6を越えるとめっき速度が速すぎる場合があり、いずれもめっき膜厚が均一に形成されることが妨げられる場合があるので、めっき浴のpHは上記範囲内とすることが好ましい。   The pH of the plating bath when performing the nickel electroless plating step is preferably 4.5 to 7, and more preferably 5 to 6. If the pH of the plating bath is less than 5, the plating rate may be slow, and if the pH exceeds 6, the plating rate may be too fast, both of which prevent a uniform plating film thickness from being formed. In some cases, the pH of the plating bath is preferably within the above range.

本発明の中空形状物の製造方法における工程(B)においては、上述したように、工程(A)により得られた繊維状物含有水溶液中の繊維状物を金属材で被覆して、繊維状物で形成された芯材と金属材で形成された外装材とを有する被覆繊維状物が形成される。なお、上記工程(B)において繊維状物を金属材で被覆して金属材で外装材を形成するが、かかる外装材の厚さは、通常は10nmから200nmである。   In the step (B) in the method for producing a hollow shaped product of the present invention, as described above, the fibrous material in the fibrous material-containing aqueous solution obtained by the step (A) is coated with a metal material, and the fibrous material A coated fibrous material having a core material formed of a material and an exterior material formed of a metal material is formed. In the step (B), the fibrous material is coated with a metal material to form an exterior material with the metal material. The thickness of the exterior material is usually 10 nm to 200 nm.

上述した説明においては、繊維状物にニッケルーリン合金をめっきする場合について説明したが、本発明においてはニッケル以外の金属材を使用することも可能であり、そのような金属材としては、例えば銀、銅、パラジウム、鉛、白金、ニッケル、ニッケルーホウ素合金、ニッケル−コバルト合金、錫、ロヂウム、カドミウム、ルテニウム、インジウム及びコバルト等を用いることができるが、本発明において用いられる金属材としては、1〜55emu/gの質量飽和磁化を示す磁性金属又は磁性金属合金又は磁性金属酸化物が好ましい。金属材としてニッケルを用いることにより、得られる粉体は磁性を有するが、その他、磁性金属又は磁性金属合金又は磁性金属酸化物の磁性金属はCo及びFeが好ましい。   In the above description, the case where the fibrous material is plated with a nickel-phosphorous alloy has been described. However, in the present invention, a metal material other than nickel can be used. As such a metal material, for example, silver , Copper, palladium, lead, platinum, nickel, nickel-boron alloy, nickel-cobalt alloy, tin, rhodium, cadmium, ruthenium, indium, cobalt, etc. can be used, but as the metal material used in the present invention, A magnetic metal, magnetic metal alloy or magnetic metal oxide exhibiting a mass saturation magnetization of 1 to 55 emu / g is preferred. By using nickel as the metal material, the resulting powder has magnetism, but the magnetic metal of the magnetic metal or magnetic metal alloy or magnetic metal oxide is preferably Co or Fe.

工程(B)においては、上述したように、金属又は金属合金又は金属酸化物で被覆した後、金又は金化合物で被覆する工程を有する。この工程においては、上述した説明における金属として金を用いる以外は同様である。なお、工程(B)において用いる金又は金化合物の使用量は、前述した、本発明の導電性磁性粉体における、金の含有量となるように調整することが好ましい。すなわち、工程(B)においては、金の含有量が、導電性磁性粉体の全質量に対し、0.01〜30質量%となるように金又は金化合物を用いることが好ましい。更に好ましくは、金の含有量が、導電性磁性粉体の全質量に対し、0.5〜25質量%となるように、金又は金化合物を用いる。   As described above, the step (B) includes a step of coating with gold or a gold compound after coating with a metal, a metal alloy, or a metal oxide. This step is the same except that gold is used as the metal in the above description. In addition, it is preferable to adjust the usage-amount of the gold | metal | money or gold compound used in a process (B) so that it may become gold content in the electroconductive magnetic powder of this invention mentioned above. That is, in the step (B), it is preferable to use gold or a gold compound so that the gold content is 0.01 to 30% by mass with respect to the total mass of the conductive magnetic powder. More preferably, gold or a gold compound is used so that the gold content is 0.5 to 25% by mass with respect to the total mass of the conductive magnetic powder.

次に、工程(C)について説明する。工程(C)は、上記工程(B)で得られた被覆繊維状物の芯材を溶解するか、上記被覆繊維状物の芯材を溶解した後に外装材を焼成するか、又は上記被覆繊維状物を焼成して芯材を除去することにより、金属、金属合金又は金属酸化物と、金又は金化合物とで形成された中空状材料を得る工程である。   Next, process (C) is demonstrated. In the step (C), the core material of the coated fibrous material obtained in the step (B) is dissolved, the outer material is baked after the core material of the coated fibrous material is dissolved, or the coated fiber This is a step of obtaining a hollow material formed of a metal, a metal alloy or a metal oxide, and gold or a gold compound by firing the material and removing the core material.

繊維状物で形成された芯材を溶解する方法に特に制限はないが、例えば上記一般式(1)で示される化合物は2〜11のpHにおいては繊維状物を形成し、2未満のpH及び11を越えるpHでは溶解するので、上記被覆繊維状物を2未満のpH又は11を越えるpHの溶液に浸漬することにより、芯材を溶解することができる。   Although there is no restriction | limiting in particular in the method of melt | dissolving the core material formed with the fibrous material, For example, the compound shown by the said General formula (1) forms a fibrous material in pH of 2-11, and pH below 2 And the core material can be dissolved by immersing the coated fibrous material in a solution having a pH of less than 2 or a pH of more than 11.

pHが11を越える溶液に被覆繊維状物を浸漬する場合、用いる溶液としては例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等を含む水溶液やアンモニア水等が用いられる。また、2未満のpHとする場合に用いられる溶液としては例えば希塩酸、希硫酸、希硝酸水溶液やクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸等のハロゲン化酢酸を含む水溶液等が挙げられる。   When the coated fibrous material is immersed in a solution having a pH exceeding 11, for example, an aqueous solution containing sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate or the like, aqueous ammonia, or the like is used. Examples of the solution used when the pH is less than 2 include dilute hydrochloric acid, dilute sulfuric acid, dilute nitric acid aqueous solution, and aqueous solutions containing halogenated acetic acid such as chloroacetic acid, dichloroacetic acid, and trichloroacetic acid.

例えば、両性化合物として上記一般式(1)で示される化合物を用いた場合、pH14の水酸化ナトリウム溶液に5分〜24時間程度浸漬することにより、被覆繊維状物の芯材が溶解し、中空形状物を得ることができる。
また、両性化合物として上記一般式(1)で示される化合物を用いた場合、70℃以上の温度においては繊維状物が溶解されるので、70℃以上の温度の水、好ましくは沸騰水中に被覆繊維状物を浸漬することにより、芯材を溶解することができる。
繊維状物で形成された芯材を溶解した後に得られた中空形状物は、ろ過等により回収することができる。
For example, when the compound represented by the general formula (1) is used as the amphoteric compound, the core material of the coated fibrous material is dissolved and immersed in a sodium hydroxide solution having a pH of 14 for about 5 minutes to 24 hours. A shape can be obtained.
Further, when the compound represented by the above general formula (1) is used as the amphoteric compound, the fibrous material is dissolved at a temperature of 70 ° C. or higher, so that it is coated in water at a temperature of 70 ° C. or higher, preferably boiling water. The core material can be dissolved by immersing the fibrous material.
The hollow shaped material obtained after dissolving the core material formed of the fibrous material can be recovered by filtration or the like.

繊維状物を被覆する金属、金属合金又は金属酸化物が、磁性体であるNi、Co、Fe及びそれらの化合物である場合、被覆繊維状物の芯材を溶解した後に、金属、金属合金又は金属酸化物で形成された中空形状材料(外装材)を焼成することにより、磁性特性を有する導電性粉体を得ることができる。   When the metal, metal alloy, or metal oxide that coats the fibrous material is Ni, Co, Fe, or a compound thereof, which is a magnetic material, the metal, metal alloy, or A conductive powder having magnetic properties can be obtained by firing a hollow-shaped material (exterior material) formed of a metal oxide.

上述の金属、金属合金又は金属酸化物で形成された中空形状材料(外装材)を焼成する方法に特に制限はないが、窒素やアルゴン等の不活性ガス雰囲気下において350〜700℃の温度で、好ましくは400〜600℃の温度で、10分〜4時間、好ましくは30分〜120分間焼成することにより、磁性特性を付与することができる。   Although there is no restriction | limiting in particular in the method of baking the hollow shape material (exterior material) formed with the above-mentioned metal, a metal alloy, or a metal oxide, It is 350-700 degreeC in inert gas atmosphere, such as nitrogen and argon. The magnetic properties can be imparted by baking at a temperature of 400 to 600 ° C. for 10 minutes to 4 hours, preferably 30 minutes to 120 minutes.

また、繊維状物を被覆するために用いられる金属又は金属合金又は金属酸化物が、磁性体であるNi、Co、Fe及びそれらの化合物である場合、上記工程(B)により得られた被覆繊維状物をそのまま焼成することにより、繊維状物で形成された芯材を除去するとともに、金属又は金属合金又は金属酸化物で形成された中空形状材料(外装材)に磁性特性を付与することができる。この被覆繊維状物を焼成する方法及び条件は、上記中空形状材料(外装材)を焼成する場合と同様である。   In addition, when the metal or metal alloy or metal oxide used to coat the fibrous material is Ni, Co, Fe, or a compound thereof, which is a magnetic material, the coated fiber obtained by the above step (B) The core material formed of the fibrous material can be removed by firing the material as it is, and magnetic properties can be imparted to the hollow shape material (exterior material) formed of a metal, a metal alloy, or a metal oxide. it can. The method and conditions for firing the coated fibrous material are the same as those for firing the hollow material (exterior material).

上述した説明においては、中空繊維状物の製造について説明したが、本発明の導電性磁性粉体は中空繊維状物に限定されず、中空形状の材料であればどのようなものであってもよい。繊維状物を形成し得る両性化合物から繊維を形成する際に、繊維を形成する条件を調整し、得られる繊維の軸径、長さ等を調整することが可能であり、繊維状でない、例えば、箱型、星型等の中空形状材料の形態であってもよい。また、繊維を多数束ねることにより、繊維よりも軸径の大きい中空形状材料を形成することができる。   In the above description, the production of the hollow fiber material has been described. However, the conductive magnetic powder of the present invention is not limited to the hollow fiber material, and any material having a hollow shape can be used. Good. When forming a fiber from an amphoteric compound capable of forming a fibrous material, it is possible to adjust the conditions for forming the fiber and adjust the shaft diameter, length, etc. of the resulting fiber, not fibrous, for example, Further, it may be in the form of a hollow material such as a box shape or a star shape. Further, by bundling a large number of fibers, a hollow material having a larger shaft diameter than the fibers can be formed.

次に、本発明の異方導電材料について説明する。
本発明の異方導電材料は、体積抵抗率が1.0×10Ω・cm以上の絶縁体中に、本発明の導電性磁性粉体が均一に分散してなるものである。
Next, the anisotropic conductive material of the present invention will be described.
The anisotropic conductive material of the present invention is obtained by uniformly dispersing the conductive magnetic powder of the present invention in an insulator having a volume resistivity of 1.0 × 10 8 Ω · cm or more.

本発明の異方導電材料中に含まれる導電性磁性粉体の量は特に限定されないが、好ましくは5〜40質量%であり、更に好ましくは10〜30質量%である。   The amount of the conductive magnetic powder contained in the anisotropic conductive material of the present invention is not particularly limited, but is preferably 5 to 40% by mass, and more preferably 10 to 30% by mass.

本発明の異方導電材料としては、例えば、異方導電性シート、異方導電性フィルム、異方導電性塗料、異方導電性接着剤、異方導電性粘着剤、異方導電性ペースト、異方導電性インク、電磁波シールド用導電材、導電接続構造体等が挙げられるが、これらの異方導電材料のみに限定されるものではなく、本発明の導電性中空形状材料を用いて製造されるものであれば如何なる異方導電材料であっても良い。   As the anisotropic conductive material of the present invention, for example, anisotropic conductive sheet, anisotropic conductive film, anisotropic conductive paint, anisotropic conductive adhesive, anisotropic conductive adhesive, anisotropic conductive paste, Examples include anisotropic conductive inks, electromagnetic shielding conductive materials, and conductive connection structures, but are not limited to these anisotropic conductive materials, and are manufactured using the conductive hollow shape material of the present invention. Any anisotropic conductive material can be used.

本発明の異方導電材料の製造方法としては、特に限定されるものではないが、例えば、体積抵抗率が1.0×10Ω・cm以上の絶縁体中に、本発明の導電性磁性粉体を添加し、均一に混合して分散させ、異方導電性塗料、異方導電性接着剤、異方導電性粘着剤、異方導電性ペースト、異方導電性インク等とする方法が挙げられる。また、体積抵抗率が1.0×10Ω・cm以上の絶縁体粘着剤・接着剤を、加熱溶融ないし有機溶媒中に溶解させて、流動性を持たせた中に本発明の導電性磁性粉体を添加し、均一に混合した後に、流動性のあるうちに必要に応じて導電性中空形状材料を配向させ、その後にバインダー樹脂や粘着剤・接着剤を硬化させることにより、異方導電性シートや異方導電性フィルム等を製造する方法が挙げられる。目的とする異方導電材料の種類に対応して、適宜の製造方法を採れば良い。 The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive magnetism of the present invention is contained in an insulator having a volume resistivity of 1.0 × 10 8 Ω · cm or more. Add powder, uniformly mix and disperse to make anisotropic conductive paint, anisotropic conductive adhesive, anisotropic conductive adhesive, anisotropic conductive paste, anisotropic conductive ink, etc. Can be mentioned. In addition, the electrical conductivity of the present invention is obtained by dissolving an insulating pressure-sensitive adhesive / adhesive having a volume resistivity of 1.0 × 10 8 Ω · cm or more in a heat-melted or organic solvent to give fluidity. After adding magnetic powder and mixing evenly, the conductive hollow-shaped material is oriented as necessary while it is fluid, and then the binder resin, adhesive, and adhesive are cured, and anisotropic Examples thereof include a method for producing a conductive sheet, an anisotropic conductive film and the like. An appropriate manufacturing method may be employed in accordance with the type of the anisotropic conductive material that is intended.

体積抵抗率が1.0×10Ω・cm以上の絶縁体としては、例えば絶縁性のバインダー樹脂が挙げられる。特に限定されるものではないが、例えば、ABS樹脂、塩化ビニル樹脂、塩素化ポリエチレン、ポリアミド樹脂、ポリアリレート樹脂、ポリエーテルサルフォン樹脂、ポリアミドイミド樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリブタジエン樹脂、ポリブチレンテレフタレート樹脂、ポリプロピレン樹脂、メタクリル樹脂などの熱可塑性樹脂;エポキシ樹脂、ジアリルフタレート樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、アクリル樹脂、シリコーン樹脂およびこれらの硬化剤からなる硬化性樹脂等が挙げられる。これらの絶縁性のバインダー樹脂は、単独で用いられても良いし、2種類以上が併用されても良い。また、上記硬化性樹脂は、常温硬化型、熱硬化型、光(UV、可視光等)硬化型、湿気硬化型等のいずれの硬化型であっても良い。絶縁性の粘着剤・接着剤としては、特に限定されるものではないが、例えば、上記絶縁性のバインダー樹脂を主成分としてなる粘着剤・接着剤や、公知の各種粘着剤・接着剤等が挙げられる。これらの絶縁性の粘着剤・接着剤は、単独で用いられても良いし、2種類以上が併用されても良い。また、上記絶縁性のバインダー樹脂および絶縁性の粘着剤・接着剤は、それぞれ単独で用いられても良いし、両者が併用されても良い。 Examples of the insulator having a volume resistivity of 1.0 × 10 8 Ω · cm or more include an insulating binder resin. Although not particularly limited, for example, ABS resin, vinyl chloride resin, chlorinated polyethylene, polyamide resin, polyarylate resin, polyethersulfone resin, polyamideimide resin, polyethylene terephthalate resin, polycarbonate resin, polystyrene resin, polyphenylene Thermoplastic resins such as ether resin, polyphenylene sulfide resin, polybutadiene resin, polybutylene terephthalate resin, polypropylene resin, methacrylic resin; epoxy resin, diallyl phthalate resin, phenol resin, unsaturated polyester resin, polyimide resin, polyurethane resin, melamine resin, Examples thereof include acrylic resins, silicone resins, and curable resins composed of these curing agents. These insulating binder resins may be used alone or in combination of two or more. The curable resin may be any curable type such as a room temperature curable type, a thermosetting type, a light (UV, visible light, etc.) curable type, and a moisture curable type. The insulating pressure-sensitive adhesive / adhesive is not particularly limited, and examples thereof include pressure-sensitive adhesives / adhesives mainly composed of the above-mentioned insulating binder resin, and various known pressure-sensitive adhesives / adhesives. Can be mentioned. These insulating pressure-sensitive adhesives / adhesives may be used alone or in combination of two or more. The insulating binder resin and the insulating pressure-sensitive adhesive / adhesive may be used alone or in combination.

本発明の異方導電材料には、本発明の効果を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤の1種類もしくは2種類以上が添加されていてもよい。   The anisotropic conductive material of the present invention includes, for example, a bulking agent, a softening agent (plasticizer), an adhesive improver, an antioxidant (anti-aging agent) as necessary without departing from the effect of the present invention. ), One or more of various additives such as a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a flame retardant, and an organic solvent may be added.

以下、本発明を実施例により更に詳細に説明する。なお、本発明の範囲は、かかる実施例に限定されないことはいうまでもない。

以下の実施例及び比較例においては、以下の条件の下で磁気特性の測定を行った。
装置:東栄工業(株)製、振動試料型磁力計 VSM−C7型
測定条件:振動数80Hz、掃引速度1T/分、室温。
また、各元素の含量は、誘導結合プラズマ原子発光分析(ICP−AES)により測定した。
本発明の導電性磁性粉体の外径、長さ、アスペクト比(導電性磁性粉体の長さ/導電性磁性粉体の外径)の測定は、Hitachi S-3000Nの走査型電子顕微鏡(SEM)で行い、二次電子のSEM像として観察された導電性磁性粉体300個の外径と長さを計測し、それらの平均値として平均外径と平均長さを算出した。平均長さを平均外径で除することで、アスペクト比を算出した。導電性磁性粉体の内径と肉厚の測定は、Hitachi H-7100の透過型電子顕微鏡(TEM)で行った。導電性磁性粉体をエポキシ樹脂に包埋して、ミクロトームを用いる超薄膜切片法により約60nmの膜厚の薄膜を作製し、TEMで導電性磁性粉体の断面像を観察し、導電性磁性粉体の内径と肉厚を計測した。
Hereinafter, the present invention will be described in more detail with reference to examples. Needless to say, the scope of the present invention is not limited to such examples.

In the following examples and comparative examples, the magnetic properties were measured under the following conditions.
Apparatus: manufactured by Toei Kogyo Co., Ltd., vibration sample type magnetometer VSM-C7 type Measurement conditions: vibration frequency 80 Hz, sweep speed 1 T / min, room temperature.
The content of each element was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES).
The outer diameter, length, and aspect ratio (the length of the conductive magnetic powder / the outer diameter of the conductive magnetic powder) of the conductive magnetic powder of the present invention were measured using a scanning electron microscope of Hitachi S-3000N ( The outer diameter and length of 300 conductive magnetic powders observed as SEM images of secondary electrons were measured, and the average outer diameter and average length were calculated as their average values. The aspect ratio was calculated by dividing the average length by the average outer diameter. The inner diameter and thickness of the conductive magnetic powder were measured with a transmission electron microscope (TEM) of Hitachi H-7100. Conductive magnetic powder is embedded in an epoxy resin, a thin film with a thickness of about 60 nm is prepared by ultra-thin film section method using a microtome, and a cross-sectional image of the conductive magnetic powder is observed with TEM. The inner diameter and thickness of the powder were measured.

実施例1
(工程A)
下記化学式(6)で示される6-[2-プロピル-4-(4-ピリジルアゾ)フェノキシ]ヘキサン酸の粉末500 mgを、1.0 molL-1の水酸化ナトリウム水溶液2.50 mLに加えて溶解させた後、蒸留水で希釈し、6-[2-プロピル-4-(4-ピリジルアゾ)フェノキシ]ヘキサン酸を含む水溶液600 mL(水溶液A)を調製した。
Example 1
(Process A)
After adding 500 mg of 6- [2-propyl-4- (4-pyridylazo) phenoxy] hexanoic acid powder represented by the following chemical formula (6) to 2.50 mL of 1.0 molL -1 aqueous sodium hydroxide solution, the powder is dissolved. Then, it was diluted with distilled water to prepare 600 mL (aqueous solution A) of an aqueous solution containing 6- [2-propyl-4- (4-pyridylazo) phenoxy] hexanoic acid.

Figure 2008021513
Figure 2008021513

上記の水溶液Aを二酸化炭素雰囲気下で2時間攪拌(回転数300 rpm)を行い、水溶液の水素イオン濃度(pH)5.5まで低下させて、外径300-600 nm、長さ数100μmの繊維状物を形成させた。定量ろ紙(5A)でろ過し、約100 mlの蒸留水で5回洗浄を行い、繊維状物を得た。500 mLの容器に蒸留水を注ぐことにより繊維状物を移し、粒径分布0.991-1.397 mmの球状ガラスビーズ150 g及び蒸留水を加えて、溶液の全体量を250 mLにした。振とう速度125回 min-1で24時間振とうした。100μmの口径をもつステンレス製のふるいでガラスビーズを除き、定量ろ紙(5A)でろ過して、鋳型にする繊維状物を得た。 The above aqueous solution A is stirred in a carbon dioxide atmosphere for 2 hours (rotation speed: 300 rpm) to reduce the hydrogen ion concentration (pH) of the aqueous solution to 5.5, and is a fibrous material having an outer diameter of 300-600 nm and a length of several hundred μm. Formed. The mixture was filtered with a quantitative filter paper (5A) and washed 5 times with about 100 ml of distilled water to obtain a fibrous material. The fibrous material was transferred by pouring distilled water into a 500 mL container, and 150 g of spherical glass beads having a particle size distribution of 0.991-1.397 mm and distilled water were added to make the total volume of the solution to 250 mL. Shake for 24 hours at a shaking speed of 125 min -1 . The glass beads were removed with a stainless steel sieve having an aperture of 100 μm, and filtered with a quantitative filter paper (5A) to obtain a fibrous material as a mold.

(工程B)
工程Aで得られた鋳型にする繊維状物を、pH 2.2を示す5.6 mmol dm-3の塩化パラジウムの酸性水溶液浸漬し、約25oCの室温で24時間振とうした。定量ろ紙(5A)でろ過し、2価のパラジウムを含む酸化物で被覆された繊維状物を得た。
(Process B)
The fibrous material used as the template obtained in step A was immersed in an acidic aqueous solution of 5.6 mmol dm -3 palladium chloride having a pH of 2.2, and shaken at room temperature of about 25 ° C for 24 hours. Filtration with quantitative filter paper (5A) gave a fibrous material coated with an oxide containing divalent palladium.

次いで、パラジウムの酸化物で被覆された繊維状物を、25 mmol dm-3の次亜リン酸ニッケル・6水和物、95 mmol dm-3のホウ酸、15 mmol dm-3の酢酸ナトリウム、4.9 mmol dm-3の硫酸アンモニウムを含む、pH5.5のニッケル無電解めっき浴500mLに浸漬し、30℃、回転速度200rpmで1時間攪拌した。定量ろ紙(5A)でろ過し、約100 mlの蒸留水で5回洗浄を行い、Ni-Pの被膜で覆われた繊維状物を得た。 The palladium-coated fibrous material was then added to 25 mmol dm -3 nickel hypophosphite hexahydrate, 95 mmol dm -3 boric acid, 15 mmol dm -3 sodium acetate, It was immersed in 500 mL of nickel electroless plating bath with pH 5.5 containing ammonium sulfate of 4.9 mmol dm −3 , and stirred for 1 hour at 30 ° C. and a rotation speed of 200 rpm. The mixture was filtered with a quantitative filter paper (5A) and washed 5 times with about 100 ml of distilled water to obtain a fibrous material covered with a Ni-P coating.

さたに、pH 6.0を呈するニッケル無電解めっき液(上村工業(株)製「ニムデンLPX(登録商標)」)2000 mlに、Ni-Pの被膜で覆われた繊維状物を浸漬し、回転速度200rpm、30℃で24時間攪拌した。定量ろ紙(5A)でろ過した後、約100 mlの蒸留水で10回洗浄を行った。Ni-Pの厚膜で覆われた繊維状物を、1 mol dm-3のNaOH水溶液に12時間浸漬し、約100 mLの蒸留水で5回洗浄を行い、2.0gのNi中空繊維を得た。
得られたNi中空繊維の断面像を図1に示す。得られたNi中空繊維は、外径が約0.4μmであり、内径が約0.08μmであり、肉厚が約0.1μmであった。
In addition, a fibrous material covered with a Ni-P coating is immersed in 2000 ml of nickel electroless plating solution ("Nimden LPX (registered trademark)" manufactured by Uemura Kogyo Co., Ltd.) having a pH of 6.0 and rotated. The mixture was stirred at a speed of 200 rpm and 30 ° C. for 24 hours. After filtration through quantitative filter paper (5A), washing was performed 10 times with about 100 ml of distilled water. The fibrous material covered with Ni-P thick film is immersed in 1 mol dm -3 NaOH aqueous solution for 12 hours and washed 5 times with about 100 mL distilled water to obtain 2.0 g Ni hollow fiber. It was.
A cross-sectional image of the obtained Ni hollow fiber is shown in FIG. The obtained Ni hollow fiber had an outer diameter of about 0.4 μm, an inner diameter of about 0.08 μm, and a wall thickness of about 0.1 μm.

Ni中空繊維をpH 7.3を呈する無電解Auめっき液(上村工業(株)製「TDS-20(登録商標)」)500 mLに浸漬し、回転速度150rpm、30℃で10分間攪拌した。定量ろ紙(5A)でろ過した後、約100 mlの蒸留水で10回洗浄し、2.2gの金を含むAu/Ni中空繊維を得た。   The Ni hollow fiber was immersed in 500 mL of electroless Au plating solution (“TDS-20 (registered trademark)” manufactured by Uemura Kogyo Co., Ltd.) exhibiting pH 7.3, and stirred at a rotation speed of 150 rpm and 30 ° C. for 10 minutes. After filtering with a quantitative filter paper (5A), it was washed 10 times with about 100 ml of distilled water to obtain Au / Ni hollow fibers containing 2.2 g of gold.

(工程C)
工程Bで得られたAu/Ni中空繊維を、アルゴン雰囲気下、500℃で、1時間加熱し、本発明の導電性磁性粉体である磁性Au/Ni中空繊維を2.1g得た。
この導電性磁性粉体の平均長さは約2.2μm、外径は約0.4μmで、アスペクト比は、5.5であった。内径は約0.1μm、肉厚は約0.1μmであった。
(Process C)
The Au / Ni hollow fiber obtained in the step B was heated at 500 ° C. for 1 hour in an argon atmosphere to obtain 2.1 g of magnetic Au / Ni hollow fiber which is the conductive magnetic powder of the present invention.
This conductive magnetic powder had an average length of about 2.2 μm, an outer diameter of about 0.4 μm, and an aspect ratio of 5.5. The inner diameter was about 0.1 μm, and the wall thickness was about 0.1 μm.

実施例2
無電解Auめっき液への浸漬時間を20分間とした以外は、実施例1と同様に操作を行い、2.3gの磁性Au/Ni中空繊維(導電性磁性粉体)を得た。
この導電性磁性粉体の平均長さは約2.9μm、外径は約0.4μmで、アスペクト比は7であった。約0.1μm、肉厚は約0.1μmであった。
Example 2
Except that the immersion time in the electroless Au plating solution was 20 minutes, the same operation as in Example 1 was performed to obtain 2.3 g of magnetic Au / Ni hollow fiber (conductive magnetic powder).
This conductive magnetic powder had an average length of about 2.9 μm, an outer diameter of about 0.4 μm, and an aspect ratio of 7. The wall thickness was about 0.1 μm.

実施例3
無電解Auめっき液への浸漬時間を30分間とした以外は、実施例1と同様に操作を行い、2.1gの磁性Au/Ni中空繊維(導電性磁性粉体)を得た。
この導電性磁性粉体の長さは約2.9μm、外径は約0.4μmで、アスペクト比は7であった。約0.1μm、肉厚は約0.1μmであった。
Example 3
Except that the immersion time in the electroless Au plating solution was 30 minutes, the same operation as in Example 1 was performed to obtain 2.1 g of magnetic Au / Ni hollow fiber (conductive magnetic powder).
This conductive magnetic powder had a length of about 2.9 μm, an outer diameter of about 0.4 μm, and an aspect ratio of 7. The wall thickness was about 0.1 μm.

実施例4
無電解Auめっき液への浸漬時間を60分間とした以外は、実施例1と同様に操作を行い、磁性Au/Ni中空繊維(導電性磁性粉体)を得た。
得られた導電性磁性粉体の長さは約3.7μm、外径は約0.4μmで、アスペクト比は7であった。内径は約0.1μm、肉厚は約0.1μmであった。
得られた導電性磁性粉体の走査型電子顕微鏡像を図2に示す。図2から、得られた導電性磁性粉体が棒状の形状をしていることがわかる。
図2の電子顕微鏡像を画像解析して得られた導電性磁性粉体の長さを測定した。導電性磁性粉体の長さの分布を図3に示す。図3から、得られた導電性磁性粉体の平均長さは3.7μmであることがわかる。
図2の電子顕微鏡像を画像解析して得られた導電性磁性粉体の外径(幅)を測定し、外径の分布について図4に示す。図4から、得られた導電性磁性粉体の平均外径が約0.4μmであることがわかる。
高分解能走査型電子顕微鏡(Hitach S-5200)で得られた画像で観察された導電性磁性粉体の断面像を図5に示す。図5から、得られた導電性磁性粉体の内径は約0.1μmであり、肉厚は約0.1μmであることがわかる。図5において、最外層に観察される輝度の高い白色物質が無電解Auめっきで形成された金である。
Example 4
A magnetic Au / Ni hollow fiber (conductive magnetic powder) was obtained in the same manner as in Example 1 except that the immersion time in the electroless Au plating solution was 60 minutes.
The obtained conductive magnetic powder had a length of about 3.7 μm, an outer diameter of about 0.4 μm, and an aspect ratio of 7. The inner diameter was about 0.1 μm, and the wall thickness was about 0.1 μm.
A scanning electron microscope image of the obtained conductive magnetic powder is shown in FIG. FIG. 2 shows that the obtained conductive magnetic powder has a rod-like shape.
The length of the conductive magnetic powder obtained by image analysis of the electron microscope image of FIG. 2 was measured. The length distribution of the conductive magnetic powder is shown in FIG. FIG. 3 shows that the obtained conductive magnetic powder has an average length of 3.7 μm.
The outer diameter (width) of the conductive magnetic powder obtained by image analysis of the electron microscope image of FIG. 2 is measured, and the distribution of the outer diameter is shown in FIG. FIG. 4 shows that the obtained conductive magnetic powder has an average outer diameter of about 0.4 μm.
FIG. 5 shows a cross-sectional image of the conductive magnetic powder observed in the image obtained with a high-resolution scanning electron microscope (Hitach S-5200). FIG. 5 shows that the obtained conductive magnetic powder has an inner diameter of about 0.1 μm and a wall thickness of about 0.1 μm. In FIG. 5, the white substance with high brightness observed in the outermost layer is gold formed by electroless Au plating.

実施例5
「ニムデンLPX(登録商標)」に代え、pH 4.6を呈する上村工業(株)製「NPR-18(登録商標)」)を用い、無電解Auめっき液への浸漬時間を30分間とした以外は、実施例1と同様に操作を行い、3.1gの磁性Au/Ni中空繊維(導電性磁性粉体)を得た。
得られた導電性磁性粉体の長さは約3.7μm、外径は約0.4μmで、アスペクト比は7であった。内径は約0.1μm、肉厚は約0.1μmであった。
Example 5
Except for using “NPR-18 (registered trademark)” manufactured by Uemura Kogyo Co., Ltd. that exhibits pH 4.6 instead of “Nimden LPX (registered trademark)”, the immersion time in the electroless Au plating solution was 30 minutes. The same operation as in Example 1 was performed to obtain 3.1 g of magnetic Au / Ni hollow fibers (conductive magnetic powder).
The obtained conductive magnetic powder had a length of about 3.7 μm, an outer diameter of about 0.4 μm, and an aspect ratio of 7. The inner diameter was about 0.1 μm, and the wall thickness was about 0.1 μm.

実施例6
無電解Auめっき液への浸漬時間を60分間とした以外は、実施例5と同様に操作を行い、磁性Au/Ni中空繊維(導電性磁性粉体)を得た。
得られた導電性磁性粉体の長さは約3.7μm、外径は約0.4μmで、アスペクト比は7であった。内径は約0.1μm、肉厚は約0.1μmであった。
Example 6
A magnetic Au / Ni hollow fiber (conductive magnetic powder) was obtained in the same manner as in Example 5 except that the immersion time in the electroless Au plating solution was 60 minutes.
The obtained conductive magnetic powder had a length of about 3.7 μm, an outer diameter of about 0.4 μm, and an aspect ratio of 7. The inner diameter was about 0.1 μm, and the wall thickness was about 0.1 μm.

実施例7
無電解Auめっき液への浸漬時間を24時間とした以外は、実施例5と同様に操作を行い、磁性Au/Ni中空繊維(導電性磁性粉体)を得た。
得られた導電性磁性粉体の長さは約3.7μm、外径は約0.4μmで、アスペクト比は7であった。内径は約0.1μm、肉厚は約0.1μmであった。
Example 7
A magnetic Au / Ni hollow fiber (conductive magnetic powder) was obtained in the same manner as in Example 5 except that the immersion time in the electroless Au plating solution was 24 hours.
The obtained conductive magnetic powder had a length of about 3.7 μm, an outer diameter of about 0.4 μm, and an aspect ratio of 7. The inner diameter was about 0.1 μm, and the wall thickness was about 0.1 μm.

比較例1
pH 7.3を呈する無電解Auめっき液を用いなかった以外は、実施例1と同様に操作を行い、磁性中空繊維(導電性磁性粉体)を得た。
得られた導電性磁性粉体の長さは約2.6μm、外径は約0.4μm、アスペクト比が6.5、内径が約0.08μm、肉厚が約0.1μmであった。
Comparative Example 1
A magnetic hollow fiber (conductive magnetic powder) was obtained in the same manner as in Example 1 except that the electroless Au plating solution exhibiting pH 7.3 was not used.
The obtained conductive magnetic powder had a length of about 2.6 μm, an outer diameter of about 0.4 μm, an aspect ratio of 6.5, an inner diameter of about 0.08 μm, and a wall thickness of about 0.1 μm.

比較例2
pH 7.3を呈する無電解Auめっき液を用いなかった以外は、実施例5と同様に操作を行い、磁性中空繊維(導電性磁性粉体)を得た。
得られた導電性磁性粉体の長さは約2.6μm、外径が約0.4μm、アスペクト比が6.5、内径が約0.08μm、肉厚が約0.1μmであった。
Comparative Example 2
A magnetic hollow fiber (conductive magnetic powder) was obtained in the same manner as in Example 5 except that the electroless Au plating solution exhibiting pH 7.3 was not used.
The obtained conductive magnetic powder had a length of about 2.6 μm, an outer diameter of about 0.4 μm, an aspect ratio of 6.5, an inner diameter of about 0.08 μm, and a wall thickness of about 0.1 μm.

実施例1〜7、比較例1〜2で得られた導電性磁性粉体について、誘導結合プラズマ発光分光(ICP-AES)による元素分析により、金、ニッケル、リンとパラジウムの含有量を調べた。結果を表1に示す。また、ニッケルを1.00とした場合の、それぞれの含有量を表2に示す。   About the electroconductive magnetic powder obtained in Examples 1-7 and Comparative Examples 1-2, content of gold | metal | money, nickel, phosphorus, and palladium was investigated by the elemental analysis by inductively coupled plasma emission spectroscopy (ICP-AES). . The results are shown in Table 1. In addition, Table 2 shows the respective contents when nickel is 1.00.

Figure 2008021513
Figure 2008021513

Figure 2008021513
Figure 2008021513

実施例1〜7、及び比較例1〜2で得られた導電性磁性粉体について、以下の試験を行った。すなわち、錠剤成型器により、得られた導電性磁性粉体100mgを200kgcm−2(0.196MPa)で加圧して、直径13mm、厚さ約0.2mmの円板状に成型した。 The following tests were conducted on the conductive magnetic powders obtained in Examples 1 to 7 and Comparative Examples 1 and 2. That is, 100 mg of the obtained conductive magnetic powder was pressed at 200 kgcm −2 (0.196 MPa) with a tablet molding machine and molded into a disk shape having a diameter of 13 mm and a thickness of about 0.2 mm.

次いで、得られた円板の両面に金蒸着を施し、直径10mm、厚さや約100nmの円形電極を得た。次いで、長さ1.0cmの金線2本を、この円形電極にの両面に導電性ペースト(ドータイド(登録商標))を用いて接着した。
次いで、上述のようにして作製した円板の両面から挟むように接着した金線を導線として、二端子法を用いて体積抵抗率を測定した。測定装置としては、Source meter 2400(KEITHLEY)を用いた。得られた結果を表3に示す。
Subsequently, gold | metal vapor deposition was performed on both surfaces of the obtained disc, and the circular electrode of diameter 10mm, thickness, and about 100nm was obtained. Subsequently, two gold wires having a length of 1.0 cm were bonded to both sides of the circular electrode using a conductive paste (Dotide (registered trademark)).
Next, the volume resistivity was measured using a two-terminal method, with the gold wire bonded so as to be sandwiched from both sides of the disk produced as described above as a conducting wire. As a measuring apparatus, Source meter 2400 (KEITHLEY) was used. The obtained results are shown in Table 3.

Figure 2008021513
Figure 2008021513

表3から以下のことがわかる。比較例1及び比較例2では、無電解金めっきを行っておらず、同じ系を用いた、無電解金めっきを行った導電性磁性粉体よりも体積抵抗率が大きいことがわかる。このことは、体積抵抗率のより小さい金の被膜又は粒子がNi中空繊維の表面に形成されたため、導電性磁性粉体の導電性が改善されたことを意味する。   Table 3 shows the following. In Comparative Example 1 and Comparative Example 2, it can be seen that electroless gold plating is not performed, and the volume resistivity is higher than that of the conductive magnetic powder subjected to electroless gold plating using the same system. This means that the conductivity of the conductive magnetic powder was improved because a gold coating or particle having a smaller volume resistivity was formed on the surface of the Ni hollow fiber.

実施例4で得られた導電性磁性粉体の体積抵抗率及び導電率を、株式会社ダイヤインスツルメンツ社製の粉体抵抗率測定システム(ロレスタGP)で四探針プローブを用いて測定した。試料重量1.000g、試料半径10.0mm、電極間隔3.0mm、電極半径0.7mmの条件下で測定した結果を表4に示す。   The volume resistivity and conductivity of the conductive magnetic powder obtained in Example 4 were measured using a four-probe probe with a powder resistivity measurement system (Loresta GP) manufactured by Dia Instruments Co., Ltd. Table 4 shows the results of measurement under the conditions of a sample weight of 1.000 g, a sample radius of 10.0 mm, an electrode interval of 3.0 mm, and an electrode radius of 0.7 mm.

Figure 2008021513
表4の結果より、異方導電性材料に含まれる導電性粉体の体積抵抗率と同等以上の優れた導電性を本発明の導電性磁性粉体が示すことがわかる。
Figure 2008021513
From the results in Table 4, it can be seen that the conductive magnetic powder of the present invention exhibits excellent conductivity equal to or higher than the volume resistivity of the conductive powder contained in the anisotropic conductive material.

実施例1〜4、及び比較例1で得られた導電性磁性粉体、及び実施例5〜7、比較例2で得られた導電性磁性粉体について、それぞれの質量飽和磁化、及び保磁力を測定した。測定は、以下の条件で行った。結果を表5に示す。
装置:東栄工業(株)製、振動試料型磁力計 VSM−C7型
測定条件:振動数80Hz、掃引速度1T/分、室温。
About the electroconductive magnetic powder obtained in Examples 1 to 4 and Comparative Example 1, and the electroconductive magnetic powder obtained in Examples 5 to 7 and Comparative Example 2, the respective mass saturation magnetization and coercive force. Was measured. The measurement was performed under the following conditions. The results are shown in Table 5.
Apparatus: manufactured by Toei Kogyo Co., Ltd., vibration sample type magnetometer VSM-C7 type Measurement conditions: vibration frequency 80 Hz, sweep speed 1 T / min, room temperature.

Figure 2008021513
Figure 2008021513

表5から以下のことがわかる。
無電解金めっき浴に浸す時間が長くなるほど、導電性磁性粉体の質量飽和磁化の値と保磁力の値が減少する傾向にある。しかし、0.5kOe程度の簡便な磁場印加による配向制御に必要な0.1emu/g以上の導電性磁性粉体が実施例1〜実施例4で得られたことがわかる。
Table 5 shows the following.
As the time of immersion in the electroless gold plating bath increases, the value of mass saturation magnetization and the value of coercive force of the conductive magnetic powder tend to decrease. However, it can be seen that conductive magnetic powder of 0.1 emu / g or more necessary for orientation control by simple magnetic field application of about 0.5 kOe was obtained in Examples 1 to 4.

実施例8
実施例1で得られた導電性磁性粉体を液状シリコーン樹脂に分散させて、配向条件下で硬化させた複合膜を作製した。得られた複合膜を光学顕微鏡で観察した光学顕微鏡像を図6に示す。図6から、粒子が黒色の点として観察されることから配向していることがわかる。また、シリコーン樹脂に良好に分散していることがわかる。
Example 8
The conductive magnetic powder obtained in Example 1 was dispersed in a liquid silicone resin to produce a composite film cured under orientation conditions. The optical microscope image which observed the obtained composite film with the optical microscope is shown in FIG. FIG. 6 shows that the particles are oriented because they are observed as black dots. Moreover, it turns out that it is disperse | distributing favorable to a silicone resin.

以上詳述したように、本発明の導電性磁性粉体は、異方導電材料を製造するのに用いた場合に、従来のものに比べ、優れた導電性及び異方導電性を発現することがわかった。これは、同一距離を導電させる際に、球体であれば重なり合うことで導通するが、チューブ状の導電材料においては数本の橋渡しによって導通できるため、界面抵抗を下げることができると考えられる。また、本発明の導電性磁性粉体は金を含んでおり、金属又は金属合金に由来する導電性と強度を維持したまま軽量化を実現できるものである。   As described in detail above, the conductive magnetic powder of the present invention exhibits superior conductivity and anisotropic conductivity compared to conventional ones when used to manufacture anisotropic conductive materials. I understood. This is because when conducting the same distance, if they are spheres, they are conductive by overlapping, but in the case of a tube-shaped conductive material, they can be conducted by several bridges, so it is considered that the interface resistance can be lowered. In addition, the conductive magnetic powder of the present invention contains gold and can realize weight reduction while maintaining the conductivity and strength derived from the metal or metal alloy.

Ni中空繊維の断面像を示す写真である。It is a photograph which shows the cross-sectional image of Ni hollow fiber. 本発明の導電性磁性粉体の走査型電子顕微鏡像を示す写真である。It is a photograph which shows the scanning electron microscope image of the electroconductive magnetic powder of this invention. 電子顕微鏡像を画像解析して得られた導電性磁性粉体の長さを測定した長さの分布を示すグラフである。It is a graph which shows distribution of the length which measured the length of the electroconductive magnetic powder obtained by image-analyzing an electron microscope image. 電子顕微鏡像を画像解析して得られた導電性磁性粉体の外径を測定した外径の分布を示すグラフである。It is a graph which shows distribution of the outer diameter which measured the outer diameter of the electroconductive magnetic powder obtained by image-analyzing an electron microscope image. 本発明の導電性磁性粉体の断面像を示す写真である。It is a photograph which shows the cross-sectional image of the conductive magnetic powder of this invention. 本発明の導電性磁性粉体を用いて得られた複合膜の光学顕微鏡像を示す写真である。It is a photograph which shows the optical microscope image of the composite film obtained using the electroconductive magnetic powder of this invention.

Claims (11)

金属、金属合金又は金属酸化物からなる中空形状材料からなる導電性磁性粉体であって、上記金属が金を含むことを特徴とする導電性磁性粉体。 A conductive magnetic powder made of a hollow material made of a metal, a metal alloy or a metal oxide, wherein the metal contains gold. 導電性磁性粉体に含まれる金の含有率が、導電性磁性粉体の全質量に対し、0.01〜30質量%である、請求項1に記載の導電性磁性粉体。 The conductive magnetic powder according to claim 1, wherein the content of gold contained in the conductive magnetic powder is 0.01 to 30% by mass with respect to the total mass of the conductive magnetic powder. 金属又は金属合金又は金属酸化物の金属が、Ni又はCo又はFeである、請求項1に記載の導電性磁性粉体。 The conductive magnetic powder according to claim 1, wherein the metal, metal alloy, or metal oxide is Ni, Co, or Fe. 保磁力が1〜500 Oeである、請求項1〜3のいずれか1項に記載の導電性磁性粉体。 The electroconductive magnetic powder according to any one of claims 1 to 3, wherein the coercive force is 1 to 500 Oe. 質量飽和磁化が0.1〜55 emu/gである、請求項1〜4のいずれか1項に記載の導電性磁性粉体。 The conductive magnetic powder according to any one of claims 1 to 4, wherein the mass saturation magnetization is 0.1 to 55 emu / g. アスペクト比が2〜100である、請求項1〜5のいずれか1項に記載の導電性磁性粉体。 The conductive magnetic powder according to any one of claims 1 to 5, wherein the aspect ratio is 2 to 100. (A)繊維状物を形成し得る両性化合物を水に溶解して両性化合物水溶液を調製し、該両性化合物水溶液から繊維状物を形成させ、繊維状物含有水溶液を得る工程;
(B)上記繊維物含有水溶液中の上記繊維状物を金属、金属合金又は金属酸化物で被覆し、次いで、金又は金化合物で被覆し、繊維状物で形成された芯材と金属、金属合金又は金属酸化物で形成された外装材とを含有する被覆繊維状物を形成する工程;
(C)上記工程(B)で得られた被覆繊維状物の芯材を溶解するか、上記被覆繊維状物の芯材を溶解した後に外装材を焼成するか、又は上記被覆繊維状物を焼成して芯材を除去することにより、金属、金属合金又は金属酸化物と、金又は金化合物とで形成された中空状材料を得る工程
により製造されてなる、請求項1〜6のいずれか1項に記載の導電性磁性粉体。
(A) A step of preparing an amphoteric compound aqueous solution by dissolving an amphoteric compound capable of forming a fibrous product in water, forming a fibrous product from the amphoteric compound aqueous solution, and obtaining a fibrous product-containing aqueous solution;
(B) The fibrous material in the fibrous material-containing aqueous solution is coated with a metal, a metal alloy or a metal oxide, and then coated with gold or a gold compound. Forming a coated fibrous material containing an exterior material formed of an alloy or metal oxide;
(C) The core material of the coated fibrous material obtained in the step (B) is dissolved, the exterior material is baked after the core material of the coated fibrous material is dissolved, or the coated fibrous material is Any one of Claims 1-6 manufactured by the process of obtaining the hollow material formed with the metal, the metal alloy, or the metal oxide, and gold | metal | money or a gold compound by baking and removing a core material. 2. The conductive magnetic powder according to item 1.
上記両性化合物が下記一般式(1)で示される化合物である、請求項7に記載の導電性磁性粉体。
Figure 2008021513
(式中、Rは水素又は炭素数1〜10の直鎖又は分岐状のアルキル基であり、mは1〜20の整数である。)
The conductive magnetic powder according to claim 7, wherein the amphoteric compound is a compound represented by the following general formula (1).
Figure 2008021513
(In the formula, R is hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms, and m is an integer of 1 to 20.)
上記工程(B)が無電解めっきにより行われる、請求項7又は8に記載の導電性磁性粉体。 The conductive magnetic powder according to claim 7 or 8, wherein the step (B) is performed by electroless plating. 上記工程(B)における金属又は金属合金が、Ni、Ni合金又はNi−P合金である、請求項7〜8のいずれか1項に記載の導電性磁性粉体。 The conductive magnetic powder according to any one of claims 7 to 8, wherein the metal or metal alloy in the step (B) is Ni, Ni alloy or Ni-P alloy. 体積抵抗率が1.0×10Ω・cm以上の絶縁体中に、請求項1〜9のいずれか1項に記載の導電性磁性粉体が分散してなる異方導電材料。

An anisotropic conductive material in which the conductive magnetic powder according to any one of claims 1 to 9 is dispersed in an insulator having a volume resistivity of 1.0 x 10 8 Ω · cm or more.

JP2006191800A 2006-07-12 2006-07-12 Conductive magnetic powder Pending JP2008021513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191800A JP2008021513A (en) 2006-07-12 2006-07-12 Conductive magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191800A JP2008021513A (en) 2006-07-12 2006-07-12 Conductive magnetic powder

Publications (1)

Publication Number Publication Date
JP2008021513A true JP2008021513A (en) 2008-01-31

Family

ID=39077321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191800A Pending JP2008021513A (en) 2006-07-12 2006-07-12 Conductive magnetic powder

Country Status (1)

Country Link
JP (1) JP2008021513A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185378A (en) * 2008-02-05 2009-08-20 Korea Inst Of Machinery & Materials Hollow metal fiber for absorbing electromagnetic wave and its manufacturing method
JP2011214074A (en) * 2010-03-31 2011-10-27 Okuno Chemical Industries Co Ltd Metal nanostructure and method for producing the same
JP2012516386A (en) * 2008-10-09 2012-07-19 ユニバーシティー オブ ニューキャッスル Preparation of nanostructured microporous composite foam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185378A (en) * 2008-02-05 2009-08-20 Korea Inst Of Machinery & Materials Hollow metal fiber for absorbing electromagnetic wave and its manufacturing method
JP2012516386A (en) * 2008-10-09 2012-07-19 ユニバーシティー オブ ニューキャッスル Preparation of nanostructured microporous composite foam
JP2011214074A (en) * 2010-03-31 2011-10-27 Okuno Chemical Industries Co Ltd Metal nanostructure and method for producing the same

Similar Documents

Publication Publication Date Title
KR101789213B1 (en) Method of Manufacturing Silver-Coated Copper Nano Wire Having Core-Shell Structure by Chemical Reduction Method
JP4957838B2 (en) Conductive fine particles and anisotropic conductive materials
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
US9093192B2 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
KR101261184B1 (en) Coated conductive particles and method for producing same
JP2012214898A (en) Silver-coated copper powder and method for producing the same, and conductive paste, conductive adhesive agent, conductive film, and electric circuit containing the silver-coated copper powder
JP5973257B2 (en) Conductive particles and conductive material containing the same
JP2007242307A (en) Conductive particulate and anisotropic conductive material
TW201311376A (en) Copper powder, copper paste, method for manufacturing conductive coating film, and conductive coating film
KR101018334B1 (en) Preparation of electroconductive nano/microparticles coated with graphene nanosheets
JP5941328B2 (en) Conductive particles and conductive material containing the same
WO2006018995A1 (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
WO2006009097A1 (en) Nickel coated copper powder and process for producing the same
JP2007035573A (en) Conductive particulate and anisotropic conductive material
JP5764279B2 (en) Fine particles for forming fired body, fine particle dispersion solution for forming fired body, method for producing fine particle for forming fired body, and method for producing fine particle dispersion solution for forming fired body
JP2008021513A (en) Conductive magnetic powder
JP6442240B2 (en) Silver-coated particles and method for producing the same
JP2008121043A5 (en)
JPWO2008105355A1 (en) Conductive fine particles and anisotropic conductive materials
JP2016195048A (en) Silver-coated conductive particles and conductive material containing the same
JP2013229240A (en) Conductive particle and method for producing the same
JP2013251099A (en) Conductive particle and process of manufacturing the same
JP4114074B2 (en) Conductive powder and method for producing the same
JP5368611B1 (en) Conductive fine particles
JP2006156196A (en) Conductive hollow material and anisotropic conductive material