JPH0327112A - Production of high-tenacity polyvinyl alcohol fiber - Google Patents

Production of high-tenacity polyvinyl alcohol fiber

Info

Publication number
JPH0327112A
JPH0327112A JP15460289A JP15460289A JPH0327112A JP H0327112 A JPH0327112 A JP H0327112A JP 15460289 A JP15460289 A JP 15460289A JP 15460289 A JP15460289 A JP 15460289A JP H0327112 A JPH0327112 A JP H0327112A
Authority
JP
Japan
Prior art keywords
fiber
boric acid
polyvinyl alcohol
ammonia
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15460289A
Other languages
Japanese (ja)
Inventor
Norihisa Miyamatsu
徳久 宮松
Michiaki Sagesaka
提坂 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIBI KK
Original Assignee
NICHIBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIBI KK filed Critical NICHIBI KK
Priority to JP15460289A priority Critical patent/JPH0327112A/en
Publication of JPH0327112A publication Critical patent/JPH0327112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce the subject fiber at a low cost by extruding an aqueous solution containing polyvinyl alcohol and boric acid or its salt through a nozzle into a specific atmosphere, removing water from the obtained fibrous hydrogel and hot-drawing the fiber. CONSTITUTION:A spinning dope containing a polyvinyl alcohol having an average polymerization degree of >=2,000 (preferably 2,500-6,000) and 0.05-5.0wt.% (based on the polyvinyl alcohol) of boric acid or its salt (the pH of the solution is preferably adjusted to 3.0-5.0 in the case of using a boric acid salt) is extruded through a nozzle into an ammonia gas atmosphere to form a fibrous hydrogel, which is introduced into an aqueous solution of a dehydrating inorganic salt (e.g. boric acid) or a methanol bath to effect the dehydration and obtain an undrawn fiber. The objective fiber can be produced by hot-drawing the undrawn fiber at >=200 deg.C until the strength of the fiber reaches >=15.0g/d.

Description

【発明の詳細な説明】 [産業」二の利用分野1 本発明はポリビニルアルコールC以下PVAと略記する
)繊維の製造方法に関し、詐しくは新規かつ改良された
紡糸手段により超高強力P V A 繊維を製造する方
法に係わる. [従来の技術] PVA繊維は、汎用繊維の中でも強度、ffj4 !e
jI性. lit薬品性、耐光性など繊維として必要な
素質をバランス良く備えており、また、超高強力繊維に
用いられている他の原料に比べPVAは遥かに安価であ
るため、これによる超高強力繊維の開発研究が盛んであ
る. 最近の理論により.PVA系超高強力繊Htを得るため
には高重合度PVAを原料とし,、これを低濃度に調製
した紡糸原液を用い、なんらかの方l去によりゲル紡糸
Vるこヒがポイントであることが強く示唆されているが
、現実は種々の制約の前に妥協を強いられ、未だ決定的
な方法が出現していない現状にある. すなわちPVA系超高強力繊維の製法として、例えばl
)極性の強いジメチルスルホキサイド(DMSO)と水
との混合溶媒溶液をメタノール中に導きゲル状凝固させ
る方法(特開昭60−126312号,特開昭62−1
62010など),2)チオシアン酸水溶液を溶媒とし
た紡糸原液を低温の凝固液に乾湿式紡糸する方法(特開
昭62−104912号)、3)エチレングリコールな
どの高温ではポリマーが溶け冷却するとゲル化するよう
な溶媒の特性を利用しゲル紡糸する方法(特開昭59−
130314号)などが提案されているが、いずれも、
有機溶媒,無機塩などの濃度管理,回収操作などにより
、コスト高や工程が煩雑になり、同時に繊維に残存する
これらの成分による延伸性に対する悪影響も無視できな
い. こうした中にあって.4)gI酸を含有する紡糸原液を
,脱水性塩類を含む中性またはアルカリ性水溶液を凝固
液として乾・湿式紡糸する方法(特開昭62−1499
10など)が提案されており、この方法は、「硼酸含有
原液とアルカリ凝固浴の組合せによる湿式紡糸」が既に
PVA繊維の工業的な製造法として確立されており、設
備的な抵抗も少なく、最も有力な方法と思われる.しか
しながら、この方法は前記l)〜3冫のような製法に比
べ,繊維強度が必ずしも勝るとは言えず、超高強力を得
る点でなお改良が必要である. 〔発明が解決しようとする課題} 本発明者らは、かかる観点より、硼酸含有原液を利用す
る方法について、特にこの原液を細孔よりアンモニア蒸
気の存在する大気中に吐出してできる繊維状ヒドロゲル
に着目し、鋭意研究を進めた結果、これより水分を除い
て得られる未延伸糸が極めて良好な延伸性を示し,強度
が著しく高い繊維が得られることを見いだし、さらにそ
の詳細について追及した結果,遂に本発明を完成するに
至った. 〔課題を解決するための手段1 すなわち,本発明の要旨は、平均重合度2,000以上
(7)PVAと該PVAに対し0.05〜5.Owt%
の硼酸あるいはその塩を含んでなる水溶液を、細孔より
アンモニアガス雰囲気中に吐出してuIi維状ヒドロゲ
ルを形成し、該ヒドロゲルより水分を除いて得られる未
延伸糸を.l5.Og/d以上の強力になるまで熱延伸
することを特徴とする高強力PVA繊維の製造方法に存
する.本発明において、繊維状ヒドロゲルから水分を除
くに当たっては脱水性無機塩水溶液あるいはメタノール
浴に導いて未延伸糸を形成せしめることが好ましい. また上記脱水性無機塩水溶液あるいはメタノールにはア
ンモニアを含有せしめ、これより揮散するアンモニアに
より細孔近傍をアンモニアガス雰囲気とすることが好ま
しい. また,繊維状ヒドロゲルを3.0倍以下の延伸を行なっ
た後乾燥気流により水分を除去して未延伸糸を形成する
ことちできる. 本発明によれば、硼酸または硼酸塩を含有する紡糸原液
を用いる前記4冫の方法は勿論のこと、1゜)〜3〕の
ような従来の製法に比べて高強力の繊維をより合理的に
得ることができるものである. 本発明によりかかる高強力繊維が得られる理由について
は,ノズルより吐出された原液は直ちにアンモニアガス
と.接触し即座にヒドロゲル状繊維となって分子配置が
固定され、しかる後脱水が行なわれるため、得られる未
延伸糸中の分子鎖は希薄原液中での絡みの少ない状態が
維持され、ゲル紡糸法の理想に近い状態で高度の延伸が
できる未延伸糸が得られるちのと推定される.一方、硼
酸あるいは硼酸塩を用いる従来法では,ノズルより吐出
された紡糸原液は脱水性塩類を含むアルカリ性の凝固液
と接するため凝固とゲル化が同時に進行することになり
、特に凝固過程では分子の絡みが発生し易いことから必
然的にゲル紡糸のFl恕とする条件とは離れてしまうと
考えられる.以下,本発明について史に詳しく説明する
が、本発明はその要旨を逸11!PLな(ハ限り以ドの
記叔に限定されるものではない. 本発明における主原hであるPVAは重合度が低いと目
的とする高強力が得られないため、平均瓜合度で2、O
C)0以上である必要があり、上限は30,000位で
《ノ使用1ることがCぎる。このうち、2,500〜6
,000の平均重合度のPVAが最も好ましい. ケン化度については、99モル%以上が好ましいが,繊
維状比ドロゲルの脱水のため、アルカリ性の浴液をmい
る場合に限り、浴液のアルカリによりケン化が進むため
、ケン化度が95モル%以土7であれば使用するここが
できる、硼酸または硼酸塩は紡糸原液中のPVAに対し
0.05〜5.Owt%添加ずる、硼酸または硼酸塩が
0.05vvt%以下の場合には,ゲル化の作用が弱く
ゲル紡糸の効果が薄ハ、逆に5.OW1,%を越えるヒ
アンモニアの消費量が多大となり、残存する硼酸成分も
相対的に多めとなり延伸性低下傾向が現れ、bfましく
ない。
[Detailed Description of the Invention] [Industry] Field of Application 1 The present invention relates to a method for producing polyvinyl alcohol C (hereinafter abbreviated as PVA) fibers, and the present invention relates to a method for producing polyvinyl alcohol C (hereinafter abbreviated as PVA) fiber, which is produced by ultra-high strength PVA using a new and improved spinning means. It concerns the method of manufacturing fibers. [Prior Art] PVA fiber has the highest strength among general-purpose fibers, ffj4! e
jI nature. PVA has a good balance of properties necessary for fibers such as chemical resistance and light resistance, and is much cheaper than other raw materials used for ultra-high strength fibers, so PVA is an ultra-high strength fiber made using this material. There is a lot of research and development going on. According to recent theories. In order to obtain PVA-based ultra-high strength fiber Ht, the key point is to use high polymerization degree PVA as a raw material, use a spinning stock solution prepared with a low concentration of PVA, and perform gel spinning by some method. Although this has been strongly suggested, the reality is that we are forced to compromise in the face of various constraints, and no definitive method has yet emerged. In other words, as a method for producing PVA-based ultra-high strength fiber, for example, l
) A method of introducing a mixed solvent solution of highly polar dimethyl sulfoxide (DMSO) and water into methanol and coagulating it into a gel-like state (JP-A-60-126312, JP-A-62-1)
62010, etc.), 2) Dry-wet spinning method using a spinning solution using an aqueous thiocyanic acid solution as a solvent into a low-temperature coagulation solution (Japanese Patent Application Laid-open No. 104912/1982), 3) Polymer melts at high temperatures such as ethylene glycol and forms a gel when cooled. A method of gel spinning using the properties of a solvent such as
No. 130314) have been proposed, but all of them are
Concentration control and recovery operations for organic solvents, inorganic salts, etc. increase costs and complicate processes, and at the same time, the negative effects of these components remaining in the fibers on stretchability cannot be ignored. In the midst of all this. 4) A method of dry/wet spinning a spinning dope containing gI acid using a neutral or alkaline aqueous solution containing dehydrating salts as a coagulating liquid (Japanese Patent Laid-Open No. 1499-1499)
10, etc.), and this method, ``wet spinning using a combination of a boric acid-containing stock solution and an alkaline coagulation bath,'' has already been established as an industrial manufacturing method for PVA fibers, and there is little resistance in terms of equipment. This seems to be the most effective method. However, this method cannot necessarily be said to be superior in fiber strength to the above-mentioned manufacturing methods 1) to 3, and improvements are still needed in terms of obtaining ultra-high strength. [Problems to be Solved by the Invention] From this perspective, the present inventors have developed a method of using a boric acid-containing stock solution, in particular a fibrous hydrogel produced by discharging this stock solution through pores into the atmosphere where ammonia vapor is present. As a result of intensive research, it was discovered that the undrawn yarn obtained by removing water from this yarn showed extremely good drawability and a fiber with extremely high strength was obtained.After further investigation into the details, , we have finally completed the present invention. [Means for Solving the Problems 1] That is, the gist of the present invention is that the average degree of polymerization is 2,000 or more (7) PVA and the PVA has an average degree of polymerization of 0.05 to 5. Owt%
An aqueous solution containing boric acid or a salt thereof is discharged from the pores into an ammonia gas atmosphere to form a uIi fibrous hydrogel, and the undrawn yarn obtained by removing water from the hydrogel is formed. l5. The present invention relates to a method for producing high-strength PVA fibers, which comprises hot-drawing the fibers to a strength of Og/d or higher. In the present invention, when removing water from the fibrous hydrogel, it is preferable to introduce it into a dehydrating inorganic salt aqueous solution or methanol bath to form undrawn threads. Further, it is preferable that the dehydrating inorganic salt aqueous solution or methanol contains ammonia, and the ammonia volatilized from the ammonia creates an ammonia gas atmosphere in the vicinity of the pores. It is also possible to form an undrawn yarn by stretching the fibrous hydrogel by a factor of 3.0 times or less and then removing water with a dry air stream. According to the present invention, high-strength fibers can be produced more rationally than the above-mentioned four methods using a spinning dope containing boric acid or a borate, as well as conventional methods such as 1) to 3]. This is something that can be obtained. The reason why such high-strength fibers can be obtained by the present invention is that the stock solution discharged from the nozzle immediately turns into ammonia gas. Upon contact, it immediately becomes a hydrogel-like fiber with a fixed molecular arrangement, and is then dehydrated, so that the molecular chains in the resulting undrawn yarn remain unentangled in the dilute stock solution, making it possible to use the gel spinning method. It is presumed that an undrawn yarn that can be drawn to a high degree in conditions close to the ideal can be obtained. On the other hand, in the conventional method using boric acid or borates, the spinning stock solution discharged from the nozzle comes into contact with an alkaline coagulating solution containing dehydrating salts, so coagulation and gelation proceed simultaneously, and especially during the coagulation process, molecular Since tangles are likely to occur, it is thought that the conditions for gel spinning are inevitably different from those for Fl. The present invention will be explained in detail below, but the gist of the present invention will be omitted. PL (This is not limited to the above description. PVA, which is the main raw material in the present invention, cannot have the desired high strength if the degree of polymerization is low, so the average degree of polymerization is 2, O
C) It must be 0 or more, and the upper limit is about 30,000. Of these, 2,500 to 6
,000 average degree of polymerization is most preferred. The saponification degree is preferably 99 mol% or more, but only when an alkaline bath liquid is used to dehydrate the fibrous hydrogel, saponification progresses due to the alkali of the bath liquid, so the saponification degree is 95 mol% or more. Boric acid or borate can be used if the mole % is less than 7. Boric acid or borate is 0.05 to 5. If the amount of boric acid or borate added is less than 0.05vvt%, the gelling effect will be weak and the gel spinning effect will be weak. The amount of hyammonia consumed exceeding 1.% of OW becomes large, and the remaining boric acid component also becomes relatively large, resulting in a tendency for the drawability to decrease, resulting in poor bf.

使用可能な硼酸塩とし”Cは,硼酸ナ[一リウム、硼酸
カリウム、硼酸リチウムなどの硼酸のアルカノ金属塩お
よび硼酸アン{fニウムがあげられる.これらの硼酸塩
を用いた場合、紡糸原液を塩酸や硫酸などの強酸を用い
てpHを3.0〜5. Qに調整することが好ましい.
この点硼酸はp Hの調節の必要は実質的に不用であり
、叢も好ましい. 本発明法では,以上の条件を満たすPVAと硼酸または
その塩を溶質とする水溶液を調整し紡糸原液とするが、
原液はノズルより吐出されると即座にアンモニアによる
強いゲル化作用を受けるため,紡糸原液の粘度(または
濃度)は他の方法に比べかなり低めでよく、原液濃庶は
1〜1 5 w t%、より好ましくは1.5・〜10
wt%の箭囲から選ぶことができ,この範囲内で6より
高重合度PVAを原料とした場合、または硼酸またζj
その塩の使用量の多い場名においては、原液濃度は低め
の方がよい結果が得られる。
Examples of borates that can be used include alkano metal salts of boric acid such as monolithium borate, potassium borate, and lithium borate, and ammonium borate. When these borates are used, the spinning stock solution is It is preferable to adjust the pH to 3.0-5.Q using a strong acid such as hydrochloric acid or sulfuric acid.
This dotted boric acid does not require substantially any pH adjustment, and is also preferable. In the method of the present invention, an aqueous solution containing PVA and boric acid or its salt as solutes that satisfies the above conditions is prepared and used as a spinning stock solution.
When the stock solution is discharged from the nozzle, it is immediately subjected to a strong gelling action by ammonia, so the viscosity (or concentration) of the spinning stock solution may be considerably lower than in other methods, and the stock solution concentration is typically 1 to 15 wt%. , more preferably 1.5-10
Within this range, if PVA with a higher degree of polymerization than 6 is used as a raw material, or if boric acid or ζj
In applications where a large amount of salt is used, better results can be obtained with a lower concentration of the stock solution.

原液温ボは一般にO〜150℃の範囲でよ(ハが、ノズ
ル直前においてあまり高いヒ、吐出直後の急激な乾燥に
より高延伸性が阻害される表面皮膜形成の傾向が出てく
るため、より好ましくは0〜70℃である. ノズルより吐出さねた紡糸原液はガス状アンモニアの作
用を夛けて,直ちにハルサメあるいはシラタキ様の繊維
状ヒドロゲルとなる、 このゲル化現.象は、PVAの濃度、瓜合度,硼酸また
は硼酸塩の濃度、アンモニアの濃度にも影響されるがほ
とんど瞬時に行われ,従ってアンモニアガスとの接触帯
は短くてよく、通常2mmから1,000mmの間で好
適に実施できる、アンモニアガスヒの接触帯を含め空中
での滞在長が大きくなるヒ、繊維状ヒドロゲルの目瑣に
よるドラフト増大作用が増すが、吐出方向を上向きとす
ることによりこの作用を回避できこの方式は乾式紡糸方
の場合に有利である、 得られた繊維状ヒドロゲルは、90wt%を越える含水
率であるうえ架橋しているため、強度が低く,かなりの
ゴム状弾性をイqL11rおり、このものをメタノール
または脱水性無11fl塩水冫容液中に導き、脱水を行
なう、いわゆる乾7糸弐法により未延伸糸を得ることが
出来る. また、この繊t1t状ヒドロゲルを例えば3  0{0
以下の低倍率に延伸して、ある程度強度を高めたJ二で
乾燥空気中に導くことにより、いわゆる乾式紡糸法によ
る未延伸糸を得ることもできる。
The temperature of the stock solution should generally be in the range of 0 to 150°C. Preferably, the temperature is 0 to 70°C. The spinning stock solution discharged from the nozzle undergoes the action of gaseous ammonia and immediately becomes a fibrous hydrogel like Harusame or Shirataki. This gelation phenomenon is caused by the PVA Although it is influenced by the concentration, degree of fusion, concentration of boric acid or borate, and concentration of ammonia, it is almost instantaneous, so the contact zone with ammonia gas can be short, usually preferably between 2 mm and 1,000 mm. However, this method increases the residence length of ammonia gas in the air, including the contact zone, and increases the draft increasing effect due to the presence of fibrous hydrogel, but this effect can be avoided by setting the discharge direction upward. The obtained fibrous hydrogel has a water content exceeding 90 wt% and is cross-linked, so it has low strength and has considerable rubber-like elasticity. An undrawn yarn can be obtained by the so-called dry 7 yarn method, in which the fiber is introduced into methanol or a dehydrating non-11 fl saline solution and dehydrated.
It is also possible to obtain an undrawn yarn by the so-called dry spinning method by drawing it to the following low magnification and introducing it into dry air using J2, which has increased the strength to some extent.

ここで、ノズルより吐出される原液の線速度(Vo)に
対する繊維状ヒドロゲルが最初に口ーラーあるいはガイ
ドにより接触する際の速度(V.)の比によって定義さ
れるいわゆるドラフ]・(Vo/V+ )の好適範囲は
、原液組成、濃度、温度などの影饗ら受けるが、ほぼ0
.1〜3.0であり,また紡糸引き取り速度(V2)に
対する上記■1の比でもって定義さわる紡糸延伸倍率(
V2/V.)については高くなると全延伸倍率が低下す
る傾向がみられるl::め、乾記式紡糸の場合で5.0
、乾式紡糸の場合では3 0倍をそれぞオ]越えない範
囲とすることが肝要である、乾湿式紡糸法の場合、繊維
状ヒドロゲルからの脱水を目的とする凝固浴液としては
、有機溶媒としてメタノールがあり、また無機塩として
はボウ硝,硫安、およびボウ硝と硫安の混合物、あるい
はこれらのいずれかを50%以上を含有する無機塩が利
用できる. ここでこれらの凝固浴液にはアンモニアを共存させこれ
より揮敢するアンモニアによりノズル近傍をアンモニア
ガス雰囲気とすることができ、しがちガス濃度は擬固浴
液のアンモニア濃度によってコントロール可能であり、
本発明法のポイントであるアンモニアガス雰囲気の管理
には最も好ましい方法である. 未延伸糸に残存する硼酸あるいは硼酸廖は延伸性を阻害
するため、これを除去するか極力使用量を控えることが
必要である. 硼酸の除去が実質的に不可能な乾式紡糸法の場合には,
原液への硼酸あるいはその壕の添加はPVAに対し0.
5wt%以下とするのが良く、好ましくは0.05〜0
.3wt%の範囲である.一方、乾湿式紡糸法の場合に
は,脱水(あるいは凝固)工程、中和工程,温熱処理工
程、洗浄工程などを経ることにより、硼酸あるいはその
塩の大部分は繊維外へ溶出さすことができ、最後に乾燥
することにより目的の未延伸糸を得ることが出来る. 乾式紡糸法あるいは乾湿式紡糸法によりかくして得られ
た未延伸糸は,いったん捲き取るかまたは連続して延伸
する.延伸方法は従来公知の方法で行うことが出来る.
すなわち、一段で6多段でもよく、またゾーン延伸など
の方法を用いても良いが,延伸温度については200℃
以上、延伸倍率については全延伸倍率(紡糸延伸倍率×
熱延伸倍率)で15倍以上は必要である. 以下実施例を揚げて本発明を更に明らかにする. [実施例l〕 平均重合度3,300.M化度99.9モル%のPVA
を700g.硼酸を25g、それに脱イオン水を加え、
二一グー型溶解機により最高温度を120℃まで上げて
完全溶解して、10I2の紡糸原液を調製した.この紡
糸原液を、90℃で保1FA中のタンクの底部より取り
出し、ギャーボンブ、フィルターを経て,孔径250μ
、5大のノズルよりアンモニアガス雰囲気中に吐出せし
めた. ここで、ノズル内での原液は,途中の配管系で伶却され
22℃になっており、ノズル付近は、ノズルを取り囲む
ポリエチレン製シートの多いとノズル下部のシャーレに
入れた25%アンモニア水より揮発するアンモニアガス
とにより、アンモニアガス雰囲気に保たれ、雰囲気温度
は22℃であった・ 吐出された原液は直ちにゲル化し、無色透明で粘着性、
曳糸性は無く、あたかもシラタキ状の繊維状とじドロゲ
ルとなる. この6のを液面がノズル面より5cm下のメタノール浴
に導き、液面下80cmに設けた回転ガイドで方向転換
し,カセ取り機に捲取りこのままさらに一昼夜メタノー
ル中に浸漬して水分とメタノールの置換と凝固を進め、
最後に風乾して未延伸糸を得た.この間のドラムトは0
.65、紡糸延伸倍率は1.0であり,未延伸糸に含ま
れる硼素含有量は硼酸として0.23wt%に減少して
いた. このちのを240℃の!l!!風炉で全延伸倍率が18
.5倍になるまで延伸し、強度19.8g/dの高強力
PVA繊維を得た. 〔実施例2] 平均重合度4,600.鹸化度99.9モル%(7)P
VA500gおよび硼酸15.0gを水で溶解して10
I2の紡糸原液を調製し、これを孔径30μ、5大のノ
ズルよりアンモニアガス雰囲気に吐出し繊維状ヒドロゲ
ルとし、ついで脱水浴中に導いた. ここで原液は吐出される寸前のノズル内部において28
℃であり,脱水浴は硫安を40.5wt%と5.2モル
 /g.のアンモニアを含み25℃に保たれており,ノ
ズルはこの液面上1.0cmに設置されノズル近傍は脱
水浴から揮散するアンモニアガスによりアンモニア性雰
囲気が保たれていた。
Here, the so-called draught defined by the ratio of the velocity (V.) when the fibrous hydrogel first contacts with the mouth roller or guide to the linear velocity (Vo) of the stock solution discharged from the nozzle]・(Vo/V+ ) is influenced by the composition of the stock solution, concentration, temperature, etc., but it is approximately 0.
.. 1 to 3.0, and the spinning draw ratio (
V2/V. ), there is a tendency for the total draw ratio to decrease as the ratio increases.
In the case of dry spinning, it is important that the coagulation bath liquid for the purpose of dehydration from the fibrous hydrogel does not exceed 30 times the organic solvent. Methanol can be used as an inorganic salt, and as an inorganic salt, sulfur sulfate, ammonium sulfate, a mixture of sulfur sulfate and ammonium sulfate, or an inorganic salt containing 50% or more of any of these can be used. Here, ammonia is coexisted in these coagulation bath liquids, and the more volatile ammonia can create an ammonia gas atmosphere near the nozzle, and the gas concentration can be controlled by the ammonia concentration of the pseudo-solid bath liquid.
This is the most preferable method for controlling the ammonia gas atmosphere, which is the key point of the method of the present invention. Boric acid or boric acid chloride remaining in undrawn yarn impairs drawability, so it is necessary to remove it or limit the amount used as much as possible. In the case of dry spinning, where it is virtually impossible to remove boric acid,
Addition of boric acid or its moiety to the stock solution results in 0.0% of PVA.
The content is preferably 5 wt% or less, preferably 0.05 to 0.
.. It is in the range of 3wt%. On the other hand, in the case of the dry-wet spinning method, most of the boric acid or its salts cannot be eluted out of the fiber through the dehydration (or coagulation) process, neutralization process, thermal treatment process, washing process, etc. By finally drying, the desired undrawn yarn can be obtained. The undrawn yarn thus obtained by the dry spinning method or wet/dry spinning method is either wound up once or drawn continuously. The stretching method can be performed by a conventionally known method.
In other words, one stage may be 6 stages, or a method such as zone stretching may be used, but the stretching temperature is 200°C.
Above, regarding the draw ratio, the total draw ratio (spinning draw ratio ×
A hot stretching ratio of 15 times or more is required. The present invention will be further clarified with the following examples. [Example 1] Average degree of polymerization: 3,300. PVA with M degree of 99.9 mol%
700g. Add 25g of boric acid and deionized water to it,
A spinning stock solution of 10I2 was prepared by raising the maximum temperature to 120° C. and completely dissolving it using a 21 Goo-type dissolving machine. This spinning stock solution was taken out from the bottom of a tank kept at 90°C in 1FA, passed through a gar bomb and a filter, and passed through a pore size of 250 μm.
, was discharged into an ammonia gas atmosphere from five large nozzles. Here, the undiluted solution in the nozzle is evacuated by the piping system on the way and has a temperature of 22°C, and the area around the nozzle is warmer than the 25% ammonia water placed in the Petri dish at the bottom of the nozzle because there are many polyethylene sheets surrounding the nozzle. The ammonia gas atmosphere was maintained by the volatilizing ammonia gas, and the ambient temperature was 22°C. The discharged stock solution immediately turned into a gel and became colorless, transparent, and sticky.
There is no stringiness, and the result is a fibrous, bound drogel with a shirataki-like appearance. This 6 is introduced into a methanol bath where the liquid level is 5 cm below the nozzle surface, the direction is changed using a rotating guide installed 80 cm below the liquid level, the material is wound up into a skein removal machine, and it is further immersed in methanol for a day and night to remove water and methanol. Proceed with the replacement and solidification of
Finally, it was air-dried to obtain an undrawn yarn. Drumt during this time is 0
.. 65, the spinning draw ratio was 1.0, and the boron content contained in the undrawn yarn was reduced to 0.23 wt% as boric acid. After this, it will be 240℃! l! ! The total stretching ratio is 18 in the wind furnace.
.. It was stretched to 5 times its size to obtain a high-strength PVA fiber with a strength of 19.8 g/d. [Example 2] Average degree of polymerization: 4,600. Saponification degree 99.9 mol% (7)P
Dissolve 500 g of VA and 15.0 g of boric acid in water and make 10
A spinning stock solution of I2 was prepared, and this was discharged into an ammonia gas atmosphere through a 5-sized nozzle with a pore size of 30 μm to form a fibrous hydrogel, which was then introduced into a dehydration bath. Here, the stock solution is inside the nozzle just before being discharged.
℃, and the dehydration bath contained ammonium sulfate at 40.5 wt% and 5.2 mol/g. The nozzle was installed 1.0 cm above the liquid level, and an ammonia atmosphere was maintained near the nozzle by the ammonia gas vaporized from the dehydration bath.

繊維状l:′rr+ゲルは、ノズルの真下方向でかつ水
面下50cmに設&−JられたfiI極駆動ロールによ
り方向転換しさらに1.5cmの間脱水浴を通過した後
,直径60cmのパンチングメタル製の穴空きドラムに
定速で巻取った、 このドラムの下部は35wt%の硫安と硫酸を0.5規
定含む脱水兼中和浴に浸かっており、繊維1i巻取られ
たまま十分な時間回転をm続され脱水と中和を行なった
.次いでドラムごヒ飽和硫安水に漬清し130℃の湿熱
処理を行い、最後に水洗いし風乾した.この場合のドラ
ムトはo.23であり紡糸延伸倍率は1.7{9であっ
た。
The fibrous l:'rr+ gel was changed direction by a fiI pole drive roll installed directly below the nozzle and 50 cm below the water surface, passed through a dehydration bath for a further 1.5 cm, and then punched with a diameter of 60 cm. The fibers were wound at a constant speed on a perforated metal drum.The lower part of this drum was immersed in a dehydration/neutralization bath containing 35wt% ammonium sulfate and 0.5N of sulfuric acid. Dehydration and neutralization were performed by continuous rotation for several hours. Next, the drum was soaked in saturated ammonium sulfate solution, subjected to a wet heat treatment at 130°C, and finally washed with water and air-dried. The drum in this case is o. 23, and the spinning draw ratio was 1.7{9.

かくして得られた未延伸糸は、0.12wt%のVA酸
を含んでいるが240℃で全延伸{8率として最高24
倍の延伸をすることができ、240℃で2l倍延伸した
延伸糸の強力は21.8iζ/0であった7 [比較例1] 実施例2において、同量の硫安を含むがアンモニアを全
く含まない脱水浴を用いる以外、実施例2と同−条件で
の試験を試みようと1,た7ところが、ノズルより吐出
され!“:原液は空中でグル化する兆候は全く見らハ.
ず,原油の濃度及び粘度が低いこと4)あって連続的な
糸条形成は不可能であった。
The undrawn yarn thus obtained contains 0.12 wt% of VA acid, but is completely stretched at 240°C {8% maximum of 24
[Comparative Example 1] In Example 2, the same amount of ammonium sulfate was used, but no ammonia was added. I tried to conduct a test under the same conditions as in Example 2 except for using a dehydration bath that did not contain water, but the water was discharged from the nozzle! “The stock solution showed no signs of gluing in the air.
First, continuous thread formation was impossible due to the low concentration and viscosity of crude oil4).

[比較例21 実施例2に43いて、ノズルを脱水浴に漫漬ずることに
より、紡糸原液を硫安/アンモニアの混合水溶液中に直
接吐出する以外は,実施例2と辛く同条件で未延伸糸を
得た。
[Comparative Example 21 An undrawn yarn was produced under the same conditions as in Example 2, except that the spinning stock solution was directly discharged into the mixed aqueous solution of ammonium sulfate/ammonia by dipping the nozzle in a dehydration bath. I got it.

このものを240℃で延伸できる全延伸倍率の最高値は
15.8倍であり、延伸糸の弾力は16.2g/dであ
った. [実施例31 平均重合度6,500、鹸化度99,9 エー1レ%の
PVAを450g.t;よび硼酸20.0gを水でIO
Rに溶解した紡糸原液を用いる以外、実施例2と同一条
件下に未延伸糸を得た。
The maximum total stretching ratio that could be drawn at 240°C was 15.8 times, and the elasticity of the drawn yarn was 16.2 g/d. [Example 31 450 g of PVA with an average degree of polymerization of 6,500 and a degree of saponification of 99.9 and 1% A. t; and 20.0 g of boric acid with water.
An undrawn yarn was obtained under the same conditions as in Example 2 except that a spinning dope dissolved in R was used.

この6のは240℃で全延伸倍率として最高23.9倍
の延伸かでぎ、この延伸糸の強力は25.2g/dであ
った。
This yarn No. 6 was drawn at 240° C. to a maximum total draw ratio of 23.9 times, and the strength of this drawn yarn was 25.2 g/d.

C実施例41 平均重合度3,300、鹸化度99 9 EノレのPV
A850gF,よび硼酸logを水でiosに溶解した
ものを紡糸原液として、孔径160μ、20ホールのノ
ズルを用い下記条件下のアンモニアガス雰囲気に吐出し
た. 即ち、ノズルは内径10cmのプラスチック製円筒容器
の底部近くに斜め士向きに設置され,ノズル直下には濃
アンモニア水が蓄えられ該容器内をアンモニアガス雰囲
気に保っでいる.吐出された原液はアンモニアガスより
直ちにゲル化して無色透明の繊維状ヒドロゲルヒなり、
これを斜め上に設けた回転ロールにドラフ1・をO.l
2に保ちながら連続的に取り出し,さらに次の回転ロー
ルとの開で延伸を行い,R後に50〜80℃の乾燥ゾー
ンに導き乾燥した未延伸糸を得た。この際の紡糸延伸f
8率は2 5{gであっt:、このものは硼酸を含んで
はいるが執延伸ずるこどができ、235℃で全延伸倍率
として16.2倍延伸した繊維の強度は17.0g/d
であっノ: 。
C Example 41 Average degree of polymerization 3,300, degree of saponification 99 PV of E-nore
A spinning stock solution containing 850 gF of A and log boric acid dissolved in ios with water was discharged into an ammonia gas atmosphere under the following conditions using a 20-hole nozzle with a hole diameter of 160 μm. That is, the nozzle is installed obliquely near the bottom of a plastic cylindrical container with an inner diameter of 10 cm, and concentrated ammonia water is stored directly below the nozzle to maintain an ammonia gas atmosphere inside the container. The discharged stock solution immediately gels with ammonia gas and becomes a colorless and transparent fibrous hydrogel.
The draft 1 is placed on a rotating roll installed diagonally above. l
The fibers were continuously taken out while maintaining the temperature at 2, and then stretched with the next rotating roll. After R, the fibers were introduced into a drying zone at 50 to 80° C. to obtain a dry undrawn yarn. At this time, the spinning drawing f
8 ratio is 25 {gt:, this material contains boric acid, but it is difficult to stretch, and the strength of the fiber stretched at 235°C with a total stretching ratio of 16.2 times is 17.0 g/ d
Deakno: .

〔発明の効果1 以上の結果から6明らかなとおり、本発明は特定量の硼
酸又はその塩を含有せしめた原液を、アンモニアガス雰
囲気中に吐出して繊維状ヒドロゲルを形成し,該ヒドロ
ゲルから水分を除いて高序の延伸性を有する未延伸糸を
得、これを勿延伸することにより、簡1nな王程で,極
め−(強度が高く利用範囲の広いPVA繊維を製造する
ことができ、また従来法に比し低コストに提供できる利
点を有し、工業上極めて有益である.
[Effect 1 of the invention 6 As is clear from the above results, the present invention involves discharging a stock solution containing a specific amount of boric acid or its salt into an ammonia gas atmosphere to form a fibrous hydrogel, and removing water from the hydrogel. By removing the undrawn yarn to obtain an undrawn yarn with high drawability, and then drawing it, it is possible to produce PVA fiber with high strength and a wide range of uses in a simple process. It also has the advantage that it can be provided at a lower cost than conventional methods, making it extremely useful industrially.

Claims (1)

【特許請求の範囲】 1、平均重合度2,000以上のポリビニルアルコール
と該ポリビニルアルコールに対し0.05〜5.0wt
%の硼酸あるいはその塩を含んでなる水溶液を、細孔よ
りアンモニアガス雰囲気中に吐出して繊維状ヒドロゲル
を形成せしめ、該ヒドロゲルより水分を除いて得られる
未延伸糸を、15.0g/d以上の強力になるまで熱延
伸することを特徴とする高強力ポリビニルアルコール繊
維の製造方法。 2、繊維状ヒドロゲルを脱水性無機塩水溶液あるいはメ
タノール浴に導き未延伸糸を形成する請求項1記載の方
法。 3、脱水性無機塩水溶液あるいはメタノールがアンモニ
アを含有するものであり、これより揮散するアンモニア
により細孔近傍をアンモニアガス雰囲気とする請求項1
および2記載の方法。 4、繊維状ヒドロゲルに対し3.0倍以下の延伸を行な
った後乾燥気流により水分を除去して未延伸糸を形成す
る請求項1記載の方法。
[Claims] 1. Polyvinyl alcohol with an average degree of polymerization of 2,000 or more and 0.05 to 5.0 wt relative to the polyvinyl alcohol.
% of boric acid or its salt is discharged into an ammonia gas atmosphere through the pores to form a fibrous hydrogel, and the undrawn yarn obtained by removing water from the hydrogel is 15.0 g/d. A method for producing a high-strength polyvinyl alcohol fiber, which comprises hot-stretching the fiber to a strength of 2. The method according to claim 1, wherein the fibrous hydrogel is introduced into a dehydrating inorganic salt aqueous solution or a methanol bath to form an undrawn thread. 3. Claim 1, wherein the dehydrating inorganic salt aqueous solution or methanol contains ammonia, and the ammonia volatilized from the ammonia creates an ammonia gas atmosphere in the vicinity of the pores.
and the method described in 2. 4. The method according to claim 1, wherein after stretching the fibrous hydrogel by a factor of 3.0 times or less, water is removed by a dry air stream to form an undrawn yarn.
JP15460289A 1989-06-19 1989-06-19 Production of high-tenacity polyvinyl alcohol fiber Pending JPH0327112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15460289A JPH0327112A (en) 1989-06-19 1989-06-19 Production of high-tenacity polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15460289A JPH0327112A (en) 1989-06-19 1989-06-19 Production of high-tenacity polyvinyl alcohol fiber

Publications (1)

Publication Number Publication Date
JPH0327112A true JPH0327112A (en) 1991-02-05

Family

ID=15587773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15460289A Pending JPH0327112A (en) 1989-06-19 1989-06-19 Production of high-tenacity polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JPH0327112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115075011A (en) * 2022-05-25 2022-09-20 重庆大学 High-toughness anisotropic fiber-based hydrogel and preparation method thereof, and ionic conductive hydrogel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115075011A (en) * 2022-05-25 2022-09-20 重庆大学 High-toughness anisotropic fiber-based hydrogel and preparation method thereof, and ionic conductive hydrogel

Similar Documents

Publication Publication Date Title
JPS6385107A (en) Production of filament high in modulus and tensile strength
US7014807B2 (en) Process of making polypeptide fibers
JPS648732B2 (en)
US2716586A (en) Wet spinning of acrylonitrile polymers
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JPS62231014A (en) High-strength polymetaphenylene isophthalamide yarn and production thereof
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPH0327112A (en) Production of high-tenacity polyvinyl alcohol fiber
JPS6128015A (en) Production of poly(p-phenylenebenzo-bis-thiazole fiber
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
US4056598A (en) Process for forming filaments from polyamic acid
JPS61215708A (en) Production of multifilament yarn
US4035465A (en) Drawing polyoxadiazoles filaments
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPH0874122A (en) Production of meta-aromatic polyamide fiber
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS62162010A (en) Production of polyvinyl alcohol fiber of high tenacity and elasticity
JPH01266212A (en) Production of high-tenacity polyvinyl alcohol fiber
JPH05263312A (en) Production of polyvinyl alcoholic fiber excellent in strength
JPH0457769B2 (en)
KR950002818B1 (en) Process for manufacturing a polyacrylonitril fiber by dry spinning method
JP3124811B2 (en) Method for producing polyhexamethylene adipamide fiber
JPH08158149A (en) Production of polyvinyl alcohol-based fiber
KR910006395B1 (en) Manufacturing process of high intensity and high modulus poly-ethylene fibers