JPH03270586A - Infrared ray monitor system - Google Patents

Infrared ray monitor system

Info

Publication number
JPH03270586A
JPH03270586A JP2071006A JP7100690A JPH03270586A JP H03270586 A JPH03270586 A JP H03270586A JP 2071006 A JP2071006 A JP 2071006A JP 7100690 A JP7100690 A JP 7100690A JP H03270586 A JPH03270586 A JP H03270586A
Authority
JP
Japan
Prior art keywords
data
temperature
image processing
infrared
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071006A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2071006A priority Critical patent/JPH03270586A/en
Publication of JPH03270586A publication Critical patent/JPH03270586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To attain highly accurate installation monitor and automatic tracking of a travelling object by applying derive control intermittently to a turning device so that the visual field of an infrared ray camera is moved or stopped alternately within a set area. CONSTITUTION:A turning device 12 is controlled by a control signal from a data processing section 14 and the stop (standstill) and the movement (visual field turning) are repeated alternately and a bearing data representing the turning position is generated and fed to the data processing section 14. Moreover, a picture processing section 13 fetches an input picture (infrared ray video signal) only for visual field movement stop period of an infrared ray camera 11 to apply discrimination processing. The data processing section 14 applies discrimination processing to various calculation data from the picture processing section 13, and the turning to a succeeding monitor visual field to the turning device 12 is commanded after the end of processing. Thus, differential detection is implemented for the picture processing.

Description

【発明の詳細な説明】 〔概要〕 赤外線カメラを用いて広域エリア(広視野)の監視を行
なう赤外線監視システムに関し、広域エリアにおける常
温帯の異常検出を行なうと共に、設!監視を高精度で、
また移動体の自動追尾を行なうことを目的とし、 監視対象を撮像する赤外線カメラと、該赤外線カメラの
視野を移動する旋回装置と、画像処理データと該旋回装
置からの方位データとに基づき、設定したエリア内で該
赤外線カメラの視野の移動と移動停止とが交互に繰り返
すよう該旋回装置を間欠的に駆動IIJIIするデータ
処理部と、該赤外線カメラの視野の移動停止WJrfA
内でのみ該赤外線カメラの出力赤外線映像信号を取り込
んで画像処理を行ない、前記監視対象における常温帯の
異常検出を行なうと共に前記データ処理部へ前記画像処
理データを送出する画像処理部とを有するよう構成する
[Detailed Description of the Invention] [Summary] This invention relates to an infrared monitoring system that monitors a wide area (wide field of view) using an infrared camera, and detects abnormalities in the normal temperature zone in a wide area. Monitor with high precision,
In addition, for the purpose of automatic tracking of moving objects, an infrared camera that images the monitoring target, a rotation device that moves the field of view of the infrared camera, and settings based on image processing data and azimuth data from the rotation device. a data processing unit that intermittently drives the rotation device so that the field of view of the infrared camera alternately moves and stops moving within the area; and WJrfA that stops moving the field of view of the infrared camera.
and an image processing section that captures an output infrared video signal of the infrared camera only within the camera, performs image processing, detects an abnormality in the normal temperature zone in the monitoring target, and sends the image processing data to the data processing section. Configure.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線監視システムに係り、特に赤外線カメラ
を用いて広域エリア(広視野)の監視を行なう赤外線監
視システムに関する。
The present invention relates to an infrared monitoring system, and more particularly to an infrared monitoring system that monitors a wide area (wide field of view) using an infrared camera.

屋外変電所におけるトランスや速断機などの設置の異常
な温度上昇を監視したり、一般背景温度付近の温度帯(
これを寒明m書では常温帯というものとする)の異常検
出(例えば、設備監視における異常予知検出、侵入者監
視)のために、赤外線カメラを用いた赤外m111視シ
ステムが知られている。この場合、監視対象が広域エリ
アに分布している場合は、これに対応して広域エリアの
被監視対象をできるだけ簡単な構成で監視する必要があ
り、また誤検出確率の低い監視が必要とされ、移動体監
視の場合には侵入者などの移動体の自動追尾も必要とさ
れる。
Monitor abnormal temperature rises in installations such as transformers and quick-break switches in outdoor substations, and monitor temperature ranges around the general background temperature (
An infrared M111 vision system using an infrared camera is known for detecting abnormalities (for example, abnormality prediction detection in equipment monitoring, intruder monitoring) (this is referred to as the normal temperature zone in the Kanmei M book). . In this case, if the monitored targets are distributed over a wide area, it is necessary to monitor the monitored targets in a wide area with a configuration as simple as possible, and monitoring with a low probability of false detection is required. In the case of mobile object monitoring, automatic tracking of moving objects such as intruders is also required.

〔従来の技術〕[Conventional technology]

赤外線カメラを用いて広域エリアの監視を行なう従来の
赤外I監視システムの各個を第10図及び第11図に示
す。第10図に示す従来の赤外線監視システムは、2以
上のm台の赤外線カメラ11〜1mの各出力赤外線映像
信号をビデオスイッチャ2で順次巡回的に切換え、処理
系3で処理する構成である。この従来システムによれば
、赤外線カメラ11〜1角の各視野が41〜4tr+で
示す如く狭いが、赤外線カメラ11〜1ynの各出力赤
外線映像信号を切換え出力することで、全体としては4
で示す扇形の広視野を実質上得ることができる。
Conventional infrared I surveillance systems that monitor a wide area using infrared cameras are shown in FIGS. 10 and 11. The conventional infrared monitoring system shown in FIG. 10 has a configuration in which each output infrared video signal from two or more m infrared cameras 11 to 1m is sequentially and cyclically switched by a video switcher 2 and processed by a processing system 3. According to this conventional system, each angle of the field of view of the infrared cameras 11 to 1 is narrow as shown by 41 to 4tr+, but by switching and outputting each output infrared image signal of the infrared cameras 11 to 1yn, the total field of view is 4
It is possible to virtually obtain a fan-shaped wide field of view as shown in FIG.

他方、第11図に示す従来の赤外線監視システムは、1
台の赤外線カメラ6を旋回装置7で所定角度範囲に亘っ
て往復旋回し、これにより得られた赤外線映像信号を処
理系8で処理する構成である。この従来シスムチによれ
ば、1台の赤外線カメラ6で済むため、第10図に示し
た従来システムに比べて安価な構成で第11図に9で示
す如き広域エリアの監視ができる。
On the other hand, the conventional infrared monitoring system shown in FIG.
The infrared camera 6 is rotated back and forth over a predetermined angle range by a rotating device 7, and the infrared image signal obtained thereby is processed by a processing system 8. According to this conventional system, only one infrared camera 6 is required, so that it is possible to monitor a wide area as shown by 9 in FIG. 11 with a cheaper configuration than the conventional system shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、第10図に示した従来システムでは監視エリ
アを広くするほど多くの台数の赤外線カメラが必要とな
るため、システム全体が高価になってしまう。他方、第
11図に示した従来システムでは赤外線カメラ6が常時
旋回しているため、固定視野方式の場合と異なり、異常
状態の発生がなくても背景の温度パターンの差異により
差分が発生してしまうため差分検出が行なえない。その
ため、この従来システムは例えば火災監視のように異常
検出レベルが背景温度と極端に差の大きい場合の監視(
単純な絶対値検出〉に限定されていた。
However, in the conventional system shown in FIG. 10, the wider the monitoring area, the more infrared cameras are required, making the entire system expensive. On the other hand, in the conventional system shown in FIG. 11, the infrared camera 6 is constantly rotating, so unlike the fixed field of view method, differences occur due to differences in background temperature patterns even when no abnormal conditions occur. Difference detection cannot be performed because it is stored away. Therefore, this conventional system is used for monitoring (for example, fire monitoring) when the abnormality detection level has an extremely large difference from the background temperature.
It was limited to simple absolute value detection.

なお、従来監視対象が移動したときのみカメラを移l/
IJ制御するシステムも提案されているが(特開昭52
−87318号公報)、このものは常時はカメラが固定
であり、視野内をたまたま監視対象が移動したときに適
用できるにすぎず、広域エリアの監視はできない。
Note that in the past, the camera could only be moved when the monitoring target moved.
A system for IJ control has also been proposed (Japanese Patent Application Laid-Open No. 1989-1999)
In this method, the camera is always fixed and can only be applied when the object to be monitored happens to move within the field of view, and cannot monitor a wide area.

また、上記のいずれの従来システムにおいても、設備監
視の異常予知検出においては、異常予知温度が通常温度
と大差なく(換言すると、僅かな温度変動検出であり)
、同時にその絶対温度レベルが背a温度近傍であるため
、監視対象視野内に例えば侵入者(II両、小動物)等
が侵入した場合、設備異常との区分けができず、区分け
のためにはモニタ装置での画像確認等の人的作業が必要
で運用上不便であった。
In addition, in any of the conventional systems mentioned above, in the abnormality prediction detection of equipment monitoring, the abnormality prediction temperature is not much different from the normal temperature (in other words, it is a slight temperature fluctuation detection).
At the same time, the absolute temperature level is close to the dorsal temperature, so if an intruder (II vehicle, small animal), etc. enters the field of view to be monitored, it will not be possible to distinguish it from an equipment abnormality, and the monitor will be required to distinguish it. This required manual work such as checking images on the device, which was inconvenient in terms of operation.

更に、上記の従来システムはいずれも移動体監視のため
には侵入者等の移動体侵入時点でしか検出監視を行なう
ことができず、その後必要とする運用対応、例えば侵入
者の移動方向の把握や赤外線カメラの自動追尾ができな
い。このため、従来は人的操作で侵入者の移動方向や追
尾を行なっているため、煩雑であり、また侵入者捕捉の
機会を逃すなどの問題があった。
Furthermore, in order to monitor mobile objects, all of the conventional systems described above can only detect and monitor when an intruder enters a mobile object, and cannot perform necessary operational responses after that, such as understanding the direction of movement of an intruder. Automatic tracking with an infrared camera is not possible. For this reason, conventionally, the moving direction and tracking of the intruder have been manually operated, which is complicated and has the problem of missing an opportunity to capture the intruder.

本発明は以上の点に艦みなされたもので、広域エリアに
おける常温帯の異常検出を行なうと共に、設備監視を高
精度で、また移動体の自動追尾を行ない得る赤外線監視
システムを提供することを目的とする。
The present invention has been made based on the above points, and aims to provide an infrared monitoring system that can detect abnormalities in normal temperature zones over a wide area, monitor equipment with high precision, and automatically track moving objects. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

第1A図は請求項1記載の第1発明の原理構成図を示す
。同図中、11は赤外線カメラで、監視対象を撮像する
。12は旋回装置で、赤外線カメラ11の視野を移動す
る。13は画像処理部、14はデータ処理部である。デ
ータ処理部14は画像処理部13からの画像処理データ
と旋回装置12からの方位データとに基づき、設定した
エリア内で赤外線カメラ11の視野の移動と移動停止と
が交互に繰り返すよう旋回装置12を間欠的に駆動制御
する。
FIG. 1A shows a principle configuration diagram of the first invention according to claim 1. In the figure, 11 is an infrared camera that takes an image of the monitoring target. Reference numeral 12 denotes a rotation device that moves the field of view of the infrared camera 11. 13 is an image processing section, and 14 is a data processing section. Based on the image processing data from the image processing section 13 and the azimuth data from the rotation device 12, the data processing section 14 causes the rotation device 12 to alternately move and stop the field of view of the infrared camera 11 within the set area. Control the drive intermittently.

また、画像処理部13は赤外線カメラ11の視野の移動
停止期間でのみ赤外線カメラ11の出力赤外線映像信号
を取り込んで画像処理を行ない、監視対象における常温
帯の異常検出を行なうと共にデータ処理部14へ画像処
理データを送出する。
Further, the image processing unit 13 captures the output infrared image signal of the infrared camera 11 only during the period when the field of view of the infrared camera 11 is stopped moving, performs image processing, detects abnormality in the normal temperature zone in the monitored object, and sends it to the data processing unit 14. Send image processing data.

第2A図は請求項2記載の第2発明の原理説明図を示す
。第2発明は第1発明における画像処理部13の処理に
特徴があり、第2A図に示す如く、基準画像取込みS+
、入力画像取込みItを行ない、それらを画像処理しく
IP+)、その画像処理結果を判定して(DPE>、異
常と判定された時には監視対象の温度重心データTC+
を保持するという一連の処理を、一定時間毎に複数回(
0回〉行ない、複数回の演算処理により得られた温度重
心の移動算出判定処理Mを行なう。
FIG. 2A shows a diagram illustrating the principle of the second invention according to claim 2. The second invention is characterized by the processing of the image processing unit 13 in the first invention, and as shown in FIG. 2A, the reference image capture S+
, import the input images, process them (IP+), judge the image processing results (DPE>, and if it is determined to be abnormal, calculate the temperature center of gravity data of the monitored object TC+).
A series of processes to hold the data are carried out multiple times at regular intervals (
0 times>, and performs a process M for calculating and determining the movement of the temperature center of gravity obtained through a plurality of calculation processes.

次に請求項3記載の第3発明について説明するに、第3
A図は第1発明における画像処理部13の処理と、それ
に基づくデータ処理部14の旋回装置12の駆動−制御
に特徴があり、第3A図は第3発明の画像処理部13の
処理を説明するフローチャートである。第3A図におい
て、まず前記第2発明による温度重心の移動算出を行な
い(ステップ31)、その結果に基づいて移動方向の予
測を行ない(ステップ32)、また温度重心のモニタ画
面上の移動速度予測を移動算出結果による移動距離と算
出時間間隔とから算出しくステップ33)、更に移動方
向の予測データと移動速度予測データを出力する(ステ
ップ34)。そして、これらの予測データに基づいてデ
ータ処理部14は旋回装置12を駆動11mする。
Next, to explain the third invention according to claim 3, the third invention
Fig. A is characterized by the processing of the image processing section 13 in the first invention and the drive-control of the rotation device 12 of the data processing section 14 based on the processing, and Fig. 3A explains the processing of the image processing section 13 of the third invention. This is a flowchart. In FIG. 3A, first, the movement of the temperature center of gravity according to the second invention is calculated (step 31), the movement direction is predicted based on the result (step 32), and the movement speed of the temperature center of gravity is predicted on the monitor screen. is calculated from the movement distance and calculated time interval based on the movement calculation result (step 33), and further outputs movement direction prediction data and movement speed prediction data (step 34). Then, based on these predicted data, the data processing unit 14 drives the swing device 12 by 11 m.

〔作用〕[Effect]

まず、第1発明の作用について説明する。旋回装置12
はデータ処理部14からの第1B図(A)に示す制御信
号により、駆動制御されて第1B図(B)に模式的に示
す如く移動停止(静止〉と移動(視野旋回)とを交互に
繰り返す一方、旋回位置を示す方位データを第1B図(
C)にD+。
First, the operation of the first invention will be explained. Swivel device 12
is driven and controlled by the control signal shown in FIG. 1B (A) from the data processing unit 14, and alternately stops moving (still) and moves (swivels the field of view) as schematically shown in FIG. 1B (B). While repeating, the azimuth data indicating the turning position is shown in Figure 1B (
D+ for C).

D2.・−・、DT+で示す如く発生してデータ処理部
14へ供給する。また、画像処理部13は第1B図(D
)に模式的に示す如く、赤外線カメラ11の視野移動停
止期間中のみ、入力画像(赤外線映像信号)を取込み、
判定処理を行なう。データ処理部14は画像処理部13
からの各種演算データで判定処理を行ない、処理終了後
、旋回装置12へ次の監視視野への旋回を指示する。
D2. ... and DT+ are generated and supplied to the data processing section 14. The image processing unit 13 also operates as shown in FIG. 1B (D
), the input image (infrared video signal) is captured only during the period when the field of view of the infrared camera 11 is stopped;
Perform judgment processing. The data processing section 14 is the image processing section 13
After the processing is completed, the turning device 12 is instructed to turn to the next monitoring field of view.

このように、第1発明では第1A図に15で示す監視エ
リアを広域化することができ、また視野移動停止時に画
像処理を行ない、その視野の画像処理後に次の視野へ移
動し、移動停止後再び画像処理を行なうようにしている
ため、画像処理に差分検出が行なえる。
In this way, in the first invention, it is possible to widen the monitoring area shown by 15 in FIG. Since image processing is performed again afterwards, difference detection can be performed during image processing.

次に、第2発明の作用について説明する。第2発明は特
に設備異常における異常予知検出に適用して好適である
。設備異常における異常予知検出では、監視対象の背景
温度が一般背景温度であり、監視対象の異常予知温度レ
ベルが正常温度と大差がなく、僅かな温度変化の検出が
必要であり、また異常予知温度レベルの絶対値は背li
I温度と同一温度帯、すなわち、常瀉帯であるという温
度特徴を有している。また、その検出可能な要素は差分
検出による■温度差(変化温度値又は絶対温度値)と■
サイズ(変化画素数)の2要素である。
Next, the operation of the second invention will be explained. The second invention is particularly suitable for application to abnormality prediction detection in equipment abnormalities. In abnormality predictive detection for equipment abnormalities, the background temperature of the monitored target is the general background temperature, the abnormality predictive temperature level of the monitored target is not much different from the normal temperature, it is necessary to detect a slight temperature change, and the abnormality predictive temperature level is not much different from the normal temperature. The absolute value of the level is
It has a temperature characteristic of being in the same temperature range as the I temperature, that is, a constant temperature range. In addition, the detectable elements are ■temperature difference (changed temperature value or absolute temperature value) and ■
There are two elements: size (number of pixels changed).

従って、例えば監視視野内に設煽の異常予知と同一温度
帯で同一サイズ帯にある移動体(例えば侵入車両、小動
物その他)があると、検出要素の関係から両者の区分け
ができない。
Therefore, for example, if there is a moving object (for example, an intruding vehicle, small animal, etc.) in the same temperature range and same size range as the predicted abnormality of the installation within the monitoring field of view, it is impossible to distinguish between the two due to the relationship of the detection elements.

そこで、第2発明では■設備異常の発生位置(温度重心
)は、ある短時間内には移動しない、■移動体侵入のと
きには、設備が正常な場合には温度重心が移動する、の
以上2点に着目して両者の区分けを行なうものである。
Therefore, in the second invention, (1) the location of occurrence of equipment abnormality (temperature center of gravity) does not move within a certain short time, and (2) when a moving object invades, the temperature center of gravity moves if the equipment is normal. The purpose is to distinguish between the two by focusing on these points.

すなわち、第2発明では入力画像との差分演算等の一連
の画像処理を行ない(第2A図のIh >、この第1回
処理で判定処理結果が異常を示した場合、その温度重心
データを保持する(第2A図のTC+ )。従って、監
視対象が第2B図(A)。
That is, in the second invention, a series of image processing such as difference calculation with the input image is performed (Ih in Fig. 2A), and if the judgment processing result shows an abnormality in this first processing, the temperature center of gravity data is retained. (TC+ in Fig. 2A).Therefore, the monitoring target is Fig. 2B (A).

(B)に示す設!(例えば変電所のトランスなど)21
であるものとすると、第1回処理で第2B図(A)の場
合は温度重心22−1の座標データが保持され、第2B
図(B)の場合は左上の位置24−1にある侵入車両(
すなわち、温度重心)の座標データが保持される。
The settings shown in (B)! (For example, transformers in substations, etc.) 21
Assuming that, in the case of Fig. 2B (A) in the first processing, the coordinate data of the temperature center of gravity 22-1 is held, and
In the case of Figure (B), the intruding vehicle (
In other words, the coordinate data of the center of gravity (temperature center of gravity) is held.

以下、上記と同様の一連の画像処理が繰り返され、第0
回処理で第2B論(A〉の場合は温度重心22−nの座
標データが保持され、第2B図(B)の場合は温度重心
24−nの座標データが保持される。しかる後に、第2
発明では温度重心の移動算出判定処理(第2A図のM)
の結果、第2B図(A)の場合は温度重心のサイズ変化
はあるものの、位置は23で示す位置に静止していると
の結果が得られる。これに対し、第2B図(B)の場合
は温度重心が25で示す位置から26で示す位置に移動
しているとの結果が得られる。従って、温度重心の座標
移動が無い第2B図(A)の場合は設備異常と判定し、
温度重心の座標移動のある第2B図(B)の場合は移動
体の侵入であり、設備異常でないと判定する。
Thereafter, a series of image processing similar to the above is repeated, and the 0th image processing is repeated.
In the second process, the coordinate data of the temperature center of gravity 22-n is held in the case of 2B theory (A>), and the coordinate data of the temperature center of gravity 24-n is held in the case of FIG. 2B (B). 2
In the invention, the movement calculation and determination process of the temperature center of gravity (M in Figure 2A)
As a result, in the case of FIG. 2B (A), although there is a change in the size of the temperature center of gravity, the result is that the position remains stationary at the position indicated by 23. On the other hand, in the case of FIG. 2B (B), the result is that the temperature center of gravity has moved from the position indicated by 25 to the position indicated by 26. Therefore, in the case of Fig. 2B (A) where there is no coordinate movement of the temperature center of gravity, it is determined that the equipment is abnormal.
In the case of FIG. 2B (B) in which there is a coordinate movement of the temperature center of gravity, it is determined that there is an intrusion of a moving object and that there is no equipment abnormality.

次に第3発明の作用について説明する。第3発明では前
記温度重心の移動算出を複数回繰り返した後、温度重心
の移動方向と移動速度とを夫々算出する。これにより、
例えば第3B図に示す如くモニタ画面上で第1回の移動
算出により移動体の温度重心が36−1にあり、第n図
の移動算出で36−nの位置にあるものとすると、温度
重心の次の移動位置を、算出した移動方向予測データと
移動速度予測データとから第38図の36− (n+1
)の位置と予測し、次にその予測位1136−(n+1
)とモニタ画面の中心位1137との差分座標距離を算
出し、データ処理部14から前記した移動方向予測デー
タと移動速度予測データとを利用して実視野旋回角変換
を行ない、旋回装置12を1illlBする。以後、上
記の動作が繰り返される。
Next, the operation of the third invention will be explained. In the third invention, after repeating the movement calculation of the temperature center of gravity a plurality of times, the movement direction and movement speed of the temperature center of gravity are respectively calculated. This results in
For example, as shown in Figure 3B, if the temperature center of gravity of the moving body is located at 36-1 in the first movement calculation on the monitor screen, and it is located at 36-n in the movement calculation in Figure n, then the temperature center of gravity is The next moving position of 36- (n+1
), and then the predicted position 1136-(n+1
) and the center position 1137 of the monitor screen, and the data processing unit 14 converts the actual visual field turning angle using the above-mentioned movement direction prediction data and movement speed prediction data, and turns the rotation device 12. 1illllB. Thereafter, the above operation is repeated.

〔実施例〕〔Example〕

第4図は本発明の一実施例のハード構成図を示す。同図
中、第1A図と同一構成部分には同一符号を付し、その
説明を省略する。第4図において、111〜11にはに
台の赤外線カメラで、各々の出力赤外線映像信号はコン
トローラ41+〜41K、伝送系421〜42Kを別々
に経由してビデオスイッチャ43に共通に入力される。
FIG. 4 shows a hardware configuration diagram of an embodiment of the present invention. In the figure, the same components as in FIG. 1A are denoted by the same reference numerals, and the explanation thereof will be omitted. In FIG. 4, there are two infrared cameras 111 to 11, and their output infrared video signals are commonly input to a video switcher 43 via controllers 41+ to 41K and transmission systems 421 to 42K separately.

ビデオスイッチャ43は赤外線カメラ11+〜11Kか
らのにチャンネルの赤外線映像信号を順次巡回的に切換
えて1チヤンネルずつ選択して画像処理部13へ供給す
ると共にモニタ装置!44へ供給して画像表示させる。
The video switcher 43 sequentially and cyclically switches the infrared video signals of the channels from the infrared cameras 11+ to 11K, selects each channel one by one, and supplies the selected channels to the image processing unit 13, as well as a monitor device! 44 for image display.

画像処理部13は常温帯の異常検出監視に必要な画像処
理を行ない、得られたデータをデータ処理部14へ供給
する。データ処理部14は旋回装置操作卓45からの制
御/管理情報に基づき、伝送系42+〜42にへ旋回M
ail信号を出力して、赤外線カメラ111〜11にの
各々の視野を設定監視エリア15+〜15m内で移動及
び移動停止を交互に繰り返すよう制御すると共に、異常
検出時は警報袋W!46によりアラームを発生させる。
The image processing section 13 performs image processing necessary for abnormality detection monitoring in the normal temperature zone, and supplies the obtained data to the data processing section 14. The data processing unit 14 controls the transmission system 42+ to 42 to rotate M based on the control/management information from the swivel device operation console 45.
The ail signal is output to control the field of view of each of the infrared cameras 111 to 11 to alternately repeat movement and stop within the monitoring area 15+ to 15 m, and when an abnormality is detected, an alarm bag W! 46 to generate an alarm.

上記の赤外線カメラ111〜IIKの各々は第5図に示
す如く、監視エリア15をn分割した分割監視エリア0
1〜θπのうち一つの分割監視エリアの視野をもってお
り、上記の旋回装N12(121〜12K)の駆動制御
により、成る時点では分割監視エリアθ1内の監視を行
ない、画像処理後、移動されて次の分割監視エリアθ2
内の監視を行ない、以下、同様にしてθπまでの各分!
IJ監視エリア個々の監視を順次行なう。θnの画像処
理後はθ。−1へ移動するか、又は最初のθ1へ移動す
る。なお、赤外線カメラ151〜15にの移動方向は水
平方向に限らず、垂直方向等第三次元内の任意の方向に
移動可能である。
As shown in FIG.
It has a field of view of one of the divided monitoring areas 1 to θπ, and by the drive control of the above-mentioned swivel device N12 (121 to 12K), it monitors the divided monitoring area θ1 at the time of formation, and after image processing, it is moved. Next divided monitoring area θ2
Then, do the same for each minute up to θπ!
Monitoring of each IJ monitoring area is performed sequentially. After image processing of θn is θ. -1 or to the first θ1. Note that the movement direction of the infrared cameras 151 to 15 is not limited to the horizontal direction, but can be moved in any direction within the third dimension, such as the vertical direction.

第6図はデータ処理部14の一実施例の構成図を示す。FIG. 6 shows a configuration diagram of one embodiment of the data processing section 14. As shown in FIG.

同図中、141はデータ処理回路で中央処理装置(CP
LJ)等より構成されており、設備監視条件テーブル1
42、侵入者監視テーブル143を参照できるようにさ
れており、またシステム制御/管理ソフトウェア144
によって所定の演算処理動作を行なう。また、データ処
理回路141はビデオスイッチャ制御用インタフェース
145、旋回装置制御用インタフェース146、警報装
置制御用インタフェース147を介してビデオスイッチ
ャ43、旋回装置f 121〜12K、警報装置46の
制御信号を送出する。
In the same figure, 141 is a data processing circuit and a central processing unit (CP).
LJ), etc., and equipment monitoring condition table 1
42, the intruder monitoring table 143 can be referenced, and the system control/management software 144
A predetermined arithmetic processing operation is performed. Further, the data processing circuit 141 sends control signals for the video switcher 43, the swivel devices f121 to 12K, and the alarm device 46 via a video switcher control interface 145, a swivel device control interface 146, and an alarm device control interface 147. .

更に、データ処理回路141はデイスプレィ 148、
プリンタ 149及びファイル150に接続されており
、アラーム情報の表示、印刷、ファイル150への所要
データの格納及び読み出しなどを行なう。
Further, the data processing circuit 141 includes a display 148,
It is connected to a printer 149 and a file 150, and displays and prints alarm information, stores and reads required data in the file 150, and so on.

次に本発明の要部の動作について第7図と共に説明する
。同図(A>は赤外線カメラ11+〜11Kが1台(す
なわちに−1)で、監視条件が1つの場合の例で、第5
図に示した分割監視エリアθlの視野停止状態で画像デ
ータの処理がn回行なわれた後、データ処理部14から
視野を分割監視エリアθ1からθ2へ移動させるための
視野旋回コマンドが送出されるときに、現在の位置(分
割監視エリア)θ1を示す方位データと、現在視野停止
(静止〉状態にあることを示す静止確認データとが送出
され、これに基づき旋回装置12は分割監視エリアθ2
へ移動した後、そこで停止する。以下、上記と同様の動
作が繰り返され、最後の分割監視エリアθ■での画像デ
ータ処理後は最初の分割監視エリアθ1へ移動される。
Next, the operation of the main parts of the present invention will be explained with reference to FIG. The figure (A> is an example where there is one infrared camera 11+ to 11K (i.e. -1) and one monitoring condition.
After the image data is processed n times with the visual field stopped in the divided monitoring area θl shown in the figure, a visual field rotation command is sent from the data processing unit 14 to move the visual field from the divided monitoring area θ1 to θ2. At this time, azimuth data indicating the current position (divided monitoring area) θ1 and stationary confirmation data indicating that the field of view is currently in a stopped (stationary) state are sent, and based on this, the swivel device 12 moves to the divided monitoring area θ2.
After moving to, it stops there. Thereafter, operations similar to those described above are repeated, and after image data processing in the last divided monitoring area θ■, the image data is moved to the first divided monitoring area θ1.

第7図(B)は第4図に示した赤外線カメラが11+〜
11Kに示すに台(このときのKは2以上の整数ンのと
きの要部の動作説明図で、まず各赤外線カメラ11+〜
11には夫々分割監視エリアθ1で静止した状態とされ
、ビデオスイッチャ43を介して赤外線カメラ111か
らの赤外線映像信号だけが取り出され、画像処理部13
で監視条件数(複数処理を含む)MTIのすべてについ
てデータ処理が行なわれると、次にビデオスイッチャ4
3が赤外線カメラ112がらの赤外Im映像信号だけを
出力するようにデータ処理部14の制御信号により切換
1l111される。
Figure 7 (B) shows that the infrared camera shown in Figure 4 is 11+~
11K is an explanatory diagram of the operation of the main parts when K is an integer greater than or equal to 2. First, each infrared camera 11+~
11 are in a stationary state in the divided monitoring area θ1, and only the infrared video signal from the infrared camera 111 is taken out via the video switcher 43, and the image processing unit 13
When data processing is performed for all of the monitoring condition number (including multiple processing) MTI, the video switcher 4
3 is switched 1l111 by a control signal from the data processing section 14 so that only the infrared Im video signal from the infrared camera 112 is output.

これにより、今度は赤外線カメラ112がらの赤外線映
像信号に基づいてデータ処理が行なわれ、以下、上記と
同様にして最後に赤外線カメラ11Kからの赤外線映像
信号に基づくデータ処理が行なわれる。このデータ処理
が終ると今度はデータ処理部14から視野を分割監視エ
リアθ1がらθ2へ旋回させるためのIIIt[lが行
なわれ、すべての赤外線カメラ111〜11Kが夫々分
割監視エリアθ2を監視エリアとする位置に移動された
後停止状態とされる。この停止状態で再びビデオスイッ
チャ43が切換制御されて赤外線カメラ111から11
Kまで順番にその出カ赤外I映*信号を画像処理部13
に入力してデータ処理を行なわせる。
As a result, data processing is now performed based on the infrared video signal from the infrared camera 112, and finally data processing is performed based on the infrared video signal from the infrared camera 11K in the same manner as described above. When this data processing is completed, the data processing unit 14 performs IIIt[l to rotate the field of view from the divided monitoring area θ1 to θ2, and all the infrared cameras 111 to 11K respectively set the divided monitoring area θ2 as the monitoring area. After being moved to the desired position, it is stopped. In this stopped state, the video switcher 43 is again controlled to switch between the infrared cameras 111 and 11.
The output infrared I* signal is sent to the image processing unit 13 in order up to K.
input the data to perform data processing.

以下、上記と同様にしてすべての分割監視エリア θ1
〜θnの夫々について、赤外線カメラ111〜11にの
各々の画像データに基づく監視条件数MT+の画1m/
データ処理が行なわれ、それが終了すると、最初の赤外
線カメラ111の最初の分割監視エリアθ1の視野での
処理に戻る。
Hereafter, all divided monitoring areas θ1 are set in the same manner as above.
For each of ~θn, the number of monitoring conditions MT+ images 1m/
Data processing is performed, and when it is completed, processing returns to the field of view of the first divided monitoring area θ1 of the first infrared camera 111.

次に画像処理部13とデータ処理部14の処理の一実施
例について第8図と共に説明する。本実施例は請求項2
記載の発明に関する実施例で、まず画像処理部13で入
力赤外線映像信号を一定時間(フレーム時間)間隔でサ
ンプリングするフレームサンプリング(「)を行ない(
ステップ81−1〉、これにより得られた画像データ(
温度情報)に対してオフセット加算処理(0)が行なわ
れる(ステップ82−1)。このオフセット加算処理は
今回の温度情報に所定温度をオフセット値として加算す
る処理である。
Next, an example of processing by the image processing section 13 and the data processing section 14 will be described with reference to FIG. 8. This embodiment is claim 2
In the embodiment of the invention described, first, the image processing unit 13 performs frame sampling (") in which the input infrared video signal is sampled at fixed time (frame time) intervals.
Step 81-1>, the image data obtained thereby (
Offset addition processing (0) is performed on the temperature information) (step 82-1). This offset addition process is a process of adding a predetermined temperature to the current temperature information as an offset value.

次に差分演算処理(D)が行なわれ(ステップ83−1
)、オフセット加算された温度情報から前回サンプリン
グされた温度情報を減算する。この差分演算結果はオフ
セット値加算により必ずオフセット加算後の温度情報の
値の方が前回の温度情報よりも大となるようにされてい
るため、常に正の値が得られ、処理演算をやり易くして
いる。
Next, difference calculation processing (D) is performed (step 83-1
), subtract the previously sampled temperature information from the offset-added temperature information. This difference calculation result is made so that the value of the temperature information after adding the offset is always larger than the previous temperature information by adding the offset value, so a positive value is always obtained and processing calculations are made easier. are doing.

次に2値化処理(B)が行なわれる(ステップ84−1
 >。この2値化処理は上記の差分演算結果に対して所
定温度以上の領域は異常温度発生領域とし、所定温度未
満の領域は正常温度領域とする処理である。次に、AN
D演算(A)が行なわれ(ステップ85−1)、その後
ヒストグラム演算(ロ)が行なわれる(ステップ86−
1)。このヒストグラム演算は温度を横軸、その温度を
示すドツト数を縦軸とするヒストグラムを作成する演算
処理である。
Next, binarization processing (B) is performed (step 84-1
>. This binarization process is a process in which, based on the difference calculation result, an area where the temperature is higher than a predetermined temperature is determined to be an abnormal temperature area, and an area where the temperature is lower than the predetermined temperature is determined to be a normal temperature area. Next, A.N.
D calculation (A) is performed (step 85-1), and then histogram calculation (b) is performed (step 86-1).
1). This histogram calculation is a calculation process that creates a histogram with temperature as the horizontal axis and the number of dots representing the temperature as the vertical axis.

次に判定処理を行ないくステップ87−1)、異常温度
発生領域のドツト数が所定数以上のとき異常あり、所定
数未満のとき異常なしと判定する。
Next, a determination process is performed (step 87-1), in which it is determined that there is an abnormality when the number of dots in the abnormal temperature region is greater than or equal to a predetermined number, and that there is no abnormality when it is less than a predetermined number.

異常ありと判定されたときはステップ85−1に戻り、
AND演算結果データで投影演算(P)を行なう(ステ
ップ89−1 )一方、ステップ88でステップ81−
1〜86−1の一連の処理を複数回実行する。上記の投
影演算は異常温度発生領域の各ドツトのX座標とX座標
の各々につい(度数分布を求めることにより、最大のX
座標とX座標の位置を温度重心の座標データとする処理
である。これにより得られた温度重心の座標データは前
記したデータ処理部14内のファイル150に格納され
る(ステップ90)。
When it is determined that there is an abnormality, the process returns to step 85-1.
Projection calculation (P) is performed using the AND calculation result data (step 89-1), while in step 88, step 81-
A series of processes 1 to 86-1 are executed multiple times. The above projection calculation is performed for each of the X coordinates and X coordinates of each dot in the region where abnormal temperature occurs
This is a process in which the coordinates and the X coordinate position are used as coordinate data of the temperature center of gravity. The coordinate data of the temperature center of gravity thus obtained is stored in the file 150 in the data processing section 14 (step 90).

上記と同様にしてn回の処理が行なわれ、ステップ89
−nで得られた温度重心座標データも同様にしてファイ
ル150に格納されろくステップ90)。
Processing is performed n times in the same manner as above, and step 89
The temperature barycentric coordinate data obtained at -n is also stored in the file 150 in the same manner (step 90).

次にファイル150から読み出した複数の温度重心の座
標データを比較して移動算出(M)を行ない(ステップ
91)、移動なしのときは設備異常と判定しくステップ
92)、設備異常のアラーム(A L M )を発生し
、他方、移動ありのときは設備異常でなく移動は侵入者
等の他の要因による異常と判定しくステップ93〉、ア
ラーム(A LM)を発生する。
Next, a movement calculation (M) is performed by comparing the coordinate data of a plurality of temperature centroids read from the file 150 (step 91), and if there is no movement, it is determined that there is an equipment abnormality (step 92), and an equipment abnormality alarm (A On the other hand, if there is movement, it is determined that there is no equipment abnormality and the movement is caused by another factor such as an intruder, and an alarm (ALM) is generated in step 93>.

なお、複数目処lJ時の一連の処理実行は第8図Mn’
 で示す如くヒストグラム演算Hを省略してもよい。
In addition, the series of processing execution when multiple targets lJ is shown in Fig. 8 Mn'
The histogram calculation H may be omitted as shown in FIG.

次に画像処理部13とデータ処理部14の処理の他の実
施例について第9図と共に説明する。本実施例は請求項
3記載の発明に関する実施例で、第8図と同一処理ステ
ップには同一符号を付し、その説明を省略する。第9図
において、ヒストグラム演算86−1の後に投影演算を
行ないくステップ1oo) 、その演算結果がステップ
87−1で異常と判定されたときはステップ100の投
影演算により温度重心算出を行ないくステップ89−1
)、ファイル150に格納する(ステップ102) −
万、更に複数回処理実行(ステップ88)で一連の再処
理を行なう。少なくとも3回以上の処理の温度重心座標
移動算出(M)で、3点の重心移動座標から座標511
11方向を予測算出すると同時に、3回の処理時lWl
rM隔と座標移動距離とから座標移動速度予測算出を行
なう(ステップ103) 。
Next, another embodiment of the processing by the image processing section 13 and the data processing section 14 will be described with reference to FIG. 9. This embodiment is an embodiment related to the invention set forth in claim 3, and the same processing steps as in FIG. 8 are given the same reference numerals, and their explanations will be omitted. In FIG. 9, a projection calculation is performed after the histogram calculation 86-1 (step 1oo), and when the calculation result is determined to be abnormal in step 87-1, a temperature center of gravity is calculated by the projection calculation in step 100 (step 1oo). 89-1
), stored in file 150 (step 102) -
In addition, a series of reprocessing is performed by executing the process multiple times (step 88). Coordinate 511 from the center of gravity movement coordinates of three points in temperature barycenter coordinate movement calculation (M) of at least three or more processes.
At the same time as predicting and calculating 11 directions, lWl during 3 processing
A predicted coordinate movement speed is calculated from the rM interval and the coordinate movement distance (step 103).

次に最終処理時の重心′座標と処理画面中心軸との座標
距離差分算出<C>を行ないくステップ104) 、こ
のデータと、前記の移動方向/速度の予測データとを座
標距離/カメラ視野角換算テーブル(T1)を利用して
、旋回装置の実視野旋回角算出(θ〉を行なって(ステ
ップ105) 、旋回制御データ作成(CD)を行ない
くステップ106)、データ送出を行なう。
Next, calculate the coordinate distance difference <C> between the center of gravity' coordinate at the time of final processing and the center axis of the processing screen (step 104), and use this data and the predicted moving direction/velocity data as the coordinate distance/camera field of view. Using the angle conversion table (T1), the actual visual field turning angle (θ>) of the turning device is calculated (step 105), turning control data is created (CD) (step 106), and the data is sent.

複数回処理で異常の場合(ステップ87−2)、侵入異
常のアラーム発生を行なう(ステップ108)と共に、
ステップ103の結果と座標/実地図方位変換テーブル
(T2〉を利用して浸入移動方向表示(DP)を行なう
(ステップ109)。以後の追尾は処理継続実行(n)
の繰返し処理を行なう(ステップ110)ことで追尾の
続行を行なう。
If an abnormality occurs after processing multiple times (step 87-2), an alarm for intrusion abnormality is generated (step 108), and
The intrusion movement direction (DP) is displayed using the result of step 103 and the coordinate/actual map direction conversion table (T2>) (step 109). Subsequent tracking is performed by continuing processing (n)
Tracking is continued by repeating the process (step 110).

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、基本的には1台の赤外線
カメラのみを使用して広域エリアの差分検出を用いた監
視処理ができるため、従来に比べて安価かつ簡単な構成
で広域エリアにおける常温帯の異常検出(例えば、■設
備監視における異常予知検出、■移動体監視における人
間、車両、小動物等の背!!温度と同一温度帯にある移
動体の検出)ができる。また、複数回の演算処理により
得られた温度重心座標データから温度重心の移動算出判
定処理を行なうようにしているため、設置i監視におけ
る異常予知検出を従来に比べ高精度で行なうことができ
る。更に、移動体のモニタ画面上での移動方向及び移動
速度を予測して赤外線カメラの視野の移動111Ill
をしているため、侵入者等の移動体を自動追尾すること
ができる。
As described above, according to the present invention, it is basically possible to perform surveillance processing using difference detection over a wide area using only one infrared camera, so it is possible to monitor a wide area with a cheaper and simpler configuration than before. It is possible to detect abnormalities in the normal temperature range (for example, (1) abnormality prediction detection in equipment monitoring, (2) detection of moving objects in the same temperature range as the backs of humans, vehicles, small animals, etc. in moving object monitoring). Furthermore, since the movement calculation and determination process of the temperature center of gravity is performed from the temperature center of gravity coordinate data obtained through a plurality of calculation processes, abnormality prediction and detection in installation i monitoring can be performed with higher precision than in the past. Furthermore, the field of view of the infrared camera is moved by predicting the moving direction and moving speed of the moving object on the monitor screen.
Because of this, it is possible to automatically track moving objects such as intruders.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図は第1発明の原理構成図、 第1B図は第1発明の作用説明図、 第2A図は第2発明の原理説明図、 第2B図は第2発明の作用説明図、 第3A図は第3発明の要部の原理説明用フローチャート
、 第3B図は第3発明の作用説明図、 第4図は本発明の一実施例のハード構成図、第5図は監
視エリアと視野旋回説明図、第6図はデータ処理部の一
実施例の構成図、第7図は本発明の要部の動作説明図、 第8図及び第9図は夫々本発明の各実施例の処理フロー
チャート、 第10図及び第11図は夫々従来の各個の概略構成図で
ある。 図において、 11.11+〜11には赤外線カメラ、12.12+〜
12には旋回装置、 13は画像処理部、 14はデータ処理部、 15.15+〜15には監視エリア、 21は設備、 43はビデオスイッチャ を示す。 #lt川/川原川原7犀 理隋A図 茶ノ1宅ぢ明ジ)41F7fP自≧)イrgbピ1第1
B図 7V−44,すシブリンク°。 第2A図 φ12涜シ0内A′F:田官1戸耳11ffi第2B図 第3A図 #3免糟の作¥P4書を戸耳臼 第3B図 tdn vvvLr117 とA憂ワl倉な艷J!i衾巳B閂c
第5図 ユ( 奎搭圃/)/1色の尖城例n旬里フローチャート第10
Figure 1A is a diagram explaining the principle of the first invention, Figure 1B is a diagram explaining the operation of the first invention, Figure 2A is a diagram explaining the principle of the second invention, Figure 2B is a diagram explaining the operation of the second invention, and Figure 3A is a diagram explaining the principle of the second invention. The figure is a flowchart for explaining the principle of the main part of the third invention, Figure 3B is an explanatory diagram of the operation of the third invention, Figure 4 is a hardware configuration diagram of an embodiment of the present invention, and Figure 5 is a monitoring area and visual field rotation. 6 is a configuration diagram of one embodiment of the data processing section, FIG. 7 is an explanatory diagram of the operation of the main part of the present invention, and FIGS. 8 and 9 are processing flowcharts of each embodiment of the present invention, respectively. , FIG. 10 and FIG. 11 are respective schematic configuration diagrams of conventional devices. In the figure, 11.11+~11 is an infrared camera, 12.12+~
12 is a rotating device, 13 is an image processing unit, 14 is a data processing unit, 15. 15+ to 15 are monitoring areas, 21 is equipment, and 43 is a video switcher. #ltkawa/Kawahara Kawahara 7 Sai Ri Sui A Zuchano 1 house jimingji) 41F7fPself ≧) Irgb Pi 1 1st
BFigure 7V-44, Susi Brink °. Fig. 2A φ12 sacrificial 0 inside A'F: Government official 1 door ear 11ffi Fig. 2B Fig. 3A #3 The work of the owner P4 book door ear mortar Fig. 3B tdn vvvLr117 J! i Tsumi B key c
Figure 5 Yu (Kai Toba /) / 1 color Senjo example n Junri flowchart No. 10
figure

Claims (3)

【特許請求の範囲】[Claims] (1)監視対象を撮像する赤外線カメラ(11)と、 該赤外線カメラ(11)の視野を移動する旋回装置(1
2)と、 画像処理データと該旋回装置(12)からの方位データ
とに基づき、設定したエリア内で該赤外線カメラ(11
)の視野の移動と移動停止とが交互に繰り返すよう該旋
回装置(12)を間欠的に駆動制御するデータ処理部(
14)と、 該赤外線カメラ(11)の視野の移動停止期間内でのみ
該赤外線カメラ(11)の出力赤外線映像信号を取り込
んで画像処理を行ない、前記監視対象における常温帯の
異常検出を行なうと共に前記データ処理部(14)へ前
記画像処理データを送出する画像処理部(13)と、 を有することを特徴とする赤外線監視システム。
(1) An infrared camera (11) that images a monitoring target, and a rotation device (1) that moves the field of view of the infrared camera (11).
2), and the infrared camera (11) within the set area based on the image processing data and the azimuth data from the rotation device (12).
) a data processing unit (
14), Capturing the output infrared image signal of the infrared camera (11) only during the period when the visual field of the infrared camera (11) is stopped moving, and performing image processing to detect abnormalities in the normal temperature zone in the monitoring target; An infrared monitoring system comprising: an image processing section (13) that sends the image processing data to the data processing section (14).
(2)前記画像処理部(13)は、画像処理結果が異常
と判定された時には前記監視対象の温度重心座標データ
を保持する一連の演算処理を、一定時間毎に複数回行な
い、該複数回の演算処理により得られた温度重心座標デ
ータ(TC_1〜TCT_n)から温度重心の移動算出
判定処理(M)を行なうことを特徴とする請求項1記載
の赤外線監視システム。
(2) When the image processing result is determined to be abnormal, the image processing unit (13) performs a series of arithmetic processing for holding the temperature barycentric coordinate data of the monitoring target multiple times at regular intervals, and 2. The infrared monitoring system according to claim 1, wherein the temperature gravity center movement calculation determination process (M) is performed from the temperature gravity center coordinate data (TC_1 to TCT_n) obtained by the calculation process.
(3)前記画像処理部(13)は、請求項2記載の温度
重心の移動算出結果に基づき移動方向の予測データを算
出し(32)、かつ、温度重心のモニタ画面上の移動速
度予測データを該移動算出結果による移動距離と算出時
間間隔とから算出し(33)、前記データ処理部(14
)は該画像処理部(13)からの該移動方向予測データ
及び該移動速度予測データに基づき前記旋回装置(12
)を駆動制御することを特徴とする赤外線監視システム
(3) The image processing unit (13) calculates predicted data of the movement direction based on the movement calculation result of the temperature center of gravity according to claim 2 (32), and calculates movement speed prediction data on the monitor screen of the temperature center of gravity. is calculated from the movement distance and calculation time interval based on the movement calculation result (33), and the data processing unit (14
) is based on the movement direction prediction data and the movement speed prediction data from the image processing unit (13).
) An infrared monitoring system characterized by driving and controlling.
JP2071006A 1990-03-20 1990-03-20 Infrared ray monitor system Pending JPH03270586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071006A JPH03270586A (en) 1990-03-20 1990-03-20 Infrared ray monitor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071006A JPH03270586A (en) 1990-03-20 1990-03-20 Infrared ray monitor system

Publications (1)

Publication Number Publication Date
JPH03270586A true JPH03270586A (en) 1991-12-02

Family

ID=13447989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071006A Pending JPH03270586A (en) 1990-03-20 1990-03-20 Infrared ray monitor system

Country Status (1)

Country Link
JP (1) JPH03270586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095800A (en) * 2009-10-27 2011-05-12 Nohmi Bosai Ltd Fire source probing system
CN109581131A (en) * 2019-01-22 2019-04-05 宁波市电力设计院有限公司 A kind of transformer fault detection device based on infrared imagery technique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095800A (en) * 2009-10-27 2011-05-12 Nohmi Bosai Ltd Fire source probing system
CN109581131A (en) * 2019-01-22 2019-04-05 宁波市电力设计院有限公司 A kind of transformer fault detection device based on infrared imagery technique
CN109581131B (en) * 2019-01-22 2024-01-09 宁波市电力设计院有限公司 Transformer fault detection device based on infrared imaging technology

Similar Documents

Publication Publication Date Title
US9870685B2 (en) Monitoring camera and monitoring camera control method
US7260241B2 (en) Image surveillance apparatus, image surveillance method, and image surveillance processing program
CN100531373C (en) Video frequency motion target close-up trace monitoring method based on double-camera head linkage structure
US9041800B2 (en) Confined motion detection for pan-tilt cameras employing motion detection and autonomous motion tracking
JP4100934B2 (en) Composite camera system, zoom camera control method, and zoom camera control program
US7633520B2 (en) Method and apparatus for providing a scalable multi-camera distributed video processing and visualization surveillance system
RU83675U1 (en) VIDEO MONITORING SYSTEM
JP2003259350A (en) Omnidirectional monitor control system, omnidirectional monitor control method, and omnidirectional monitor control program
JP4475164B2 (en) Monitoring system and monitoring method
KR101832274B1 (en) System for crime prevention of intelligent type by video photographing and method for acting thereof
CN100521736C (en) Camera apparatus, a camera system, and a method for controlling the camera system
Fawzi et al. Embedded real-time video surveillance system based on multi-sensor and visual tracking
KR101290782B1 (en) System and method for Multiple PTZ Camera Control Based on Intelligent Multi-Object Tracking Algorithm
KR101204870B1 (en) Surveillance camera system and method for controlling thereof
JPH09331520A (en) Automatic tracking system
JPH09130783A (en) Distributed video monitoring system
KR101989461B1 (en) Safety system and Method for Robot working environment using vision system
KR102196356B1 (en) Image surveillance system for tunnel and method thereof
JP2009301175A (en) Monitoring method
JPH03270586A (en) Infrared ray monitor system
RU83677U1 (en) VIDEO MONITORING SYSTEM
KR20120077022A (en) Wanrning system of security area using reflector
KR101445361B1 (en) Site Monitoring System
JP2006129218A (en) Monitoring system
RU83676U1 (en) VIDEO MONITORING SYSTEM