JPH03270115A - Manufacture of optomagnetic recording medium - Google Patents

Manufacture of optomagnetic recording medium

Info

Publication number
JPH03270115A
JPH03270115A JP7039190A JP7039190A JPH03270115A JP H03270115 A JPH03270115 A JP H03270115A JP 7039190 A JP7039190 A JP 7039190A JP 7039190 A JP7039190 A JP 7039190A JP H03270115 A JPH03270115 A JP H03270115A
Authority
JP
Japan
Prior art keywords
magnetic film
magnetic
layer
film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7039190A
Other languages
Japanese (ja)
Inventor
Koji Ono
浩司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7039190A priority Critical patent/JPH03270115A/en
Publication of JPH03270115A publication Critical patent/JPH03270115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To manufacture a magnetic film of an optomagnetic recording medium adapted for an overlight having stable magnetic characteristic with one target by forming the film by a sputtering method while applying high frequency power to a substrate supporting base. CONSTITUTION:A protective film 2 made of dielectric such as SiN is formed on a transparent substrate 1 made of polycarbonate resin, etc. The amplitude of high frequency power to be applied to a substrate supporting base is altered, and a magnetic film (recording layer 3) made of rare earth element and transition metal having various relation to Curie temperature, a coercive force, a magnetic film 4 having different composition ratio from the layer 3 and different magnetic characteristic and a protective film 5 made of the dielectric are sequentially laminated by a magnetron sputtering method by applying a DC power of 150W to one target 6. The layer 3 becomes the Curie temperature or higher even in the case of emitting a light of low intensity, the magnetization of the layer 3 is oriented in the magnetization direction of the layer 4 to form a recording pit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光磁気記録媒体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a magneto-optical recording medium.

[従来の技術] 情報の消去および書き換えが可能な光磁気記録媒体は、
一般には、透明基板上に保護膜、垂直磁気異方性を有す
る磁性膜および保護膜をこの順に積層したill造を有
するか、または上記の保護膜上にさらに反射膜を積層し
た構造を有している。これらの構造を備え、記録された
情報の有無にかかわらず新たな情報を重ねて記録するこ
と(オーバーライ) (over write))が可
能な光磁気記録媒体における記録方式には、磁界変調記
録方式と光変調記録方式とがある。
[Prior Art] Magneto-optical recording media on which information can be erased and rewritten are
Generally, it has an illumination structure in which a protective film, a magnetic film having perpendicular magnetic anisotropy, and a protective film are laminated in this order on a transparent substrate, or it has a structure in which a reflective film is further laminated on the above protective film. ing. A recording method for a magneto-optical recording medium that has these structures and allows new information to be overwritten (overwrite) regardless of the presence or absence of recorded information is the magnetic field modulation recording method. and optical modulation recording method.

強度のレーザ光照射下に光磁気記録媒体に印加する磁界
を変調することによって該光磁気記録媒体にオーバーラ
イドを行うものである。磁界変調記録方式によってオー
バーライドを行うには、光磁気記録媒体の磁性膜と記録
ヘッドとの間隔が小さくなければならないので、使用す
る光磁気記録媒体は磁性膜が片面のみにある単板構造で
あることが好ましい。また記録のために印加する磁界の
強度か低くなるような磁性膜の組成にすることが好まし
い。
The magneto-optical recording medium is overridden by modulating the magnetic field applied to the magneto-optical recording medium under intense laser beam irradiation. To perform override using the magnetic field modulation recording method, the distance between the magnetic film of the magneto-optical recording medium and the recording head must be small, so the magneto-optical recording medium used has a single-plate structure with the magnetic film on only one side. It is preferable. Further, it is preferable that the composition of the magnetic film is such that the intensity of the magnetic field applied for recording is low.

光変調記録方式は、透明基板上に保護膜、磁気特性の異
なる2層の磁性膜および保護膜が順次積層されてなり、
情報を記録するために照射される勧 光の入射側の磁性膜(以下、これを補i層と称する)を
形成する材料が線光の入射側とは反対側に積層される磁
性膜(以下、これを記録層と称する)を形成する材料よ
りも室温で高い保磁力と低いキュリー温度とを有してい
る光磁気記録媒体に、初期化用の補助磁界とこれとは反
対方向の記録用磁界とを印加し、記録する情報に対応し
て照射するレーザ光の強度を変調することによってオー
バーライドを行うものである(特開昭62−17594
8号公報参照)。これを具体的に説明すると、まず初期
化用の補助磁界を印加することによって、補助層の磁化
の向きを消去方向にそろえる。この状態で消去レベルの
強度のレーザ光を照射すれば、補助層が有する磁界が記
録層に熱転写され、記録層の磁化は消去方向に向く。こ
こで、書き込みレベルの高強度の光を記録する情報に対
応して照射すれば、補助層および記録層の磁化が消失す
る。磁化が消失した磁性膜に記録用磁界を印加すれば、
記録層の磁化の向きは消去方向とは逆の記録方向になる
ので、新たな情報が記録される。
In the optical modulation recording method, a protective film, two magnetic films with different magnetic properties, and a protective film are sequentially laminated on a transparent substrate.
The material that forms the magnetic film on the incident side of the linear light that is irradiated to record information (hereinafter referred to as the supplementary i-layer) is a magnetic film that is laminated on the side opposite to the incident side of the linear light (hereinafter referred to as the supplementary i-layer). An auxiliary magnetic field for initialization and a magnetic field for recording in the opposite direction are applied to the magneto-optical recording medium, which has a higher coercive force and a lower Curie temperature at room temperature than the material forming the material (this is called the recording layer). Overriding is performed by applying a magnetic field and modulating the intensity of the irradiated laser light in accordance with the information to be recorded (Japanese Patent Laid-Open No. 62-17594).
(See Publication No. 8). To explain this specifically, first, by applying an auxiliary magnetic field for initialization, the direction of magnetization of the auxiliary layer is aligned in the erasing direction. If a laser beam with an intensity of erasing level is irradiated in this state, the magnetic field of the auxiliary layer is thermally transferred to the recording layer, and the magnetization of the recording layer is directed in the erasing direction. Here, if high-intensity light at a writing level is irradiated in accordance with the information to be recorded, the magnetization of the auxiliary layer and the recording layer disappears. If a recording magnetic field is applied to a magnetic film whose magnetization has disappeared,
Since the magnetization direction of the recording layer is in the recording direction opposite to the erasing direction, new information is recorded.

また特開昭63−64651号公報には、透明基板上に
保護膜、磁気特性の異なる3層の磁性膜および保護膜と
が順次積層されてなり、情報を記録するために照射され
る光の入射側とは反対側の磁性膜(以下、これを補助層
と称する)を形成する材料が補助層の線光の入射側に積
層される磁性膜(以下、これを記録層と称する)を形成
する材料よりも室温で低い保磁力と高いキュリー温度と
を有し、記録層の線光の入射側に積層される磁性膜(以
下、これを転写層と称する)を形成する材料が補助層を
形成する材料よりも室温で低い保磁力と高いキュリー温
度とを有している光磁気記録媒体を用いて光変調記録方
式によってオーバーライドを行うことが示される。
Furthermore, JP-A No. 63-64651 discloses a structure in which a protective film, three layers of magnetic films with different magnetic properties, and a protective film are sequentially laminated on a transparent substrate, and the light emitted to record information is The material that forms the magnetic film on the side opposite to the incident side (hereinafter referred to as the auxiliary layer) forms a magnetic film (hereinafter referred to as the recording layer) that is laminated on the side of the auxiliary layer where the linear light enters. The auxiliary layer is a material that has a lower coercive force and a higher Curie temperature at room temperature than the material that forms the magnetic film (hereinafter referred to as the transfer layer) that is laminated on the linear light incident side of the recording layer. It is shown that overriding can be performed by an optical modulation recording method using a magneto-optical recording medium that has a lower coercive force and a higher Curie temperature at room temperature than the material used to form the recording medium.

上記の2層の磁性膜はGdDyFe−GdTbFe、 
TbFeGdTbFe、 TbDyFe−GdDyFe
などの組み合わせにより積層されて形成され、上記の3
層の磁性膜はGdFeCo −GdDyFe −GdT
bFe、 GdFeCo−TbFe −GdTbFe。
The above two-layer magnetic film is made of GdDyFe-GdTbFe,
TbFeGdTbFe, TbDyFe-GdDyFe
It is laminated and formed by a combination of the above 3
The magnetic film of the layer is GdFeCo-GdDyFe-GdT
bFe, GdFeCo-TbFe-GdTbFe.

TbDyFe −GdDyFe −GdFeCoなどの
組み合わせにより積層されて形成される。また、同一の
希土類元素と遷移金属とから構成され、組成比が異なる
磁性膜か積層されることによっても、上記の2層または
3層の磁性膜か形成される。
It is formed by laminating a combination of TbDyFe-GdDyFe-GdFeCo or the like. Furthermore, the above-mentioned two-layer or three-layer magnetic film can also be formed by laminating magnetic films composed of the same rare earth element and transition metal but having different composition ratios.

[発明が解決しようとする課題] 上記の磁界変調記録方式には、磁界を高速で変調するこ
とが困難であるために高速でオーパーラ造にすることが
できないことから、記録する情報量を多くできない点な
どの欠点がある。また上記の光変調記録方式には、異な
る磁気特性を有する2層または3層の磁性膜を積層する
ために、各層の磁性膜を構成する異なる合金組成からな
る2種類もしくは3種類の合金ターゲットを用いるか、
同−合金組成からなり、かつ異なる組成比を有する2種
類もしくは3種類の合金ターゲットを用いてスパッタリ
ング法を行うか、または単金属もしくは合金からなる複
数のターゲットと複数の電極とを用い、各ターゲットに
印加する電力を調節してスパッタリング法を行う必要が
ある。
[Problems to be Solved by the Invention] The magnetic field modulation recording method described above has a problem in that it is difficult to modulate the magnetic field at high speed, so it is not possible to create an overlapping structure at high speed, and therefore it is not possible to increase the amount of information recorded. There are some drawbacks such as points. In addition, in the above-mentioned optical modulation recording method, two or three types of alloy targets with different alloy compositions are used to form the magnetic films of each layer in order to stack two or three layers of magnetic films with different magnetic properties. Do you use it?
The sputtering method is performed using two or three types of alloy targets having the same alloy composition but different composition ratios, or multiple targets made of a single metal or an alloy and multiple electrodes are used to perform the sputtering method. It is necessary to perform the sputtering method by adjusting the power applied to the sputtering method.

また、スパッタリング法により磁性膜を形成する場合に
は、IfMのターゲットを用いて底膜する枚数が多くな
るにつれて、得られる磁性膜における希土類元素と遷移
金属との組成比が徐々に変化し、これによって磁性膜が
有する磁気特性が変化するという問題がある。このため
に、磁性膜の形成に用いられるターゲット1個あたりに
底膜される枚数は、保護膜などの形成に用いられるター
ゲット1個あたりに底膜される枚数よりも少なくなって
いる。
In addition, when forming a magnetic film by sputtering, as the number of bottom films formed using an IfM target increases, the composition ratio of rare earth elements and transition metals in the resulting magnetic film gradually changes. There is a problem that the magnetic properties of the magnetic film change due to the change in the magnetic properties of the magnetic film. For this reason, the number of base films formed per target used for forming a magnetic film is smaller than the number of base films formed per target used for forming a protective film or the like.

本発明の1つの目的は、安定した磁気特性を有する光磁
気記録媒体を製造する方法を提供することにある。本発
明の池の1つの目的は、安定した磁気特性を有し、かつ
光変調記録方式によるオーバーライドに適した光磁気記
録媒体における磁性膜を1つのターゲットで製造する方
法を提供することにある。
One object of the present invention is to provide a method for manufacturing a magneto-optical recording medium having stable magnetic properties. One object of the present invention is to provide a method for manufacturing a magnetic film in a magneto-optical recording medium, which has stable magnetic properties and is suitable for overwriting by an optical modulation recording method, using one target.

[課題を解決するための手段] 本発明によれば、上記の!つの目的は、導電性の基板支
持台上に載置された透明基板に、希土類元素と遷移金属
とからなる磁性膜をスパッタリング法により形成するに
際し、上記の基板支持台に高周波電力を印加することを
特徴とする光磁気記録媒体の製造方法を提供することに
より達成される。
[Means for Solving the Problems] According to the present invention, the above! One purpose is to apply high-frequency power to the conductive substrate support when forming a magnetic film made of rare earth elements and transition metals by sputtering on a transparent substrate placed on the conductive substrate support. This is achieved by providing a method for manufacturing a magneto-optical recording medium characterized by the following.

また、本発明によれば、上記の他の1つの目的は、導電
性の基板支持台上に載置された透明基板に、2層構造を
有する希土類元素と遷移金属とからなる磁性膜をスパッ
タリング法により形成するに際し、該磁性膜が情報を記
録するために照射される光の入射側の磁性膜aと線光の
入射側とは反対側に積層される磁性膜すとからなり、磁
性膜すが磁性膜aよりも室温で低い保磁力と高いキュリ
ー温度とを有するように磁性膜aの形成時および磁性膜
すの形成時において異なる大きさの高周波電力を上記の
基板支持台に印加するか、または導電性の基板支持台に
載置された透明基板に、3層構造を有する希土類元素と
遷移金属とからなる磁性膜をスパッタリング法により形
成するに際し、該磁性膜が情報を記録するために照射さ
れる光の入射側の磁性膜c’と該磁性膜c’上の該光の
線光の入射側とは反対側に積層される磁性膜a°と該磁
性膜a′上に積層される磁性膜b°とからなり、磁性膜
b°が磁性膜a°よりも室温で低い保磁力と高いキュリ
ー温度とを有し、かつ磁性膜C°が磁性膜b′よりも室
温で低い保磁力と高いキュリー温度とを有するように磁
性膜a°の形成時、磁性膜b′の形成時および磁性膜c
’の形成時においてそれぞれ異なる大きさの高周波電力
を基板支持台に印加することを特徴とする光磁気記録媒
体の製造方法を提供することにより達成される。
According to the present invention, another object of the above is to sputter a magnetic film made of a rare earth element and a transition metal having a two-layer structure onto a transparent substrate placed on a conductive substrate support. When the magnetic film is formed by a method, the magnetic film is composed of a magnetic film a on the incident side of the light irradiated to record information and a magnetic film A laminated on the side opposite to the incident side of the linear light. Different magnitudes of high-frequency power are applied to the substrate support when forming the magnetic film a and when forming the magnetic film so that the magnetic film has a lower coercive force and a higher Curie temperature at room temperature than the magnetic film a. Or, when a magnetic film consisting of a rare earth element and a transition metal having a three-layer structure is formed by sputtering on a transparent substrate placed on a conductive substrate support, the magnetic film records information. a magnetic film c' on the incident side of the light irradiated on the magnetic film c', a magnetic film a° laminated on the side opposite to the incident side of the light beam on the magnetic film c', and a magnetic film laminated on the magnetic film a'. magnetic film b°, where magnetic film b° has a lower coercive force and higher Curie temperature at room temperature than magnetic film a°, and magnetic film C° has a lower temperature at room temperature than magnetic film b'. When forming the magnetic film a°, when forming the magnetic film b′, and when forming the magnetic film c, so as to have a coercive force and a high Curie temperature.
This is achieved by providing a method for manufacturing a magneto-optical recording medium, which is characterized in that high-frequency power of different magnitude is applied to a substrate support during the formation of a magneto-optical recording medium.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 本発明により製造される光磁気記録媒体の1例の眼略断
面図を第1図に示す。第1図に示す断面構造を有する光
磁気記録媒体は、ポリカーボネート樹脂、アモルファス
ポリオレフイノ樹脂、ポリメチルメタクリレート樹脂、
ガラスなどからなる透明基板1上に、SiN、 Aff
N、 At!5iNSSiOなどの誘電体からなる保護
膜2、希土類元素と遷移金属とからなる磁性膜(以下、
これを記録層3と称する)、記録層3と同じ希土類元素
と遷移金属とからなるが、組成比が異なり、磁気特性が
相違する磁性膜(以下、これを補助層4と称する)、お
よび上記で例示した誘電体からなる保護膜5が順次積層
されてなる。補助層4を形成する材料が記録層3を形成
する材料よりも室温で低い保磁力と高いキュリー温度と
を有する。情報を記録、再生または消去するために透明
基板l側から光が照射される。
Example 1 A schematic cross-sectional view of one example of a magneto-optical recording medium manufactured according to the present invention is shown in FIG. The magneto-optical recording medium having the cross-sectional structure shown in FIG. 1 is made of polycarbonate resin, amorphous polyolefin resin, polymethyl methacrylate resin,
On a transparent substrate 1 made of glass or the like, SiN, Af
N, At! A protective film 2 made of a dielectric material such as 5iNSSiO, a magnetic film made of a rare earth element and a transition metal (hereinafter referred to as
This is referred to as the recording layer 3), a magnetic film made of the same rare earth elements and transition metals as the recording layer 3 but with a different composition ratio and different magnetic properties (hereinafter referred to as the auxiliary layer 4), and the above-mentioned auxiliary layer 4. The protective film 5 made of the dielectric material exemplified above is sequentially laminated. The material forming the auxiliary layer 4 has a lower coercive force and a higher Curie temperature at room temperature than the material forming the recording layer 3. Light is irradiated from the transparent substrate l side to record, reproduce, or erase information.

光変調記録方式によりオーバーライドを行う際、上記の
補助層4に高い強度の光が照射される場合には補助層4
はキュリー温度以上になり、記録用磁界が印加されるこ
とによって磁化の向きが記録用磁界の磁化方向に向くが
、低い強度の光が照射される場合には補助層4はキュリ
ー温度以上にならず、記録用磁界が印加されても磁化の
向きが変わらない。上記の記録層3は、低い強度の光が
照射される場合においてもキュリー温度以上になり、記
録層3の磁化が補助層4の磁化方向に配向されて記録ビ
ットが形成される性質を有する。記録層3に光が照射さ
れ、記録ピットの磁化の向きを検出することにより、記
録された情報が再生される。
When performing override using the optical modulation recording method, if the above-mentioned auxiliary layer 4 is irradiated with high intensity light, the auxiliary layer 4
becomes above the Curie temperature, and when a recording magnetic field is applied, the direction of magnetization is directed to the magnetization direction of the recording magnetic field, but when irradiated with low intensity light, the auxiliary layer 4 does not reach above the Curie temperature. First, the direction of magnetization does not change even if a recording magnetic field is applied. The above-mentioned recording layer 3 has a property that the temperature is higher than the Curie temperature even when irradiated with low-intensity light, and the magnetization of the recording layer 3 is oriented in the direction of magnetization of the auxiliary layer 4 to form a recording bit. The recorded information is reproduced by irradiating the recording layer 3 with light and detecting the direction of magnetization of the recording pits.

図に示す。第2図に示すスパッタリング装置は、記録層
3および補助層4を構成する希土類元素と遷移金属とか
らなるターゲット6と、ターゲット6に印加される電力
を発生するターゲット電源7と、透明基板1が載置され
るステンレス鋼などからなり、導電性を有する基板支持
台8と、基板支持台8に印加される高周波電力を発生す
る基板支持台電源9とを備えている。ターゲット6と基
板支持台8とはスパッタリング装置のチャンバー10に
それぞれアースされている。直径3インチのターゲット
を用い、マグネトロンスパッタリング法により磁性膜を
形成する場合には、ターゲットに印加する直流電力は5
0〜250Wの範囲であるのが好ましい。
As shown in the figure. The sputtering apparatus shown in FIG. 2 includes a target 6 made of a rare earth element and a transition metal constituting a recording layer 3 and an auxiliary layer 4, a target power source 7 that generates electric power to be applied to the target 6, and a transparent substrate 1. It includes a conductive substrate support 8 made of stainless steel or the like, and a substrate support power source 9 that generates high-frequency power to be applied to the substrate support 8. The target 6 and the substrate support 8 are each grounded to a chamber 10 of the sputtering apparatus. When forming a magnetic film by magnetron sputtering using a target with a diameter of 3 inches, the DC power applied to the target is 5
A range of 0 to 250 W is preferred.

また直径15〜20cmの範囲の基板支持台を用いる場
合には、基板支持台に印加する高周波電力は20〜20
0Wの範囲であるのが好ましい。
Furthermore, when using a substrate support with a diameter of 15 to 20 cm, the high frequency power applied to the substrate support is 20 to 20 cm.
Preferably, it is in the range of 0W.

第2図に示すスパッタリング装置・を使用して、Tbv
tPe*aCOs (原子数比)からなる直径3インチ
のターゲットを用い、^「ガスをガス圧が0.2Paに
なるように導入し、ターゲットに150Wの直流型基板
支持台に印加する高周波電力(周波数: 13.7MH
z)の大きさを変えて成膜して得られた磁性膜゛が有す
るキュリー温度と保磁力との関係を第3図に示す。第3
図において、実線(a)は30Wの高周波電力を基板支
持台に印加しながら成膜して得られた磁性膜が有するキ
ュリー温度と保磁力との関係を示し、破線(b)は10
0Wの高周波電力を基板支持台に印加しながら成膜して
得られた磁性膜が有するキュリー温度と保磁力との関係
を示す。第3図から明らかなように、基板支持台に印加
する高周波電力の大きさを変えることによって、キュリ
ー温度と保磁力との種々の関係を有する磁性膜を得るこ
とができる。
Using the sputtering apparatus shown in Fig. 2, Tbv
Using a 3-inch diameter target made of tPe*aCOs (atomic ratio), gas was introduced so that the gas pressure was 0.2 Pa, and high-frequency power (150 W) was applied to the target using a DC type substrate support. Frequency: 13.7MH
FIG. 3 shows the relationship between the Curie temperature and coercive force of magnetic films obtained by varying the size of z). Third
In the figure, the solid line (a) shows the relationship between the Curie temperature and coercive force of the magnetic film obtained by forming the film while applying 30 W of high-frequency power to the substrate support, and the broken line (b) shows the relationship between the Curie temperature and the coercive force of 10
The relationship between the Curie temperature and coercive force of a magnetic film obtained by forming a film while applying 0 W of high frequency power to a substrate support is shown. As is clear from FIG. 3, by changing the magnitude of the high frequency power applied to the substrate support, magnetic films having various relationships between Curie temperature and coercive force can be obtained.

Siターゲットを用いて、ArガスとN、ガスとをガス
圧かそれぞれ0.09Paおよび0.03Paになるよ
うに導入し、Siターゲットに160 Wの高周波電力
を印加して行う反応性スパッタリング法によって、ポリ
カーボネート樹脂透明基板I上にSiNからなる保ット
を用いて、A「ガスをガス圧が0.2Paになるように
導入し、合金ターゲットに150Wの直流電力を印加し
、基板支持台8に50Wの高周波電力(周波数13.7
MHz)を印加して行うマグネトロンスパッタリング法
によって、膜厚か300人になるように記録層3を形成
し、ついで、基板支持台8に印加する高周波電力をIO
Wに変える以外は同様にして行うマグネトロンスパッタ
リング法によって、膜厚が850.↓になるように補助
層4を形成した。補助層4上に保護膜2を成膜する場合
におけると同様にしてSiNからなる保護膜5を膜厚が
800人になるように積層した。上記のようにして作製
した光磁気記録媒体に周波数I M II zの条件で
記録した情報の光変調記録方式によるオーバーライドは
、初期磁界4 KOe、記録用磁界2000eの条件で
行うことができた。
Using a Si target, Ar gas and N gas were introduced at gas pressures of 0.09 Pa and 0.03 Pa, respectively, and 160 W of high frequency power was applied to the Si target using a reactive sputtering method. Using a support made of SiN on the polycarbonate resin transparent substrate I, A gas was introduced so that the gas pressure was 0.2 Pa, 150 W of DC power was applied to the alloy target, and the substrate support 8 was placed on the polycarbonate resin transparent substrate I. 50W of high frequency power (frequency 13.7
The recording layer 3 is formed to a film thickness of about 300 MHz by a magnetron sputtering method applying MHz), and then the high frequency power applied to the substrate support 8 is
A film thickness of 850mm was obtained using the same magnetron sputtering method except that W was used. Auxiliary layer 4 was formed so as to be ↓. In the same manner as in the case of forming the protective film 2 on the auxiliary layer 4, a protective film 5 made of SiN was laminated to a thickness of 800 mm. Overwriting of the information recorded on the magneto-optical recording medium produced as described above under the conditions of the frequency I M II z using the optical modulation recording method was possible under the conditions of an initial magnetic field of 4 KOe and a recording magnetic field of 2000 e.

実施例2 本発明により製造される光磁気記録媒体の他の1例の概
略断面図を第4図に示す。第4図に示す断面横這を有す
る光磁気記録媒体は、透明基板11上に上記で例示した
誘電体からなる保護膜12、希土類元素と遷移金属とか
らなる磁性膜(以下、これを転写層I3と称する)、転
写層13と同じ希土類元素と遷移金属とからなるが、そ
れとは組成比が異なり、磁性特性が相違する磁性If(
以下、これを記録層14と称する)、転写層13および
記録層14と同じ希土類元素と遷移金属とからなるが、
それらとは組成比が異なり、磁気特性が相違する磁性膜
(以下、これを補助層15と称する)、および上記で例
示した誘電体からなる保護膜16とが順次積層されてな
る。補助層15を形成する材料が記R層14を形成する
材料よりも室温で低い保磁力と高いキュリー温度とを有
し、転写層13を形成する材料が補助層15を形成する
材料よりも室温で低い保磁力と高いキュリー温度とを有
する。IMを記録、再生または消去するために透明基板
11側から光が照射される。
Example 2 A schematic cross-sectional view of another example of a magneto-optical recording medium manufactured according to the present invention is shown in FIG. The magneto-optical recording medium having a horizontal cross-section as shown in FIG. The magnetic If (referred to as I3) is made of the same rare earth elements and transition metals as the transfer layer 13, but has a different composition ratio and different magnetic properties.
This is hereinafter referred to as the recording layer 14), which is made of the same rare earth elements and transition metals as the transfer layer 13 and the recording layer 14.
A magnetic film having a different composition ratio and magnetic properties (hereinafter referred to as auxiliary layer 15) and a protective film 16 made of the dielectric material exemplified above are sequentially laminated. The material forming the auxiliary layer 15 has a lower coercive force and higher Curie temperature at room temperature than the material forming the R layer 14, and the material forming the transfer layer 13 has a lower coercive force and higher Curie temperature at room temperature than the material forming the auxiliary layer 15. It has a low coercive force and a high Curie temperature. Light is irradiated from the transparent substrate 11 side to record, reproduce, or erase the IM.

第2図に示すスパッタリング装置を使用して、希土類元
素と遷移金属とからなる合金ターゲット6を用い、基板
支持台8に印加する高周波電力の大きさを、転写層13
の形成時、記録層14の形成時および補助層15の形成
時において適宜変化させることにより保磁力とキュリー
温度との上記の相互関係を有する3層構造の磁性膜を形
成することができる。
Using the sputtering apparatus shown in FIG. 2, using an alloy target 6 made of a rare earth element and a transition metal, the magnitude of the high frequency power applied to the substrate support 8 is adjusted to the transfer layer 13.
A three-layered magnetic film having the above-mentioned correlation between coercive force and Curie temperature can be formed by appropriately changing the values when forming the recording layer 14 and the auxiliary layer 15.

光変調記録方式によりオーバーライドを行う際、上記の
補助415に高い強度の光が照射される場合には補助5
15はキュリー温度以上になり、記録用磁界が印加され
ることによって磁化の向きか記録用磁界の磁化方向に向
くが、低い強度の光が照射される場合には補助層15は
キュリー温度以上にならず、記録用磁界が印加されても
磁化の向きが変わらない。上記の記録層14は、低い強
度の光が照射される場合においてらキュリー温度以上に
なり、磁化が補助層!5の磁化方向に配向される性質を
有する。上記の転写層13は、記録層14の磁化が転写
されて記録ピットが形成される性質を有する。転写層1
3に光が照射され、記録ピットの磁化の向きを検出する
ことにより、記録された情報が再生される。
When performing override using the optical modulation recording method, if the above-mentioned auxiliary 415 is irradiated with high intensity light, the auxiliary 5
15 becomes above the Curie temperature, and when a recording magnetic field is applied, the magnetization direction or the magnetization direction of the recording magnetic field is oriented.However, when irradiated with low intensity light, the auxiliary layer 15 becomes above the Curie temperature. Therefore, the direction of magnetization does not change even when a recording magnetic field is applied. When the recording layer 14 is irradiated with low-intensity light, it reaches a temperature higher than the Curie temperature, and the magnetization becomes the auxiliary layer! It has the property of being oriented in the magnetization direction of 5. The transfer layer 13 has a property that the magnetization of the recording layer 14 is transferred to form recording pits. Transfer layer 1
3 is irradiated with light and the recorded information is reproduced by detecting the magnetization direction of the recording pit.

上記の実施例!および実施例2で示した光磁気記録媒体
が有する保護膜および磁性膜の膜厚はこれらの光学的特
性および熱伝導率に応じて設定することができるが、通
常保護膜2または12の膜厚が400〜1200人の範
囲にあり、磁性H(記録層3+浦助層4または転写層1
3+記録層14+補助層15)の膜厚が600〜230
0人の範囲にあり、゛保護膜5または16の膜厚が30
0〜1200人の範囲にある場合が好ましい。
Examples of the above! The thicknesses of the protective film and magnetic film of the magneto-optical recording medium shown in Example 2 can be set according to their optical properties and thermal conductivity, but the thickness of the protective film 2 or 12 is usually the same. is in the range of 400 to 1200, and magnetic H (recording layer 3 + Urasuke layer 4 or transfer layer 1
3 + recording layer 14 + auxiliary layer 15) film thickness is 600 to 230
0 people, and the thickness of protective film 5 or 16 is 30
Preferably, the number is in the range of 0 to 1200 people.

実施例3 本発明によりは製造される光磁気記録媒体の他の1例の
概略断面図を第5図に示す。第5図1こ示す断面構造を
有する光磁気記録媒体は透明基板18上に上記の例示し
た誘電体からなる保護膜19、希土類元素と遷移金属と
からなる磁性膜20、上記で順次積層されてなる。情報
を記録、再生または消去するために透明基板18側から
光が照射される。
Example 3 A schematic sectional view of another example of a magneto-optical recording medium manufactured according to the present invention is shown in FIG. The magneto-optical recording medium having the cross-sectional structure shown in FIG. Become. Light is irradiated from the transparent substrate 18 side to record, reproduce, or erase information.

第2図に示すスパッタリング装置を使用して、Tbt7
FesiCOs (原子数比)からなる直径3インチの
ターゲットを用い、Arガスをガス圧が0.2Paにな
るように導入し、ターゲットに150Wの直流電力を印
加して行うマグネトロンスパッタリング法によって、ポ
リカーボネート樹脂透明基板上に磁性膜を形成する場合
に、基板支持台に印加する高周波電力(周波数: 13
.7MHz)の大きさを変えて成膜して得られた磁性膜
か有する保磁力と、基板支持台に印加する高周波電力の
大きさとの関係を第6図に示す。第6図より明らかなよ
うに基板支持台に印加する高周波電力の大きさに応して
、得られる磁性膜が有する保磁力が変わることから、均
一な磁気特性を有する磁性膜が得られるように、高周波
電力の大きさを適宜変化させることによって、1つのタ
ーゲットから多くの枚数を成膜することができる。
Using the sputtering apparatus shown in FIG. 2, Tbt7
Polycarbonate resin was sputtered using a magnetron sputtering method using a 3-inch diameter target made of FesiCOs (atomic ratio), introducing Ar gas at a gas pressure of 0.2 Pa, and applying 150 W of DC power to the target. When forming a magnetic film on a transparent substrate, high frequency power (frequency: 13
.. FIG. 6 shows the relationship between the coercive force of the magnetic films obtained by depositing the magnetic films with different magnitudes (7 MHz) and the magnitude of the high frequency power applied to the substrate support. As is clear from Figure 6, the coercive force of the obtained magnetic film changes depending on the magnitude of the high-frequency power applied to the substrate support, so that a magnetic film with uniform magnetic properties can be obtained. By appropriately changing the magnitude of high-frequency power, a large number of films can be formed from one target.

実施M 3で示した光磁気記録媒体が有する保護膜、磁
性膜および反射膜の膜厚はこれらの光学的特性および熱
伝導率に応じて設定することかできるか、保護膜19の
膜厚が400〜1200人の範囲にあり、磁性膜20の
膜厚が100〜400人の範囲にあり、保護膜21の膜
厚か300〜1200人の範囲にあり、反射膜Hの膜厚
が200〜800人の範囲にある場合が好ましい。
Is it possible to set the thickness of the protective film, magnetic film, and reflective film of the magneto-optical recording medium shown in Example M3 according to their optical properties and thermal conductivity? The thickness of the magnetic film 20 is in the range of 100 to 400, the thickness of the protective film 21 is in the range of 300 to 1,200, and the thickness of the reflective film H is in the range of 200 to 1,200. Preferably, the number is in the range of 800 people.

スL また、第5図に示す断面構造が反射膜O・を内側にして
貼り合わされてなる構造を有する光磁気記録媒体も本発
明により製造される光磁気記録媒体に含まれる。
Also included in the magneto-optical recording medium manufactured by the present invention is a magneto-optical recording medium having a structure in which the cross-sectional structure shown in FIG. 5 is bonded together with the reflective film O. inside.

本発明に用いられる磁性膜形成用のターゲットとしては
、TbFe、 TbDyFe、 GdDyFe、 (i
dTbFe。
Targets for forming magnetic films used in the present invention include TbFe, TbDyFe, GdDyFe, (i
dTbFe.

GdFeCoなどからなる合金ターゲットまたはこれら
の材料にTi、 Cr、 Ptなどの元素が添加されて
なる合金ターゲットを用いることが好ましい。
It is preferable to use an alloy target made of GdFeCo or the like, or an alloy target made of these materials to which elements such as Ti, Cr, or Pt are added.

[発明の効果コ 本発明によれば、安定した磁気特性を有する光磁気記録
媒体が製造される。また、安定した磁気特性を有し、か
つ光変調記録方式によ・オーバーライドに適した光磁気
記録媒体を1つのターゲットで製造することができる。
[Effects of the Invention] According to the present invention, a magneto-optical recording medium having stable magnetic properties is manufactured. In addition, a magneto-optical recording medium having stable magnetic properties and suitable for overwriting using an optical modulation recording method can be manufactured using a single target.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により製造される光磁気記録媒体の1例
の概略断面図、第2図は本発明により磁性膜を形成する
ために用いられるスパッタリング装置の一例の概略構成
図、第3図は基板支持台に印加する高周波電力を変えて
成膜して得られた磁性膜が有するキュリー温度と保磁力
との関係を示す図、第4図および第5図は本発明により
製造される光磁気記録媒体の他の1例の概略断面図、第
6図は基板支持台に印加する高周波電力の大きさを変え
て成膜して得られた磁性膜が有する保磁力と印加する高
周波電力の大きさとの関係を示す図である。 1、 It、 18       ・・・透明基板、3
.4.13.14.15.20・・・磁性膜、6   
                     ・・・ 
 タ  −ゲ  ッ  ト 、7          
・・・ターゲット電源、8       ・・・基板支
持台、 9          ・・・基板支持台電源。
FIG. 1 is a schematic cross-sectional view of an example of a magneto-optical recording medium manufactured according to the present invention, FIG. 2 is a schematic configuration diagram of an example of a sputtering apparatus used for forming a magnetic film according to the present invention, and FIG. 1 is a diagram showing the relationship between the Curie temperature and coercive force of a magnetic film obtained by varying the high-frequency power applied to the substrate support, and FIGS. FIG. 6, a schematic cross-sectional view of another example of a magnetic recording medium, shows the relationship between the coercive force of a magnetic film formed by varying the magnitude of the high-frequency power applied to the substrate support and the difference in the high-frequency power applied. It is a figure showing the relationship with size. 1, It, 18...Transparent substrate, 3
.. 4.13.14.15.20...Magnetic film, 6
...
Target, 7
... Target power supply, 8 ... Board support stand, 9 ... Board support stand power supply.

Claims (3)

【特許請求の範囲】[Claims] 1.導電性の基板支持台上に載置された透明基板に、希
土類元素と遷移金属とからなる磁性膜をスパッタリング
法により形成するに際し、上記の基板支持台に高周波電
力を印加することを特徴とする光磁気記録媒体の製造方
法。
1. When a magnetic film made of a rare earth element and a transition metal is formed by sputtering on a transparent substrate placed on a conductive substrate support, high-frequency power is applied to the substrate support. A method for manufacturing a magneto-optical recording medium.
2.導電性の基板支持台上に載置された透明基板に、2
層構造を有する希土類元素と遷移金属とからなる磁性膜
をスパッタリング法により形成するに際し、該磁性膜が
情報を記録するために照射される光の入射側の磁性膜a
と該光の入射側とは反対側に積層される磁性膜bとから
なり、磁性膜bが磁性膜aよりも室温で低い保磁力と高
いキュリー温度とを有するように磁性膜aの形成時およ
び磁性膜bの形成時において異なる大きさの高周波電力
を上記の基板支持台に印加することを特徴とする光磁気
記録媒体の製造方法。
2. 2 on a transparent substrate placed on a conductive substrate support stand.
When forming a magnetic film made of a rare earth element and a transition metal having a layered structure by a sputtering method, a magnetic film a is formed on the incident side of light that is irradiated to record information on the magnetic film.
and a magnetic film b laminated on the side opposite to the light incident side, and when forming the magnetic film a, the magnetic film b has a lower coercive force and a higher Curie temperature at room temperature than the magnetic film a. and a method for manufacturing a magneto-optical recording medium, which comprises applying high-frequency power of different magnitudes to the substrate support during the formation of the magnetic film b.
3.導電性の基板支持台上に載置された透明基板に、3
層構造を有する希土類元素と遷移金属とからなる磁性膜
をスパッタリング法により形成するに際し、該磁性膜が
情報を記録するために照射される光の入射側の磁性膜c
’と該磁性膜c’上の該光の入射側とは反対側に積層さ
れる磁性膜a’と該磁性膜a’上に積層される磁性膜b
’とからなり、磁性膜b’が磁性膜a’よりも室温で低
い保磁力と高いキュリー温度とを有し、かつ磁性膜c’
が磁性膜b’よりも室温で低い保磁力と高いキュリー温
度とを有するように磁性膜a’の形成時、磁性膜b’の
形成時および磁性膜c’の形成時においてそれぞれ異な
る大きさの高周波電力を基板支持台に印加することを特
徴とする光磁気記録媒体の製造方法。
3. 3 on a transparent substrate placed on a conductive substrate support stand.
When forming a magnetic film made of a rare earth element and a transition metal having a layered structure by a sputtering method, a magnetic film c on the incident side of light that is irradiated to record information on the magnetic film is formed by a sputtering method.
', a magnetic film a' laminated on the opposite side of the light incident side on the magnetic film c', and a magnetic film b laminated on the magnetic film a'.
', the magnetic film b' has a lower coercive force and a higher Curie temperature at room temperature than the magnetic film a', and the magnetic film c'
When forming the magnetic film a', when forming the magnetic film b', and when forming the magnetic film c', different sizes were used so that the magnetic film had a lower coercive force and a higher Curie temperature at room temperature than the magnetic film b'. A method for manufacturing a magneto-optical recording medium, comprising applying high frequency power to a substrate support.
JP7039190A 1990-03-20 1990-03-20 Manufacture of optomagnetic recording medium Pending JPH03270115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7039190A JPH03270115A (en) 1990-03-20 1990-03-20 Manufacture of optomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039190A JPH03270115A (en) 1990-03-20 1990-03-20 Manufacture of optomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03270115A true JPH03270115A (en) 1991-12-02

Family

ID=13430099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039190A Pending JPH03270115A (en) 1990-03-20 1990-03-20 Manufacture of optomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03270115A (en)

Similar Documents

Publication Publication Date Title
US5265073A (en) Overwritable magneto-optical recording medium having two-layer magnetic films wherein one of the films contains one or more of Cu, Ag, Ti, Mn, B, Pt, Si, Ge, Cr and Al, and a method of recording on the same
JPS63239637A (en) Magneto-optical recording medium and recording method thereof
JPH03270115A (en) Manufacture of optomagnetic recording medium
US6033538A (en) Magneto-optical recording medium production method
JP2553720B2 (en) Magneto-optical disk
JPH06302029A (en) Magneto-optical recording medium and recording method therefor
JP2604475B2 (en) Magneto-optical recording medium
JPH05217232A (en) Magneto-optical recording medium and its production
JPS63117354A (en) Magneto-optical recording medium
JPS61196447A (en) Photomagnetic recording element
JP2004134064A (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
JP3090213B2 (en) Direct rewritable magneto-optical recording method and magneto-optical recording medium
JPH01146145A (en) Magneto-optical recording medium and its production
JPH04255933A (en) Double-layer type optical magnetic recording medium
JP2616120B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPH0535496B2 (en)
JP2004185718A (en) Magneto-optical recording medium
JPH02108258A (en) Magneto-optical disk
JPS63237242A (en) Magneto-optical recording system
JPH04192139A (en) Magneto-optical recording medium and manufacture thereof
JPS62184643A (en) Production of optical magnetic recording medium
JPS62192040A (en) Optical information recording medium
JPS62109247A (en) Optical magnetic recording medium
JPH04255934A (en) Two layer type magneto-optical recording medium
JPH087353A (en) Magneto-optical recording medium and multi-level recording method using the same