JPH03270044A - Inspection of semiconductor device - Google Patents

Inspection of semiconductor device

Info

Publication number
JPH03270044A
JPH03270044A JP7096190A JP7096190A JPH03270044A JP H03270044 A JPH03270044 A JP H03270044A JP 7096190 A JP7096190 A JP 7096190A JP 7096190 A JP7096190 A JP 7096190A JP H03270044 A JPH03270044 A JP H03270044A
Authority
JP
Japan
Prior art keywords
gate
inspection
gates
insulating film
actual device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7096190A
Other languages
Japanese (ja)
Inventor
Yoichi Tatewaki
帯刀 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7096190A priority Critical patent/JPH03270044A/en
Publication of JPH03270044A publication Critical patent/JPH03270044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decide the deterioration of reliability on the gate of a full-size device easily by forming a plurality of gates for inspection having two kinds of insulating films having different film thickness and/or area ratios while changing the ratios onto a semiconductor substrate at approximately the same time as the full-size device and comparing said film thickness with the structural ratio of a gate for inspection, a calibration curve of which is broken. CONSTITUTION:When the film thickness of insulating films 3, 4 is represented by d1 and d2, a plurality of gates 2 for inspection are formed while film- thickness ratios Dp=d2/d1 as structural ratios determined by the structure are changed. The gates 2 for inspection are formed, a plurality of probes are brought into contact with each gate 2 for inspection, voltage, by which at least one of the gates 2 is electrostatically broken, is applied, and the first insulating films 3 are electrostatically broken. Electrostatic breakdown is generated because field strength in the first insulating films 3 is increased by applied voltage. Accordingly, the structural ratios of the gates 2 for inspection, which are electrostatically broken, are compared with a prepared gate-breakdown calibration curve Cc, thus deciding the degree of the deterioration of reliability on the gate of a full-size device.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は半導体装置の検査方法に関し、さらに詳しく
は半導体基板上に半導体装置(実デバイス)を製造する
際に、その製造工程でゲートに加わる静電ダメージによ
る信頼性の劣化(寿命の短縮化)を、TDDB特性の測
定をおこなうことなく判定する半導体装置の検査方法に
関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for inspecting a semiconductor device, and more specifically, when manufacturing a semiconductor device (actual device) on a semiconductor substrate, it is possible to inspect gates during the manufacturing process. The present invention relates to a semiconductor device inspection method for determining reliability deterioration (life shortening) due to added electrostatic damage without measuring TDDB characteristics.

(ロ)従来の技術 半導体装置の製造工程において、チャージアップによる
MOSあるいはMNOS構造を有するゲートの絶縁膜の
静電破壊がしばしば発生する。これを抑制する方法とし
て、電子線を照射してチャージアップを中和する方法か
とられている。
(B) Conventional Technology In the manufacturing process of semiconductor devices, electrostatic breakdown of the insulating film of a gate having a MOS or MNOS structure due to charge-up often occurs. One way to suppress this is to neutralize the charge-up by irradiating it with an electron beam.

従来、ゲートの絶縁膜の静電破壊あるいはゲートの静電
ダメージの測定は、LSIなどではゲートが微細になり
、かつその数が増大していることから、実デバイスにお
いておこなうことが困難になってきている。これに対し
て、近年ではこれらの測定:よ、ウェハに形成さセーる
実デバイスと同し工程てらって実デバイスを形成しGい
別のウェハに形成されたゲートの耐圧あるいは信頼性を
測定しておこなわれる。
Conventionally, it has become difficult to measure electrostatic breakdown of gate insulating films or electrostatic damage to gates in actual devices because gates in LSIs and other devices have become finer and the number of gates has increased. ing. In contrast, in recent years, these measurements have been made: forming actual devices in the same process as actual devices formed on a wafer, and measuring the withstand voltage or reliability of gates formed on separate wafers. It is carried out.

ゲートの耐圧は、ゲートに複数本の深針をあて、深針を
介して破壊に至る電圧を印加し、電流が流れた時点にお
ける電圧を測定することにより測定している。
The withstand voltage of the gate is measured by applying a plurality of probes to the gate, applying a voltage that will cause destruction through the probes, and measuring the voltage at the point when current flows.

またゲートの信頼性は、上記同様にゲートの複数本の深
針をあて、瞬時には破壊に至らない電圧を印加し、破壊
に至るまでの時間を測定することにより測定している。
Furthermore, the reliability of the gate is measured by applying a plurality of deep needles to the gate in the same manner as described above, applying a voltage that does not instantly cause breakdown, and measuring the time until breakdown occurs.

(ハ)発明が解決しようとする課題 しかしながら、上記の方法にあっては、実デバイスの製
造工程の、イオン注入やプラズマ処理などのいわゆる滞
電プロセスにおいて、実デバイスのゲートがどの程度静
電ダメージを受けているかは、ゲートの破壊の有無でし
か判断できず、破壊されていないゲートについてはどの
程度静電ダメージにより寿命が短縮されるのか不明であ
っf二。
(c) Problems to be Solved by the Invention However, in the above method, it is difficult to determine the extent to which the gate of the actual device is electrostatically damaged during the so-called static charge process such as ion implantation and plasma treatment in the manufacturing process of the actual device. The only way to determine whether or not the electrostatic damage has been caused is by the presence or absence of damage to the gate, and it is unclear to what extent the lifespan of undamaged gates will be shortened by electrostatic damage.

まに上記の測定の制度を良くするために、統計処理をお
こなうべく、多数の測定対象を用いて測定をおこむう必
要があった。
In order to improve the accuracy of the above measurements, it was necessary to perform measurements using a large number of measurement targets in order to perform statistical processing.

この発明は上記の事情を考慮してなされたもので、実デ
バイス内の静電破壊に至らないゲートの信頼性を、予め
作成されたゲート破壊検量線を用いて判定することがて
きろ半導体装置の検査方法を提f共しようとするもので
ある。
This invention was made in consideration of the above circumstances, and it is possible to judge the reliability of a gate that does not cause electrostatic damage in an actual device by using a gate destruction calibration curve prepared in advance. This paper attempts to share an inspection method for the following.

に)課題を解決するための手段及び作用この発明は、一
つの半導体基板上に実デバイスを形成すると共に、これ
と略同時にその半導体基板の実デバイスが形成されない
領域に、膜厚が大なる第1絶縁膜とそれより小さな膜厚
の第2絶縁膜か連続して形成されさらにそれらの絶縁膜
上に電極が積層されて構成される第1の検査用ゲート、
この第1の検査用ゲートにおける第1絶縁膜及び第2絶
縁膜の膜厚比率及び/又は面積比率が異なり、かつその
上に電極が積層されて構成される第2.3以上の複次の
検査用ゲートがそれぞれ設けられ、これら複次の検査用
ゲートを上記実デバイスの形成時におこなわれる帯電プ
ロセスと同一の条件に付すことて得られる検査用ゲート
の破壊状態と、予め作成された比較ゲートによるゲート
破壊検量線とを比較し、これによって実デバイスの損傷
状態を検出することを特徴とする半導体装置の検査方法
である。
B) Means and operation for solving the problems This invention forms an actual device on one semiconductor substrate, and at the same time, a second film with a large thickness is formed on a region of the semiconductor substrate where the actual device is not formed. a first inspection gate formed by continuously forming one insulating film and a second insulating film having a smaller thickness, and further stacking electrodes on these insulating films;
The first insulating film and the second insulating film in this first inspection gate have different film thickness ratios and/or area ratios, and electrodes are laminated thereon. Each inspection gate is provided, and the breakdown state of the inspection gate obtained by subjecting these multiple inspection gates to the same conditions as the charging process performed during the formation of the actual device, and the comparison gate prepared in advance. A semiconductor device inspection method is characterized in that the damage state of an actual device is detected by comparing the gate breakdown calibration curve with a gate breakdown calibration curve according to the present invention.

この発明においては、実デバイスが製造される半導体基
板上に形成された検査用ゲートの少なくとも1つを、実
デバイスの製造工程のうち滞電を伴う工程における処理
条件により静電破壊し、その静電破壊した検査用ゲート
の構造比率を予め作成されたゲート破壊検量線と比較す
る。そしてその検量線より、製造される実デバイス内の
ゲートの静電ダメージを判定する。しrコがって実デバ
イスのゲートの耐圧及び信頼性の測定をおこなうことな
く、帯電プロセスにおいて実デバイスが受けた静電ダメ
ージによる信頼性の劣化(寿命の短縮化)の程度が確認
できる。
In this invention, at least one of the test gates formed on the semiconductor substrate on which the actual device is manufactured is electrostatically damaged due to processing conditions in a process that involves a build-up of electricity in the manufacturing process of the actual device. The structural ratio of the inspection gate that has been electrically destroyed is compared with a gate destruction calibration curve prepared in advance. Then, electrostatic damage to the gate in the actual device to be manufactured is determined from the calibration curve. Therefore, the degree of reliability deterioration (shortened life) due to electrostatic damage to the actual device during the charging process can be confirmed without measuring the breakdown voltage and reliability of the gate of the actual device.

(ホ)実施例 以下この発明の実施例を図面にて詳述するが、この発明
は以下の実施例に限定されるものてはない。
(e) Examples Hereinafter, examples of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the following examples.

第1図はこの発明における実施例の検査用ゲートの構造
を示す図である。
FIG. 1 is a diagram showing the structure of an inspection gate according to an embodiment of the present invention.

同図において、lは半導体基板であるSiからなるウェ
ハで、検査用ゲート20が形成される領域以外には、実
際の半導体装置すなわちM OSあるいはM N OS
 +71 aのゲートを有する実デバイスが形成される
In the figure, l is a wafer made of Si which is a semiconductor substrate, and the area other than the area where the inspection gate 20 is formed is an actual semiconductor device, that is, MOS or MNOS.
A real device with a gate of +71 a is formed.

検査用ゲート2は、ウェハlに形成される膜厚の薄い第
1絶縁膜3と、これに連続して形成される膜厚か第1絶
縁膜3に比べて大なる第2絶縁膜4と、第1絶縁膜3及
び第2絶縁[4の上面に形成される電極5とで構成され
る。第1絶縁膜3は実デバイスにおけるゲート絶縁膜に
相当し、また第2絶縁膜4は実デバイスにおけるロコス
酸化膜に相当する。これらの絶縁@34は、実デバイス
における絶縁膜製造工程と略同時に形成されるものであ
る。
The inspection gate 2 consists of a thin first insulating film 3 formed on a wafer 1, and a second insulating film 4 formed continuously with the second insulating film 4, which is thicker than the first insulating film 3. , a first insulating film 3 and an electrode 5 formed on the upper surface of the second insulating film 4. The first insulating film 3 corresponds to a gate insulating film in an actual device, and the second insulating film 4 corresponds to a LOCOS oxide film in an actual device. These insulators @34 are formed approximately at the same time as the insulating film manufacturing process in the actual device.

すなわち、実デバイス製造時に、第1絶縁膜3と第2絶
縁膜4とに対応するレノストマスクを使用し、Stイオ
ンをウェハlに注入する。この時注入エネルギやドーズ
量などの注入条件を変えてイオン注入をおこなうことに
より、ウェハ1中に形成されるダメージ層の厚みが変え
られる。この後実デバイスの製造工程における熱酸化工
程をおこなうことにより、膜厚の異なる第1絶縁膜3と
第2絶縁膜4とが形成される。
That is, during actual device manufacturing, St ions are implanted into the wafer 1 using Renost masks corresponding to the first insulating film 3 and the second insulating film 4. At this time, by performing ion implantation while changing implantation conditions such as implantation energy and dose, the thickness of the damaged layer formed in the wafer 1 can be changed. By performing a thermal oxidation step in the subsequent manufacturing process of the actual device, the first insulating film 3 and the second insulating film 4 having different film thicknesses are formed.

それぞれの絶縁膜3.4の膜厚をdl及びd、とすると
、検査用ゲート2はその構造により決定される構造比率
である膜厚比率Dp=dt/d、を変えて複数例えば1
0個形成される。膜厚比率Dpは実デバイスのゲートに
おける膜厚比率を考慮して、10〜10000の値で適
宜設定される。
Assuming that the film thicknesses of the respective insulating films 3.4 are dl and d, the inspection gate 2 is formed by changing the film thickness ratio Dp=dt/d, which is a structural ratio determined by its structure, for example, 1.
0 pieces are formed. The film thickness ratio Dp is appropriately set at a value of 10 to 10,000 in consideration of the film thickness ratio at the gate of the actual device.

上記検査用ゲート2を形成したのち、それぞれの検査用
ゲート2に複数の深針を接触させ、少なくともそのうち
の1つが静電破壊される電圧すなわち実デバイスの製造
工程のうちの滞電を伴う工程における処理条件と同一条
件により設定される電圧を印加して、第1絶縁膜3を静
電破壊する。
After forming the above-mentioned inspection gates 2, a plurality of deep needles are brought into contact with each inspection gate 2, and at least one of them is applied at a voltage that causes electrostatic breakdown, i.e., a process involving a current stagnation in the actual device manufacturing process. A voltage set under the same processing conditions as in step 1 is applied to cause electrostatic breakdown of the first insulating film 3.

これは印加された電圧により第1絶縁膜3における電界
強度か高くなることにより発生する乙のである。これに
よって静電破壊された検査用ゲート2の構造比率を、第
2図に示す、予め作成しておいたゲート破壊検量線(以
下検量線と記す)Ccと比較して、実デバイスにおける
ゲートの信頼性の劣化の程度をT D D B (Ti
me Dependent Dielectric B
reakdown、経時静電破壊)により静電破壊に至
った時間とゲートの構造比率との相関関係をプロットし
て作成されている。TDDB特性は、比較ゲート(l又
は複数)に瞬時には静電破壊にしない程度の一定電圧を
印加した際の、ゲートそれぞれの寿命に応じた破壊に至
る時間と印加した電圧との間の関係であり、この特性か
ら得られる時間を検量線Ccの作成に用いるものである
This occurs because the electric field strength in the first insulating film 3 increases due to the applied voltage. The structural ratio of the inspection gate 2 damaged by electrostatic discharge is compared with the gate destruction calibration curve (hereinafter referred to as calibration curve) Cc created in advance as shown in FIG. The degree of reliability deterioration is T D D B (Ti
me Dependent Dielectric B
It is created by plotting the correlation between the time required for electrostatic discharge breakdown (reakdown (electrostatic breakdown over time) and the structural ratio of the gate. TDDB characteristics are the relationship between the applied voltage and the time required to reach breakdown according to the lifespan of each gate when a constant voltage that does not cause instantaneous electrostatic breakdown is applied to the comparison gate (l) or multiple gates. The time obtained from this characteristic is used to create the calibration curve Cc.

第2図において、検量線Ccはこれを作成する際に比較
ゲートに印加する電圧を変えてプロットすることにより
複数本作成されている。同図において、TDDBで破壊
に至る時間tがOのものは、すてに永久に静電破壊され
た乙のであり、例えば検量線Cclでは構造比率100
0のゲートがこれに対応する。
In FIG. 2, a plurality of calibration curves Cc are created by plotting while changing the voltage applied to the comparison gate. In the figure, the TDDB whose time t to destruction is O is the one which has been permanently destroyed by electrostatic discharge, and for example, in the calibration curve Ccl, the structural ratio is 100.
A gate of 0 corresponds to this.

したがって検量線Cclを用いると、的えば破壊された
検査用ゲート2の膜厚比率opが1000の場合、構造
比率100の実デバイスのゲートては、その製造工程に
おける滞電を伴う工程によりゲートが受けた静電ダメー
ジにより、TDDBで破壊に至る時間tが時間taにな
ったことか判る。つまり、検査用ゲート2の膜厚比率D
pより構造比率の小さい実デバイスのゲートの信頼性の
劣化の程度が判定される。
Therefore, using the calibration curve Ccl, for example, if the film thickness ratio op of the destroyed inspection gate 2 is 1000, the gate of an actual device with a structure ratio of 100 will be It can be seen that due to the electrostatic damage received, the time t required for TDDB to break down has become the time ta. In other words, the film thickness ratio D of the inspection gate 2
The degree of deterioration in reliability of the gate of an actual device having a structure ratio smaller than p is determined.

第3図は検査用ゲートのそれぞれの絶縁膜の面積比率を
変えた場合を示す図である。
FIG. 3 is a diagram showing the case where the area ratio of each insulating film of the inspection gate is changed.

面積比率の異なる絶縁膜は実デバイスの製産時にレジス
トパターンの開口面積を相違させておくことで形成する
Insulating films with different area ratios are formed by making the opening areas of resist patterns different during production of actual devices.

第3図において、検査用ゲート21,22.23は、そ
れぞれ第1絶縁膜31.32.33の面積’ ll+ 
112+ 113か第2絶縁膜41.42.43の面積
aye、 att+ a*3より小さい構造を有するし
のである。この場合、第1絶縁膜3+、32゜3 :4
 ’)’I’Q ”ス:1それぞメを同してあり、まI
こ第3絶縁膜11.〆12.=13の膜厚しそれぞれ同
しである。
In FIG. 3, the inspection gates 21, 22.23 have an area 'll+ of the first insulating film 31, 32, 33, respectively.
112+113 has a structure smaller than the area aye, att+a*3 of the second insulating film 41, 42, 43. In this case, the first insulating film 3+, 32°3:4
')'I'Q'S: 1 has the same name, and
This third insulating film 11. 〆12. =13 film thicknesses and are the same.

そして第1地縁13+、32.33の膜厚は第2沿縁+
1q・11.42.43の膜厚よりら薄い。
And the film thickness of the first edge 13+, 32.33 is the second edge +
It is thinner than the film thickness of 1q.11.42.43.

このように面積比率A I) l”’ a ?l/ a
 ll+ A pta  22/  a 12.   
、へ l)3”’  a  、z/  a  +3を変
え f二検査用ケート2+、22.23を用い、上記同
様子め作成しf−検量線により、これより構造比率の小
さい実デバイスのケートの信頼性の劣化の程度を判定す
る。
In this way, the area ratio A I) l”' a ?l/ a
ll+ A pta 22/ a 12.
, to l) Change 3''' a, z/a +3, use the f-2 test case 2+, 22.23, create a second child in the same manner as above, and use the f-calibration curve to determine the case of the actual device with a smaller structural ratio than this. Determine the degree of reliability deterioration.

ムお、検査用ケートは、それぞれの絶縁膜の膜厚の面積
とを共に変更して複次個形成するしのて必って乙よい。
It is better to form multiple inspection cages by changing the thickness and area of each insulating film.

また、検査用ゲートのそれぞれの絶縁膜の嘆厚ま、エツ
チング処理により変えるしのであってしよい。すなわち
、実デバイスの熱酸化膜形成工程にわいて、それぞ犯の
絶縁膜の基本となる為酸化膜を形成する。次にその熱酸
化膜にレノストマスクを積層したのち、HFにより熱酸
化膜をエッチングする。このときエツチング処理時間を
変えることにより、エツチング後の熱酸化膜の膜厚をコ
ントロールする。
Further, the thickness of each insulating film of the inspection gate may be changed by etching. That is, in the step of forming a thermal oxide film for an actual device, an oxide film is formed as it becomes the basis of the insulating film of each device. Next, a Renost mask is laminated on the thermal oxide film, and then the thermal oxide film is etched using HF. At this time, the thickness of the thermally oxidized film after etching is controlled by changing the etching treatment time.

(へ)発明の効果 この発明によれば、半導体基板上に実デバイスと略同時
に少なくとも膜厚及び/又は面積比率の異なる2種の絶
縁膜を有する検査用ゲートを、その比率を変えて複数個
形成し、予め作成した検量線を破壊された検査用ゲート
の構造比率と比較することより、製造工程を経た実デバ
イスにおけるゲート信頼性(寿命)の劣化の程度を容易
に判定することができる。すなわち実際の実デバイスの
ゲートにより信頼性の測定をおこなうことなく、実デバ
イスのゲートの信頼性を評価できる。
(f) Effects of the Invention According to the present invention, a plurality of inspection gates having at least two types of insulating films having different film thicknesses and/or area ratios are formed on a semiconductor substrate at the same time as the actual device, with the ratios being changed. By comparing the calibration curve created in advance with the structural ratio of the destroyed inspection gate, it is possible to easily determine the degree of deterioration in gate reliability (life) in the actual device that has gone through the manufacturing process. That is, the reliability of the gate of an actual device can be evaluated without measuring reliability using the gate of the actual device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例における検査用ゲートの構造
を示す要部縦断面図、第2図は実施例における検量線を
示すグラフ、第3図は検査用ゲートの構成を示す要部平
面図である。 ・・・・ウェハ 2・ 3・・・・・第1絶縁膜、 ・・・・電極、Cc・ ・・検査用ゲート、 4・・・・・・第2絶縁膜、 ・検量線。 41 記3図 2 Z
FIG. 1 is a vertical cross-sectional view of the main part showing the structure of the test gate in the embodiment of the present invention, FIG. 2 is a graph showing the calibration curve in the embodiment, and FIG. 3 is a plan view of the main part showing the structure of the test gate. It is a diagram. ... Wafer 2. 3... First insulating film, ... Electrode, Cc... Inspection gate, 4... Second insulating film, - Calibration curve. 41 Note 3 Figure 2 Z

Claims (1)

【特許請求の範囲】[Claims] 1、一つの半導体基板上に実デバイスを形成すると共に
、これと略同時にその半導体基板の実デバイスが形成さ
れない領域に、膜厚が大なる第1絶縁膜とそれより小さ
な膜厚の第2絶縁膜が連続して形成されさらにそれらの
絶縁膜上に電極が積層されて構成される第1の検査用ゲ
ート、この第1の検査用ゲートにおける第1絶縁膜及び
第2絶縁膜の膜厚比率及び/又は面積比率が異なり、か
つその上に電極が積層されて構成される第2、3以上の
複次の検査用ゲートがそれぞれ設けられ、これら複次の
検査用ゲートを上記実デバイスの形成時におこなわれる
帯電プロセスと同一の条件に付すことで得られる検査用
ゲートの破壊状態と、予め作成された比較ゲートによる
ゲート破壊検量線とを比較し、これによって実デバイス
の損傷状態を検出することを特徴とする半導体装置の検
査方法。
1. At the same time as forming an actual device on one semiconductor substrate, a first insulating film with a large thickness and a second insulating film with a smaller thickness are formed on a region of the semiconductor substrate where the actual device is not formed. A first inspection gate formed by continuously forming films and further laminating electrodes on these insulating films, and a film thickness ratio of the first insulating film and the second insulating film in this first inspection gate. And/or second, third or more multiple inspection gates having different area ratios and having electrodes stacked thereon are provided, and these multiple inspection gates are used to form the actual device. To detect the damage state of the actual device by comparing the destruction state of the inspection gate obtained by subjecting it to the same conditions as the charging process that is sometimes performed and the gate destruction calibration curve created in advance by the comparison gate. A semiconductor device inspection method characterized by:
JP7096190A 1990-03-19 1990-03-19 Inspection of semiconductor device Pending JPH03270044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7096190A JPH03270044A (en) 1990-03-19 1990-03-19 Inspection of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096190A JPH03270044A (en) 1990-03-19 1990-03-19 Inspection of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03270044A true JPH03270044A (en) 1991-12-02

Family

ID=13446623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096190A Pending JPH03270044A (en) 1990-03-19 1990-03-19 Inspection of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03270044A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104633A (en) * 1984-10-29 1986-05-22 Nippon Denso Co Ltd Measurement of electrified charge of semiconductor surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104633A (en) * 1984-10-29 1986-05-22 Nippon Denso Co Ltd Measurement of electrified charge of semiconductor surface

Similar Documents

Publication Publication Date Title
EP0678909B1 (en) Monitoring of rf-plasma induced potential on a gate dielectric inside a plasma etcher
KR0170456B1 (en) Manufacture of semiconductor device
WO1996023319A2 (en) Wafer level prediction of thin oxide reliability
KR980012203A (en) Semiconductor device contact open test method
US6929965B2 (en) Early response to plasma/charging damage by special pattern design of active region
US5179433A (en) Breakdown evaluating test element
JPH03270044A (en) Inspection of semiconductor device
US3851245A (en) Method for determining whether holes in insulated layer of semiconductor substrate are fully open
CN205723527U (en) Reliability testing structure
JP5487579B2 (en) Silicon wafer evaluation method and manufacturing method
JP2007194422A (en) Test pattern wafer for defect inspecting device, its manufacturing method, and evaluation method of defect inspection apparatus using it
JPH11265918A (en) Measuring method of electron shading damage
JPH036661B2 (en)
US6677608B2 (en) Semiconductor device for detecting gate defects
TWI488234B (en) Release accumulative charges on wafers using o2 neutralization
US20210109051A1 (en) Inspection Structure and Inspection Method
JP3788422B2 (en) Inspection method of semiconductor device
KR20000045895A (en) Method for forming test pattern
US6365426B1 (en) Method of determining the impact of plasma-charging damage on yield and reliability in submicron integrated circuits
US7105398B2 (en) Method for monitoring lateral encroachment of spacer process on a CD SEM
JPH06204312A (en) Evaluating device for amount of electrification and manufacture thereof
JPH10214966A (en) Method for managing process
JPH09139388A (en) Manufacture of metal minute pattern
JP2004031465A (en) Wafer for damage evaluation and wafer damage evaluating method
Gagnard et al. Unique measurement to monitor the gate oxide lifetime indicator, case studies