JPH03269352A - Method and instrument for measuring thermal expansion coefficient of long sized sample - Google Patents
Method and instrument for measuring thermal expansion coefficient of long sized sampleInfo
- Publication number
- JPH03269352A JPH03269352A JP7023390A JP7023390A JPH03269352A JP H03269352 A JPH03269352 A JP H03269352A JP 7023390 A JP7023390 A JP 7023390A JP 7023390 A JP7023390 A JP 7023390A JP H03269352 A JPH03269352 A JP H03269352A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- thermal expansion
- temperature change
- change
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 6
- 239000004917 carbon fiber Substances 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
- 239000003550 marker Substances 0.000 abstract description 7
- 238000006073 displacement reaction Methods 0.000 abstract description 5
- 239000000523 sample Substances 0.000 description 104
- 238000010586 diagram Methods 0.000 description 10
- 238000000691 measurement method Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、炭素繊維などの長尺状試料の熱膨張係数を測
定する方法およびその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the coefficient of thermal expansion of a long sample such as carbon fiber.
[従来の技術]
一般的な熱膨張係数の測定方法の一つとして、次のよう
な示差式測定法が知られている。この測定方法は、測定
試料と、予め熱膨張係数の知られている石英ガラスなど
の照合試料とを、加熱炉内にセットし、これらの各試料
に石英製の押し棒をそれぞれ当接させ、押し棒の先端部
の変位を示差トランスで検出し、両試料の熱膨張の差か
ら、測定試料の熱膨張係数を測定するものである。[Prior Art] As one of the general methods for measuring the coefficient of thermal expansion, the following differential measurement method is known. In this measurement method, a measurement sample and a reference sample such as quartz glass whose coefficient of thermal expansion is known are set in a heating furnace, and a quartz push rod is brought into contact with each of these samples. The displacement of the tip of the push rod is detected by a differential transformer, and the coefficient of thermal expansion of the sample to be measured is measured from the difference in thermal expansion between the two samples.
[発明が解決しようとする課題]
しかしながら、上述した従来法には次のような問題点が
ある。[Problems to be Solved by the Invention] However, the above-mentioned conventional method has the following problems.
(1)従来の測定方法は、比較的短尺(例えば、10c
m程度)の測定試料を対象としでいるため、測定試料の
熱膨張係数が小さいと、寸法変化の絶対値が小さくなり
、測定精度が低下するという問題点がある。(1) Conventional measurement methods use relatively short lengths (for example, 10cm
Since the measurement sample is of the order of m), there is a problem that if the coefficient of thermal expansion of the measurement sample is small, the absolute value of the dimensional change will be small and the measurement accuracy will be reduced.
(2)一方、測定試料を長くすると、加熱炉の温度分布
のバラツキの影響が大きくなり、これによって測定精度
が低下するので、長尺状試料の測定に適していない。(2) On the other hand, if the measurement sample is made long, the influence of variations in the temperature distribution of the heating furnace increases, which reduces measurement accuracy, and therefore is not suitable for measurement of long samples.
(3)また、測定試料に熱電対などの温度検出器を取り
つけることが困難なので、加熱炉内の雰囲気温度を測定
し、その温度が測定試料の温度であるとみなしているが
、両者の間に温度差が生じることもあり、このことも測
定精度を低下させる一因となっている。(3) Also, since it is difficult to attach a temperature detector such as a thermocouple to the measurement sample, the atmospheric temperature inside the heating furnace is measured and that temperature is assumed to be the temperature of the measurement sample, but there is a difference between the two. There may also be a temperature difference between the two, which is also a factor in reducing measurement accuracy.
(4)さらに、加熱炉の外部で測定試料の一端を把持す
るような測定手法では加熱炉の近くにある試料部分で温
度勾配が生じ、これによる寸法変化のために測定精度が
低下する。(4) Furthermore, in a measurement method in which one end of the measurement sample is held outside the heating furnace, a temperature gradient occurs in the part of the sample near the heating furnace, and measurement accuracy decreases due to dimensional changes caused by this.
本発明は、このような事情に鑑みてなされたものであっ
て、長尺状試料の熱膨張係数を精度よく測定することが
できる測定方法およびその装置を提供することを目的と
している。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a measuring method and apparatus that can accurately measure the coefficient of thermal expansion of a long sample.
[課題を解決するための手段]
本発明者らは、上記従来方法の問題点を解決するために
検討した結果、長尺状試料の温度変化に起因する電気抵
抗の変化に着目した。すなわち、第2図に示すように、
炭素繊維などの長尺状試料の場合、電気抵抗と温度との
関係が1次式で近似できる温度域を有し、しかも、第3
図に示すように、この温度域では試料の熱膨張係数が一
定の値を示す(温度変化と長さ変化とが比例関係を示す
)ことに着目した。[Means for Solving the Problems] As a result of studies to solve the problems of the above-mentioned conventional methods, the present inventors focused on changes in electrical resistance caused by temperature changes in a long sample. That is, as shown in Figure 2,
In the case of long samples such as carbon fibers, the relationship between electrical resistance and temperature has a temperature range that can be approximated by a linear equation, and
As shown in the figure, we focused on the fact that the thermal expansion coefficient of the sample shows a constant value in this temperature range (temperature change and length change show a proportional relationship).
本発明者らは、このような知見に基づき、中間部分に温
度変化を与えた長尺状試料の長さ変化を測定するととも
に、前記長尺状試料の両端部で、かつ、前記温度変化の
影響を実質的に受けない2点間の電気抵抗を測定し、こ
の電気抵抗を前記2点間の平均温度変化に換算し、この
平均温度変化を用いて長尺状試料の熱膨張係数を算出す
ることにより、加熱手段の温度変化のバラツキや、試料
中の温度勾配の影響を補正した精度の高い測定を行うこ
とができることに想到した。Based on these findings, the present inventors measured the length change of a long sample with a temperature change applied to the middle part, and also measured the length change of the long sample at both ends of the long sample due to the temperature change. Measure the electrical resistance between two points that are virtually unaffected, convert this electrical resistance to the average temperature change between the two points, and use this average temperature change to calculate the coefficient of thermal expansion of the long sample. By doing so, we have come up with the idea that it is possible to perform highly accurate measurements that correct for variations in temperature changes in the heating means and the effects of temperature gradients in the sample.
以下に、長尺状試料が温度勾配をもっていても、その平
均温度変化を知ることにより、その試料の熱膨張係数を
測定できることを説明する。Below, it will be explained that even if a long sample has a temperature gradient, the coefficient of thermal expansion of the sample can be measured by knowing the average temperature change.
第4図は、試料の中間部分に温度変化を与えたときに加
熱炉の末端部で生じる温度分布(温度勾配)を模式的に
示した図である。FIG. 4 is a diagram schematically showing the temperature distribution (temperature gradient) that occurs at the end of the heating furnace when a temperature change is applied to the middle part of the sample.
図中、T、は加熱前の−様な初期温度、T、は加熱炉内
の温度、T (x)は加熱炉端部にあたる試料領域(不
均一温度分布領域)の任意点Xの温度である。X点の温
度変化ΔT (x)は次式(1)で表される。In the figure, T is the −-like initial temperature before heating, T is the temperature inside the heating furnace, and T (x) is the temperature at an arbitrary point X in the sample region (non-uniform temperature distribution region) at the end of the heating furnace. . The temperature change ΔT (x) at point X is expressed by the following equation (1).
ΔT (x) −T (x) To
−−(1)一方、不均一温度分布領域(図中、0〈X〈
L)の試料の平均温度Tは次式(2)で表される。ΔT (x) −T (x) To
--(1) On the other hand, non-uniform temperature distribution region (0〈X〈
The average temperature T of the sample L) is expressed by the following equation (2).
I+
また、不均一温度分布領域での試料の長さ変化ΔLは、
次式(3)によって表される。I+ Also, the sample length change ΔL in the non-uniform temperature distribution region is
It is expressed by the following equation (3).
ΔL−1シα・ΔT(x)dx ・・・・・・
(3)ここで、熱膨張係数αが温度に依らず一定である
とすると、ヒ式(3)は次のように表される。ΔL-1 α・ΔT(x)dx ・・・・・・
(3) Here, assuming that the coefficient of thermal expansion α is constant regardless of temperature, equation (3) can be expressed as follows.
Δ■、−αS:ΔT(x)dx ・・・・・
・(4)(1)、 (2) (4)式より、Δ1.は
次のように表される。Δ■, -αS: ΔT(x)dx ・・・・・・
・(4)(1), (2) From equation (4), Δ1. is expressed as follows.
ΔL−aS’; (T (x)−T。)dx−α(T−
To)L ・・・・・・(5)(5)式より
、試料が不均一な温度分布をしていても、熱膨張係数α
が温度によらず一定である場合は、試料の長さ変化は、
試料の平均温度変化に比例することがわかる。ΔL−aS′; (T (x)−T.) dx−α(T−
To) L ...... (5) From equation (5), even if the sample has an uneven temperature distribution, the thermal expansion coefficient α
If is constant regardless of temperature, the change in length of the sample is
It can be seen that it is proportional to the average temperature change of the sample.
要するに、試料中に温度勾配があっても、試料の長さI
−と、温度変化よる長さΔLと、試料の平均温度変化Δ
T (=T To )を知ることにより、試料の熱膨
張係数αを求めることができる。そして、試料の平均温
度変化Δ丁は、上述したように試料の電気抵抗による温
度測定によって容易に知ることができる。In short, even if there is a temperature gradient in the sample, the sample length I
-, the length ΔL due to temperature change, and the average temperature change Δ of the sample
By knowing T (=T To ), the thermal expansion coefficient α of the sample can be determined. The average temperature change Δc of the sample can be easily determined by temperature measurement based on the electrical resistance of the sample, as described above.
以上のような知見に基づく本発明に係る長尺状試料の熱
膨張係数測定方法は、長尺状試料の一端を固定し、他端
に張力をかけた状態で、前記試料の長さ方向の中間部分
に温度変化を与え、この温度変化の影響を実質的に受け
ない試料両端部近傍の2点間の電気抵抗を測定し、この
電気抵抗を前記試料の平均温度変化(ΔT)に換算し、
この平均温度変化(ΔT)と、温度変化を与える前の前
記2点間の試料長さ(L)と、温度変化によって生した
試料長さの変化(ΔL)とにより、熱膨張係数(α)
を求めるものである。The method for measuring the coefficient of thermal expansion of a long sample according to the present invention based on the above knowledge is to fix one end of the long sample and apply tension to the other end, and to measure the coefficient of thermal expansion of the sample in the longitudinal direction. Apply a temperature change to the middle part, measure the electrical resistance between two points near both ends of the sample that are not substantially affected by this temperature change, and convert this electrical resistance to the average temperature change (ΔT) of the sample. ,
The thermal expansion coefficient (α) is determined by this average temperature change (ΔT), the sample length (L) between the two points before applying the temperature change, and the sample length change (ΔL) caused by the temperature change. This is what we seek.
本発明方法に適した長尺状試料は、例えば炭素繊維のよ
うに、電気抵抗と温度との関係が1次式で近似できる温
度域を有し、しかも、この温度域において試料の熱膨張
係数が一定であるとみなすことができる特性をもった試
料である。ただし、広範囲の温度域についてみれば、電
気抵抗と温度との関係が1次式で近似できなかったり、
熱膨張係数が一定でない試料であっても、狭い温度域で
上記の特性をもつと認められる試料であれば、本発明方
法を適用することができる。A long sample suitable for the method of the present invention, such as carbon fiber, has a temperature range in which the relationship between electrical resistance and temperature can be approximated by a linear equation, and the thermal expansion coefficient of the sample in this temperature range. This is a sample with characteristics that can be considered constant. However, in a wide temperature range, the relationship between electrical resistance and temperature cannot be approximated by a linear equation,
Even if the coefficient of thermal expansion is not constant, the method of the present invention can be applied to the sample as long as it is recognized to have the above characteristics in a narrow temperature range.
また、本発明方法を実施する測定装置は、長尺状試料の
一端を固定する固定手段と、前記試料の他端に張力を作
用させる張力付与手段と、前記試料の中間部分を取り囲
んで、その中間部分に温度変化を与える加熱手段と、前
記長尺状試料の張力付与側端部の長さ方向の位置変化を
検出する検出手段と、前記加熱手段による温度変化の影
響を実質的に受けない試料両端部近傍の2点間に通電す
る通電手段と、前記2点間の電圧を測定する電圧測定手
段とを備えたものである。Further, the measuring device for carrying out the method of the present invention includes a fixing means for fixing one end of the elongated sample, a tension applying means for applying tension to the other end of the sample, and a tension applying means that surrounds the middle part of the sample. a heating means for applying a temperature change to the intermediate portion; a detection means for detecting a change in the position of the tension-applying side end of the elongated sample in the longitudinal direction; and substantially unaffected by the temperature change caused by the heating means. It is equipped with a current supply means for supplying current between two points near both ends of the sample, and a voltage measurement means for measuring the voltage between the two points.
[作用]
本発明に係る長尺状試料の熱膨張係数測定方法によれば
、温度変化の影響を実質的に受けない試料両端の2点間
の電気抵抗を測定し、この電気抵抗を平均温度変化に換
算しているので、加熱手段における温度のバラツキや、
加熱手段両端部の温度勾配の影響を試料が受けても、正
確に熱膨張係数が測定される。[Function] According to the method for measuring the coefficient of thermal expansion of a long sample according to the present invention, the electrical resistance between two points at both ends of the sample, which is not substantially affected by temperature changes, is measured, and this electrical resistance is calculated as the average temperature. Since it is converted into a change, it is possible to account for variations in temperature in the heating means,
Even if the sample is affected by the temperature gradient at both ends of the heating means, the coefficient of thermal expansion can be accurately measured.
また、本発明に係る測定装置によれば、長尺状試料の張
力付与側端部の長さ方向の位置変化を検出することで、
加熱前後の試料の長さ変化を測定する。また、通電手段
によって、試料両端の2点間に所定の電流を流し、その
ときの2点間の電位差を電圧測定手段で測定することに
より、前記2点間の電気抵抗が求められる。Further, according to the measuring device according to the present invention, by detecting a change in the position of the tension-applying side end of the elongated sample in the longitudinal direction,
Measure the change in length of the sample before and after heating. Furthermore, the electrical resistance between the two points is determined by passing a predetermined current between two points on both ends of the sample using the current supply means and measuring the potential difference between the two points using the voltage measuring means.
[実施例] 以下、本発明の一実施例を図面に基づいて説明する。[Example] Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図は、本発明方法を用いた測定装置の概略構成を示
した説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of a measuring device using the method of the present invention.
図中、符号Sは、測定対象となる長尺状試料である。試
料Sの上端は、支柱1に支えられた固定手段としてのク
ランプ機構2によって把持されている。支柱1は、熱膨
張係数の小さいな材料、例えば石英やインバー等で形成
するのが好ましい。In the figure, the symbol S is a long sample to be measured. The upper end of the sample S is gripped by a clamp mechanism 2 that is supported by a support 1 and serves as a fixing means. The support column 1 is preferably made of a material with a small coefficient of thermal expansion, such as quartz or invar.
また、測定時の雰囲気の温度変化による支柱lの長さの
変化を確認するために、適当な長さ検出器を支柱1に取
りつけておくことが好ましいが、雰囲気の温度が安定し
ている場合には、このような長さ検出器を取りつける必
要はない。In addition, it is preferable to attach an appropriate length detector to the pillar 1 in order to check the change in the length of the pillar 1 due to changes in the temperature of the atmosphere during measurement, but if the temperature of the atmosphere is stable, There is no need to install such a length detector.
試料Sの下端には、張力付与手段としての錘3と、試料
Sの下端の位置変化を検出するための手段の一部である
マーカ4とが取り付けられている。A weight 3 as a tension applying means and a marker 4 as a part of means for detecting a change in the position of the lower end of the sample S are attached to the lower end of the sample S.
なお、位置変化検出の手法によっては、マーカ4を用い
ないで、錘3の変位を検出することも可能である。また
、マーカ4が適当な重量をもっていれば、錘3を個別に
取り付ける必要もない。5は、マーカ4とともに試料S
の下端の位置変化を検出す・る手段を構成しているレー
ザスキャンマイクロメークであって、マーカ4の変位に
応して変化するレーザの透過光量を検出することによっ
て、試料Sの長さ変化を非接触で検出し、その変化値を
表示器6に出力する。試料Sの下端の変位を検出する手
段としては、差動トランスなどを使用することも可能で
ある。Note that depending on the position change detection method, it is also possible to detect the displacement of the weight 3 without using the marker 4. Further, if the marker 4 has an appropriate weight, there is no need to attach the weight 3 separately. 5 is sample S with marker 4.
This laser scanning micromake device constitutes a means for detecting changes in the position of the lower end of the sample S, and detects changes in the length of the sample S by detecting the amount of transmitted laser light that changes in accordance with the displacement of the marker 4. is detected without contact, and the change value is output to the display 6. As a means for detecting the displacement of the lower end of the sample S, it is also possible to use a differential transformer or the like.
7は、試料Sの中間部分に温度変化を与える加熱手段と
しての加熱炉であり、この加熱炉7内には窒素ガスなど
の不活性ガスで雰囲気を置換することができる炉芯管8
があり、試料Sはこの炉芯管8を貫通ずるように垂下さ
れている。Reference numeral 7 denotes a heating furnace as a heating means for applying a temperature change to the middle portion of the sample S. Inside the heating furnace 7, there is a furnace core tube 8 that can replace the atmosphere with an inert gas such as nitrogen gas.
The sample S is suspended so as to pass through the furnace core tube 8.
試料Sの両端部には、試料Sに通電するための電流端子
al+82と、両端部の電位差を検出するための電圧端
子す、、b2が設けられている。At both ends of the sample S, a current terminal al+82 for supplying current to the sample S and voltage terminals S, B2 for detecting a potential difference between both ends are provided.
各端子が設けられる試料Sの両端部の位置は、加熱炉7
によって与えられる温度変化の影響を実質的に受けない
ところに設定されている。各端子には、試料Sの長さ変
化の検出の妨げにならないように、金線を銀ペースなど
で各端子に電気接続し、前記金線を導線として用いてい
る。このような導線を通して電流端子alt82に通電
手段としての定電流電源9が接続されており、また、電
圧端子b+、bzに電圧測定手段としての電圧測定器1
0が接続されている。The positions of both ends of the sample S where each terminal is provided are located at the heating furnace 7.
The temperature is set so that it is virtually unaffected by temperature changes caused by. A gold wire is electrically connected to each terminal with silver paste or the like so as not to interfere with the detection of a change in the length of the sample S, and the gold wire is used as a conducting wire. A constant current power source 9 as a current supply means is connected to the current terminal alt82 through such a conductive wire, and a voltage measuring device 1 as a voltage measuring means is connected to the voltage terminals b+ and bz.
0 is connected.
試料Sの長さ方向の電気抵抗の測定は、上述したように
、いわゆる4端子測定で行うことが好ましいが、2端子
測定で行ってもよい。測定方法の一例としては、JIS
C2525がある。As described above, it is preferable to measure the electrical resistance in the longitudinal direction of the sample S by a so-called four-terminal measurement, but it may also be carried out by a two-terminal measurement. An example of a measurement method is JIS
There is C2525.
以下、上述した実施例装置で行った長尺状試料Sの熱膨
張係数の測定例について説明する。Hereinafter, an example of measuring the coefficient of thermal expansion of the elongated sample S using the above-mentioned embodiment apparatus will be described.
ここでは、試料Sとして、東し株式会社製の炭素繊維「
トレカ T800 HJを用いた。第2図は、上述の実
施例装置で測定された電気抵抗を平均温度に換算するた
めに、予め測定された前記試料Sの電気抵抗の温度特性
である。この温度特性を予め得るために、試料Sを熱風
循環式恒温槽の雰囲気内に七ッI−L、電気抵抗は、上
述した実施例と同様に4端子法によって測定し、雰囲気
内の温度は基準温度計によって測定した。Here, as sample S, carbon fiber manufactured by Toshi Co., Ltd.
Trading card T800 HJ was used. FIG. 2 shows the temperature characteristics of the electrical resistance of the sample S, which was measured in advance in order to convert the electrical resistance measured by the above-described embodiment apparatus into an average temperature. In order to obtain this temperature characteristic in advance, the sample S was placed in the atmosphere of a hot air circulation type constant temperature bath. Measured by reference thermometer.
第2図より明らかなように、この試料Sは、その電気抵
抗と温度との関係が1次式で近似できる温度域をもって
いることがわかる。ここでは、第1
2図の校正図を作成するために供した試料と、実際に熱
膨張係数を測定するために供した試料とが同し断面積を
もつことから、電気抵抗の単位としてΩ/ cmを用い
たが、両試料の長さが等しい場合には、電気抵抗の単位
をΩで表してもよい。また、試料の断面積が簡単に測定
できる場合には、体積抵抗率で表してもよい。As is clear from FIG. 2, this sample S has a temperature range in which the relationship between its electrical resistance and temperature can be approximated by a linear equation. Here, since the sample used to create the calibration diagram in Figure 12 and the sample used to actually measure the thermal expansion coefficient have the same cross-sectional area, the unit of electrical resistance is Ω. / cm was used, but if both samples have the same length, the unit of electrical resistance may be expressed in Ω. Alternatively, if the cross-sectional area of the sample can be easily measured, it may be expressed in terms of volume resistivity.
第3図は、上述した試料S(炭素繊維:トレカT800
H)を、第1図に示した実施例装置で測定した得られた
長さ変化と平均温度との関係を示した特性図である。図
中、○印は昇温過程で得られた測定値、Δ印は降温過程
で得られた測定値を示している。縦軸は、レーザスキャ
ンマイクロメータ5によって測定された試料Sの長さの
変化値ΔLと、この長さ変化を温度変化前の試料長さで
除算した変化率(ΔL/Lx103)である。横軸は、
昇温あるいは降温過程で試料Sに、試料自体が自己加熱
しない程度の定電流Iを流し、そのときの電圧値■を測
定し、抵抗R=V/Iの関係から抵抗値Rをもとめ、そ
の抵抗値を電圧端子b2
1、b2間の試料長さLで除算して単位長さ当たりの抵
抗値[07cm ]を求め、第2図の校正図を利用して
前記抵抗値を温度に換算したものである。Figure 3 shows the above-mentioned sample S (carbon fiber: Trading card T800
FIG. 2 is a characteristic diagram showing the relationship between the obtained length change and the average temperature when H) was measured using the embodiment apparatus shown in FIG. 1. In the figure, the ○ mark indicates the measured value obtained during the temperature rising process, and the Δ mark indicates the measured value obtained during the temperature decreasing process. The vertical axis represents the change value ΔL in the length of the sample S measured by the laser scanning micrometer 5 and the rate of change (ΔL/L×103) obtained by dividing this length change by the sample length before the temperature change. The horizontal axis is
A constant current I is applied to the sample S during the temperature raising or cooling process to the extent that the sample itself does not heat up, and the voltage value (■) at that time is measured.The resistance value R is determined from the relationship R=V/I. The resistance value was divided by the sample length L between voltage terminals b2 1 and b2 to obtain the resistance value per unit length [07 cm], and the resistance value was converted to temperature using the calibration diagram in Figure 2. It is something.
第3図から明らかなように、この試料Sの熱膨張係数は
、測定温度域内で一定であり、試料Sの長さと温度との
関係は、昇温時および降温時ともに変化しないことがわ
かる。As is clear from FIG. 3, the coefficient of thermal expansion of this sample S is constant within the measurement temperature range, and it can be seen that the relationship between the length of the sample S and the temperature does not change when the temperature is increased or decreased.
このようにして得られた測定データから、試料Sの適当
な平均温度変化(ΔT)と、そのときの試料長さの変化
(ΔL)とを求め、温度変化前の電圧端子す、、b2間
の試料長さ(L)とから、熱膨張係数(α)を求めると
、前記試料Sの熱膨張係数は、−0,55X10−6で
あった。因みに、温度変化の影響を受ける加熱炉7の端
部近くに電圧端子を設定して試料Sの熱膨張係数を測定
すると、加熱炉7の両端近傍の温度勾配による長さ変化
の影響により、その値は−0,58X10−’になった
。From the measurement data obtained in this way, find the appropriate average temperature change (ΔT) of the sample S and the change in sample length (ΔL) at that time, and calculate the difference between the voltage terminals S, B2 before the temperature change. When the thermal expansion coefficient (α) was determined from the sample length (L), the thermal expansion coefficient of the sample S was −0.55×10 −6 . Incidentally, if the thermal expansion coefficient of the sample S is measured by setting a voltage terminal near the ends of the heating furnace 7 that are affected by temperature changes, the thermal expansion coefficient of the sample S will be The value became -0,58X10-'.
なお、第1図に示した測定装置では、試料Sの両端部で
温度変化の影響を受けない2点間(第1図中、電圧端子
b+、bz間)の電圧値から、前記2点間の試料Sの平
均温度を求めているが、これは、前記2点間をさらに細
かく分割した複数個の区間でそれぞれ電圧値を検出して
各区間の抵抗値を求めて、各区間の平均温度変化ΔT1
.ΔT2 ΔT3.・・・にそれぞれ換算し、これを次
式に代入して、熱膨張係数αを求めるようにしてもよい
。In addition, in the measuring device shown in FIG. 1, from the voltage value between two points (between voltage terminals b+ and bz in FIG. 1) that are not affected by temperature changes at both ends of the sample S, The average temperature of the sample S is determined by dividing the two points into smaller sections, detecting the voltage value in each section, determining the resistance value in each section, and calculating the average temperature in each section. Change ΔT1
.. ΔT2 ΔT3. The coefficient of thermal expansion α may be determined by converting them into the following equation and substituting them into the following equation.
ΔL−α1 ・Ll ・ΔT、 4−α2 ・L2 ・
ΔT2+α3 ・1,3 ・ΔT3+・・・=α(L
+ ・ΔT1+L2 ・ΔT2+L、 ・ΔT3+
・・・) ・・・・・・(7)ここで、α1−α
2−α3 (−α)、L+、L2+’−’1+ ・・・
は各区間の温度変化前の試料長さである。ΔL-α1 ・Ll ・ΔT, 4-α2 ・L2 ・
ΔT2+α3 ・1,3 ・ΔT3+...=α(L
+ ・ΔT1+L2 ・ΔT2+L, ・ΔT3+
・・・) ・・・・・・(7) Here, α1−α
2-α3 (-α), L+, L2+'-'1+...
is the sample length before temperature change in each section.
[発明の効果]
以上の説明から明らかなように、本発明に係る長尺状試
料の熱膨張係数測定方法および測定装置によれば、長尺
状試料の両端部にある温度変化の影響を実質的に受けな
い2点間の抵抗値を測定し、その抵抗値を前記2点間の
試料Sの平均温度変化に換算し、この平均温度変化に基
づいて熱膨張係数を求めているので、加熱手段の温度分
布のバラツキや加熱手段の端部の温度勾配の影響に左右
されないで長尺状試料の熱膨張係数を精度よく測定する
ことができる。[Effects of the Invention] As is clear from the above explanation, according to the method and apparatus for measuring the thermal expansion coefficient of a long sample according to the present invention, the influence of temperature changes at both ends of the long sample can be substantially suppressed. The resistance value between two points that are not affected by the temperature is measured, the resistance value is converted to the average temperature change of the sample S between the two points, and the coefficient of thermal expansion is calculated based on this average temperature change. It is possible to accurately measure the coefficient of thermal expansion of a long sample without being influenced by variations in the temperature distribution of the means or the temperature gradient at the end of the heating means.
第1図は本発明の一実施例に係る長尺状試料の熱膨張係
数測定装置の概略構成を示した説明図、第2図は試料の
電気抵抗の温度特性図、第3図は試料の長さ変化と平均
温度変化との関係を示した特性図、第4図は試料中の不
均一温度分布領域の温度分布を示した模式図である。
S・・・長尺状試料 1・・・支柱2・・・クラン
プ機構 3・・・錘
4・・・マーカ
5・・・レーザスキャンマイクロメータ6・・・表示器
7・・・加熱炉 8・・・炉芯管9・・・定電
流源 10・・・電圧測定器al+ a2・・
・電流端子
5
b+、bz・・・電圧端子
6Fig. 1 is an explanatory diagram showing the schematic configuration of a thermal expansion coefficient measuring device for a long sample according to an embodiment of the present invention, Fig. 2 is a temperature characteristic diagram of electrical resistance of the sample, and Fig. 3 is a diagram of the temperature characteristics of the sample A characteristic diagram showing the relationship between length change and average temperature change, and FIG. 4 is a schematic diagram showing the temperature distribution in the non-uniform temperature distribution region in the sample. S... Long sample 1... Support 2... Clamp mechanism 3... Weight 4... Marker 5... Laser scan micrometer 6... Display 7... Heating furnace 8 ...Furnace core tube 9...Constant current source 10...Voltage measuring device al+ a2...
・Current terminal 5 b+, bz...Voltage terminal 6
Claims (3)
状態で、前記試料の長さ方向の中間部分に温度変化を与
え、この温度変化の影響を実質的に受けない試料両端部
近傍の2点間の電気抵抗を測定し、この電気抵抗を前記
試料の平均温度変化(ΔT)に換算し、この平均温度変
化(ΔT)と、温度変化を与える前の前記2点間の試料
長さ(L)と、温度変化によって生じた試料長さの変化
(ΔL)とにより、熱膨張係数(α) α=1/L・ΔL/ΔT を求めることを特徴とする長尺状試料の熱膨張係数測定
方法。(1) With one end of a long sample fixed and tension applied to the other end, a temperature change is applied to the middle part of the sample in the longitudinal direction, and a sample is not substantially affected by this temperature change. Measure the electrical resistance between two points near both ends, convert this electrical resistance into the average temperature change (ΔT) of the sample, and calculate the difference between this average temperature change (ΔT) and the two points before applying the temperature change. The coefficient of thermal expansion (α) α=1/L・ΔL/ΔT is determined from the sample length (L) and the change in sample length (ΔL) caused by temperature change. Method for measuring thermal expansion coefficient of sample.
の長尺状試料の熱膨張係数測定方法。(2) The method for measuring the coefficient of thermal expansion of an elongated sample according to claim (1), wherein the elongated sample is carbon fiber.
料の他端に張力を作用させる張力付与手段と、前記試料
の中間部分を取り囲んで、その中間部分に温度変化を与
える加熱手段と、前記長尺状試料の張力付与側端部の長
さ方向の位置変化を検出する検出手段と、前記加熱手段
による温度変化の影響を実質的に受けない試料両端部近
傍の2点間に通電する通電手段と、前記2点間の電圧を
測定する電圧測定手段とを備えたことを特徴とする長尺
状試料の熱膨張係数測定装置。(3) A fixing means for fixing one end of a long sample, a tension applying means for applying tension to the other end of the sample, and a heating means for surrounding an intermediate portion of the sample and applying a temperature change to the intermediate portion. , a detection means for detecting a change in position in the length direction of the tension-applying side end of the elongated sample, and a detection means for detecting a change in position in the length direction of the tension-applying side end of the elongated sample; An apparatus for measuring a coefficient of thermal expansion of a long sample, comprising: a current supply means for supplying current; and a voltage measurement means for measuring the voltage between the two points.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7023390A JP2898333B2 (en) | 1990-03-20 | 1990-03-20 | Method and apparatus for measuring thermal expansion coefficient of long sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7023390A JP2898333B2 (en) | 1990-03-20 | 1990-03-20 | Method and apparatus for measuring thermal expansion coefficient of long sample |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03269352A true JPH03269352A (en) | 1991-11-29 |
JP2898333B2 JP2898333B2 (en) | 1999-05-31 |
Family
ID=13425644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7023390A Expired - Fee Related JP2898333B2 (en) | 1990-03-20 | 1990-03-20 | Method and apparatus for measuring thermal expansion coefficient of long sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2898333B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100430718C (en) * | 2004-03-25 | 2008-11-05 | 宝钢集团上海梅山有限公司 | Equipment and method for detecting steel solidification shrinkage rate |
CN103630567A (en) * | 2013-12-23 | 2014-03-12 | 哈尔滨工业大学 | Anti-background-noise sample heating system for measuring emissivity of translucent material sample |
CN105301042A (en) * | 2015-11-20 | 2016-02-03 | 海南中航特玻科技有限公司 | Method using dilatometer to measure electronic flat glass shrinkage |
CN105606638A (en) * | 2015-12-14 | 2016-05-25 | 中国地质大学(北京) | Instrument for testing burst temperature of fluid inclusion |
CN106931897A (en) * | 2017-03-31 | 2017-07-07 | 哈尔滨工程大学 | Vibration damping flexibility connection pipe deformation measuring device |
CN109765262A (en) * | 2019-02-26 | 2019-05-17 | 江苏弘开传感科技有限公司 | A kind of thermal expansion coefficient measuring instrument |
CN112014421A (en) * | 2020-09-24 | 2020-12-01 | 安徽优泰新材料有限公司 | High-temperature-resistant detection method for nylon heat insulation strip |
-
1990
- 1990-03-20 JP JP7023390A patent/JP2898333B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100430718C (en) * | 2004-03-25 | 2008-11-05 | 宝钢集团上海梅山有限公司 | Equipment and method for detecting steel solidification shrinkage rate |
CN103630567A (en) * | 2013-12-23 | 2014-03-12 | 哈尔滨工业大学 | Anti-background-noise sample heating system for measuring emissivity of translucent material sample |
CN105301042A (en) * | 2015-11-20 | 2016-02-03 | 海南中航特玻科技有限公司 | Method using dilatometer to measure electronic flat glass shrinkage |
CN105606638A (en) * | 2015-12-14 | 2016-05-25 | 中国地质大学(北京) | Instrument for testing burst temperature of fluid inclusion |
CN106931897A (en) * | 2017-03-31 | 2017-07-07 | 哈尔滨工程大学 | Vibration damping flexibility connection pipe deformation measuring device |
CN106931897B (en) * | 2017-03-31 | 2019-09-27 | 哈尔滨工程大学 | Vibration damping flexibility connection pipe deformation measuring device |
CN109765262A (en) * | 2019-02-26 | 2019-05-17 | 江苏弘开传感科技有限公司 | A kind of thermal expansion coefficient measuring instrument |
CN109765262B (en) * | 2019-02-26 | 2024-01-12 | 陈艺征 | Thermal expansion coefficient measuring instrument |
CN112014421A (en) * | 2020-09-24 | 2020-12-01 | 安徽优泰新材料有限公司 | High-temperature-resistant detection method for nylon heat insulation strip |
CN112014421B (en) * | 2020-09-24 | 2024-01-16 | 安徽优泰新材料有限公司 | High temperature resistance detection method for nylon heat insulation strip |
Also Published As
Publication number | Publication date |
---|---|
JP2898333B2 (en) | 1999-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020136262A1 (en) | Increased accuracy of coefficient of thermal expansion measurement | |
EP0644418A1 (en) | Measuring thermal conductivity and apparatus therefor | |
JP3122215B2 (en) | Method and apparatus for measuring linear expansion of an elongated body | |
JPH03269352A (en) | Method and instrument for measuring thermal expansion coefficient of long sized sample | |
JPS6318914Y2 (en) | ||
US4603980A (en) | Methods of measuring temperature and electrical resistivity in a molten glass stream | |
JP2001004455A (en) | Method and device for measuring minute surface temperature distribution | |
JP2674684B2 (en) | Thermal expansion coefficient measurement method | |
JP2909922B2 (en) | Temperature compensation method for thermomechanical analysis | |
JP2000206070A (en) | Thermal analysis device and method for accurately measuring temperature of large-diameter sample | |
JPH03154856A (en) | Thermal expansion measuring instrument | |
JPH05164711A (en) | Thermal conductivity sensor | |
RU169451U1 (en) | Device for photometric study of the properties of metal melts | |
JPH0219722Y2 (en) | ||
JPH11160259A (en) | Apparatus for differential thermal analysis | |
EP3798626B1 (en) | Thermal analysis device, sample holder assembly and thermal analysis method | |
JPH0462460A (en) | Sample temperature detecting device of thermal analyzing device | |
KR200206000Y1 (en) | Optical pyrometer and thermocouple combined calibration tube | |
JPH0697233B2 (en) | Flow velocity sensor and flow velocity measuring device using the same | |
JP2000046660A (en) | Temperature measuring device | |
JPH08304313A (en) | Method for calibrating temperature detector of thermal mechanical analyzing device | |
JPH0569660U (en) | Sample holder for electrical resistance measurement | |
JP2004279074A (en) | Apparatus for thermomechanical analysis | |
RU2629699C1 (en) | Device for photometric determination of specific electrical resistivity of molten metals | |
JP3421464B2 (en) | Measurement method of linear expansion coefficient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |