JP2898333B2 - Method and apparatus for measuring thermal expansion coefficient of long sample - Google Patents

Method and apparatus for measuring thermal expansion coefficient of long sample

Info

Publication number
JP2898333B2
JP2898333B2 JP7023390A JP7023390A JP2898333B2 JP 2898333 B2 JP2898333 B2 JP 2898333B2 JP 7023390 A JP7023390 A JP 7023390A JP 7023390 A JP7023390 A JP 7023390A JP 2898333 B2 JP2898333 B2 JP 2898333B2
Authority
JP
Japan
Prior art keywords
sample
temperature
change
thermal expansion
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7023390A
Other languages
Japanese (ja)
Other versions
JPH03269352A (en
Inventor
良治 星野
健一 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE RISAACHI SENTAA KK
Original Assignee
TORE RISAACHI SENTAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE RISAACHI SENTAA KK filed Critical TORE RISAACHI SENTAA KK
Priority to JP7023390A priority Critical patent/JP2898333B2/en
Publication of JPH03269352A publication Critical patent/JPH03269352A/en
Application granted granted Critical
Publication of JP2898333B2 publication Critical patent/JP2898333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維などの長尺状試料の熱膨張係数を
測定する方法およびその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for measuring the coefficient of thermal expansion of a long sample such as carbon fiber.

[従来の技術] 一般的な熱膨張係数の測定方法の一つとして、次のよ
うな示差式測定法が知られている。この測定方法は、測
定試料と、予め熱膨張係数の知られている石英ガラスな
どの照合試料とを、加熱炉内にセットし、これらの各試
料に石英製の押し棒をそれぞれ当接させ、押し棒の先端
部の変位を示差トランスで検出し、両試料の熱膨張の差
から、測定試料の熱膨張係数を測定するものである。
[Prior Art] The following differential measurement method is known as one of the general methods for measuring the coefficient of thermal expansion. In this measurement method, a measurement sample and a reference sample such as quartz glass whose thermal expansion coefficient is known in advance are set in a heating furnace, and each of these samples is brought into contact with a push rod made of quartz, The displacement of the tip of the push rod is detected by a differential transformer, and the thermal expansion coefficient of the measurement sample is measured from the difference in thermal expansion between the two samples.

[発明が解決しようとする課題] しかしながら、上述した従来法には次のような問題点
がある。
[Problems to be Solved by the Invention] However, the above-described conventional method has the following problems.

(1) 従来の測定方法は、比較的短尺(例えば、10cm
程度)の測定試料を対象としているため、測定試料の熱
膨張係数が小さいと、寸法変化の絶対値が小さくなり、
測定精度が低下するという問題点がある。
(1) The conventional measuring method is relatively short (for example, 10 cm
), The absolute value of the dimensional change becomes smaller if the coefficient of thermal expansion of the sample is small.
There is a problem that the measurement accuracy is reduced.

(2) 一方、測定試料を長くすると、加熱炉の温度分
布のバラツキの影響が大きくなり、これによって測定精
度が低下するので、長尺状試料の測定に適していない。
(2) On the other hand, when the measurement sample is lengthened, the influence of the variation in the temperature distribution of the heating furnace becomes large, and the measurement accuracy is reduced. Therefore, the measurement sample is not suitable for measurement of a long sample.

(3) また、測定試料に熱電対などの温度検出器を取
りつけることが困難なので、加熱炉内の雰囲気温度を測
定し、その温度が測定試料の温度であるとみなしている
が、両者の間に温度差が生じることもあり、このことも
測定速度を低下させる一因となっている。
(3) Since it is difficult to attach a temperature detector such as a thermocouple to the measurement sample, the ambient temperature in the heating furnace is measured, and the temperature is regarded as the temperature of the measurement sample. May cause a temperature difference, which also contributes to a decrease in measurement speed.

(4) さらに、加熱炉の外部で測定試料の一端を把持
するような測定手法では加熱炉の近くにある試料部分で
温度勾配が生じ、これによる寸法変化のために測定精度
が低下する。
(4) Further, in a measurement method in which one end of a measurement sample is gripped outside the heating furnace, a temperature gradient occurs in a sample portion near the heating furnace, and the measurement accuracy is reduced due to a dimensional change due to the temperature gradient.

本発明は、このような事情に鑑みてなされたものであ
って、長尺状試料の熱膨張係数を精度よく測定すること
ができる測定方法およびその装置を提供することを目的
としている。
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a measuring method and an apparatus for accurately measuring a thermal expansion coefficient of a long sample.

[課題を解決するための手段] 本発明者らは、上述従来方法の問題点を解決するため
に検討した結果、長尺状試料の温度変化に起因する電気
抵抗の変化に着目した。すなわち、第2図に示すよう
に、炭素繊維などの長尺状試料の場合、電気抵抗と温度
との関係が1次式で近似できる温度域を有し、しかも、
第3図に示すように、この温度域では試料の熱膨張係数
が一定の値を示す(温度変化と長さ変化とが比例関係を
示す)ことに着目した。
[Means for Solving the Problems] As a result of studying to solve the problems of the above-described conventional method, the present inventors focused on a change in electric resistance due to a temperature change of a long sample. That is, as shown in FIG. 2, in the case of a long sample such as carbon fiber, there is a temperature range in which the relationship between electric resistance and temperature can be approximated by a linear equation, and
As shown in FIG. 3, attention was paid to the fact that the coefficient of thermal expansion of the sample shows a constant value in this temperature range (the temperature change and the length change show a proportional relationship).

本発明者らは、このような知見に基づき、中間部分に
温度変化を与えた長尺状試料の長さ変化を測定するとと
もに、前記長尺状試料の両端部で、かつ、前記温度変化
の影響を実質的に受けない2点間の電気抵抗を測定し、
この電気抵抗を前記2点間の平均温度変化に換算し、こ
の平均温度変化を用いて長尺状試料の熱膨張係数を算出
することにより、加熱手段の温度変化のバラツキや、試
料中の温度勾配の影響を補正した精度の高い測定を行う
ことができることに想到した。
The present inventors measure the change in length of a long sample having a temperature change in an intermediate portion based on such knowledge, and at both end portions of the long sample, and the temperature change. Measure the electrical resistance between two points that are not substantially affected,
This electrical resistance is converted into the average temperature change between the two points, and the thermal expansion coefficient of the long sample is calculated using the average temperature change, thereby causing the variation in the temperature change of the heating means and the temperature in the sample. It has been conceived that high-precision measurement in which the influence of the gradient is corrected can be performed.

以下に、長尺状試料が温度勾配をもっていても、その
平均温度変化を知ることにより、その試料の熱膨張係数
を測定できることを説明する。
Hereinafter, it will be described that even if the long sample has a temperature gradient, the thermal expansion coefficient of the sample can be measured by knowing the average temperature change.

第4図は、試料の中間部分に温度変化を与えたときに
加熱炉の末端部で生じる温度分布(温度勾配)を模式的
に示した図である。
FIG. 4 is a diagram schematically showing a temperature distribution (temperature gradient) generated at the end of the heating furnace when a temperature change is applied to the middle portion of the sample.

図中、T0は加熱前の一様な初期温度、T1は加熱炉内の
温度、T(x)は加熱炉端部にあたる試料領域(不均一
温度分布領域)の任意点xの温度である。x点の温度変
化ΔT(x)は次式(1)で表される。
In the figure, T 0 is the uniform initial temperature before heating, T 1 is the temperature in the heating furnace, and T (x) is the temperature at an arbitrary point x in the sample area (non-uniform temperature distribution area) at the end of the heating furnace. . The temperature change ΔT (x) at the point x is expressed by the following equation (1).

ΔT(x)=T(x)−T0 ……(1) 一方、不均一温度分布領域(図中、0<x<L)の試
料の平均温度は次式(2)で表される。
ΔT (x) = T (x) −T 0 (1) On the other hand, the average temperature of the sample in the non-uniform temperature distribution region (0 <x <L in the figure) is represented by the following equation (2).

また、不均一温度分布領域での試料の長さ変化ΔL
は、次式(3)によって表される。
In addition, the length change ΔL of the sample in the non-uniform temperature distribution region
Is represented by the following equation (3).

ここで、熱膨張係数αが温度に依らず一定であるとす
ると、上式(3)は次のように表される。
Here, assuming that the thermal expansion coefficient α is constant irrespective of the temperature, the above equation (3) is expressed as follows.

(1),(2),(4)式より、ΔLは次のように表
される。
From the equations (1), (2), and (4), ΔL is expressed as follows.

(5)式より、試料が不均一な温度分布をしていて
も、熱膨張係数αが温度によらず一定である場合は、試
料の長さ変化は、試料の平均温度変化に比例することが
わかる。
According to the equation (5), even if the sample has a non-uniform temperature distribution, if the coefficient of thermal expansion α is constant regardless of the temperature, the change in the length of the sample is proportional to the change in the average temperature of the sample. I understand.

要するに、試料中に温度勾配があっても、試料の長さ
Lと、温度変化による長さΔLと、試料の平均温度変化
ΔT(=−T0)を知ることにより、試料の熱膨張係数
αを求めることができる。そして、試料の平均温度変化
ΔTは、上述したように試料の電気抵抗による温度測定
によって容易に知ることができる。
In short, even if there is a temperature gradient in the sample, knowing the length L of the sample, the length ΔL due to the temperature change, and the average temperature change ΔT (= −T 0 ) of the sample, the thermal expansion coefficient α of the sample Can be requested. Then, the average temperature change ΔT of the sample can be easily known by measuring the temperature by the electric resistance of the sample as described above.

以上のような知見に基づく本発明に係る長尺状試料の
熱膨張係数測定方法は、長尺状試料の一端を固定し、他
端に張力をかけた状態で、前記試料の長さ方向の中間部
分に温度変化を与え、この温度変化の影響を実質的に受
けない試料両端部近傍の2点間の電気抵抗を測定し、こ
の電気抵抗を前記試料の平均温度変化(ΔT)に換算
し、この平均温度変化(ΔT)と、温度変化を与える前
の前記2点間の試料長さ(L)と、温度変化によって生
じた試料長さの変化(ΔL)とにより、熱膨張係数
(α) を求めるものである。
The method for measuring the coefficient of thermal expansion of a long sample according to the present invention based on the above-mentioned findings is to fix the one end of the long sample and apply tension to the other end of the long sample in the longitudinal direction of the sample. A temperature change is applied to an intermediate portion, an electric resistance between two points near both ends of the sample which is not substantially affected by the temperature change is measured, and the electric resistance is converted into an average temperature change (ΔT) of the sample. The average thermal change (ΔT), the sample length (L) between the two points before the temperature change is given, and the sample length change (ΔL) caused by the temperature change, the thermal expansion coefficient (α) ) Is what you want.

本発明方法に適した長尺状試料は、例えば炭素繊維の
ように、電気抵抗と温度との関係が1次式で近似できる
温度域を有し、しかも、この温度域において試料の熱膨
張係数が一定であるとみなすことができる特性をもった
試料である。ただし、広範囲の温度域についてみれば、
電気抵抗と温度との関係が1次式で近似できなかった
り、熱膨張係数が一定でない試料であっても、狭い温度
域で上記の特性をもつと認められる試料であれば、本発
明方法を適用することができる。
A long sample suitable for the method of the present invention has a temperature range in which the relationship between electric resistance and temperature can be approximated by a linear equation, such as carbon fiber, and has a coefficient of thermal expansion of the sample in this temperature range. Is a sample having characteristics that can be considered to be constant. However, looking at the wide temperature range,
Even if the relationship between the electrical resistance and the temperature cannot be approximated by a linear equation, or if the sample does not have a constant coefficient of thermal expansion, the sample of the present invention can be used as long as the sample has the above characteristics in a narrow temperature range. Can be applied.

また、本発明方法を実施する測定装置は、長尺状試料
の一端を固定する固定手段と、前記試料の他端に張力を
作用させる張力付与手段と、前記試料の中間部分を取り
囲んで、その中間部分に温度変化を与える加熱手段と、
前記長尺状試料の張力付与側端部の長さ方向の位置変化
を検出する検出手段と、前記加熱手段による温度変化の
影響を実質的に受けない試料両端部近傍の2点間に通電
する通電手段と、前記2点間の電圧を測定する電圧測定
手段とを備えたものである。
Further, the measuring device for performing the method of the present invention is a fixing means for fixing one end of the long sample, a tension applying means for applying a tension to the other end of the sample, and surrounding the intermediate portion of the sample, Heating means for applying a temperature change to the intermediate portion;
A detecting means for detecting a change in the longitudinal direction of the end of the elongated sample in the length direction, and a current is supplied between two points near both ends of the sample which are substantially unaffected by the temperature change by the heating means. And a voltage measuring means for measuring a voltage between the two points.

[作用] 本発明に係る長尺状試料の熱膨張係数測定方法によれ
ば、温度変化の影響を実質的に受けない試料両端の2点
間の電気抵抗を測定し、この電気抵抗を平均温度変化に
換算しているので、加熱手段における温度のバラツキ
や、加熱手段両端部の温度勾配の影響を試料が受けて
も、正確に熱膨張係数が測定される。
[Operation] According to the method for measuring the coefficient of thermal expansion of a long sample according to the present invention, the electric resistance between two points at both ends of the sample, which is substantially unaffected by a temperature change, is measured, and the electric resistance is calculated as the average temperature. Since the change is converted into a change, the coefficient of thermal expansion can be accurately measured even if the sample is affected by temperature variations in the heating means and temperature gradients at both ends of the heating means.

また、本発明に係る測定装置によれば、長尺状試料の
張力付与側端部の長さ方向の位置変化を検出すること
で、加熱前後の試料の長さ変化を測定する。また、通電
手段によって、試料両端の2点間に所定の電流を流し、
そのときの2点間の電位差を電圧測定手段で測定するこ
とにより、前記2点間の電気抵抗が求められる。
Further, according to the measuring device of the present invention, a change in the length of the sample before and after heating is measured by detecting a change in the length direction of the end of the long sample on the tension applying side end. In addition, a predetermined current is applied between the two points at both ends of the sample by the energizing means,
The electric resistance between the two points is determined by measuring the potential difference between the two points at that time by a voltage measuring means.

[実施例] 以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明方法を用いた測定装置の概略構成を
示した説明図である。
FIG. 1 is an explanatory diagram showing a schematic configuration of a measuring apparatus using the method of the present invention.

図中、符号Sは、測定対象となる長尺状試料である。
試料Sの上端は、支柱1に支えられた固定手段としての
クランプ機構2によって把持されている。支柱1は、熱
膨張係数の小さいな材料、例えば石英やインバー等で形
成するのが好ましい。また、測定時の雰囲気の温度変化
による支柱1の長さの変化を確認するために、適当な長
さ検出器を支柱1に取りつけておくことが好ましいが、
雰囲気の温度が安定している場合には、このような長さ
検出器を取りつける必要はない。
In the figure, the symbol S is a long sample to be measured.
The upper end of the sample S is gripped by a clamp mechanism 2 as a fixing means supported by the column 1. The column 1 is preferably formed of a material having a small coefficient of thermal expansion, for example, quartz or invar. Further, it is preferable to attach a suitable length detector to the support 1 in order to confirm a change in the length of the support 1 due to a change in the temperature of the atmosphere during measurement.
If the temperature of the atmosphere is stable, it is not necessary to attach such a length detector.

試料Sの下端には、張力付与手段としての錘3と、試
料Sの下端の位置変化を検出するための手段の一部であ
るマーカ4とが取り付けられている。なお、位置変化検
出の手法によっては、マーカ4を用いないで、錘3の変
位を検出することも可能である。また、マーカ4が適当
な重量をもっていれば、錘3を個別に取り付ける必要も
ない。5は、マーカ4とともに試料Sの下端の位置変化
を検出する手段を構成しているレーザスキャンマイクロ
メータであって、マーカ4の変位に応じて変化するレー
ザの透過光量を検出することによって、試料Sの長さ変
化を非接触で検出し、その変化値を表示器6に出力す
る。試料Sの下端の変位を検出する手段としては、差動
トランスなどを使用することも可能である。
At the lower end of the sample S, a weight 3 as tension applying means and a marker 4 which is a part of a means for detecting a change in the position of the lower end of the sample S are attached. Note that, depending on the position change detection method, the displacement of the weight 3 can be detected without using the marker 4. If the marker 4 has an appropriate weight, it is not necessary to attach the weights 3 individually. Reference numeral 5 denotes a laser scan micrometer which constitutes a means for detecting a change in the position of the lower end of the sample S together with the marker 4, and detects a transmitted light amount of the laser which changes in accordance with the displacement of the marker 4, thereby detecting A change in the length of S is detected in a non-contact manner, and the change value is output to the display 6. As a means for detecting the displacement of the lower end of the sample S, a differential transformer or the like can be used.

7は、試料Sの中間部分に温度変化を与える加熱手段
としての加熱炉であり、この変化炉7内には窒素ガスな
どの不活性ガスで雰囲気を置換することができる炉芯管
8があり、試料Sはこの炉芯管8を貫通するように垂下
されている。
Reference numeral 7 denotes a heating furnace as a heating means for giving a temperature change to an intermediate portion of the sample S. Inside the changing furnace 7, there is a furnace core tube 8 capable of replacing the atmosphere with an inert gas such as nitrogen gas. The sample S is suspended so as to penetrate the furnace core tube 8.

試料Sの両端部には、試料Sに通電するための電流端
子a1,a2と、両端部の電位差を検出するための電圧端子b
1,b2が設けられている。各端子が設けられる試料Sの両
端部の位置は、加熱炉7によって与えられる温度変化の
影響を実質的に受けないところに設定されている。各端
子には、試料Sの長さ変化の検出の妨げにならないよう
に、金線を銀ペースなどで各端子に電気接続し、前記金
線を導線として用いている。このような導線を通して電
流端子a1,a2に通電手段としての定電流電源9が接続さ
れており、また、電圧端子b1,b2に電圧測定手段として
の電圧測定器10が接続されている。
At both ends of the sample S, current terminals a 1 and a 2 for supplying a current to the sample S and voltage terminals b for detecting a potential difference between both ends are provided.
1 and b 2 are provided. The positions of both ends of the sample S where the terminals are provided are set so as not to be substantially affected by the temperature change given by the heating furnace 7. To each terminal, a gold wire is electrically connected to each terminal at a silver pace or the like so as not to hinder detection of a change in the length of the sample S, and the gold wire is used as a conductive wire. A constant current power supply 9 as a current supply means is connected to the current terminals a 1 and a 2 through such conductors, and a voltage measurement device 10 as a voltage measurement means is connected to the voltage terminals b 1 and b 2. I have.

試料Sの長さ方向の電気抵抗の測定は、上述したよう
に、いわゆる4端子測定で行うことが好ましいが、2端
子測定で行ってもよい。測定方法の一例としては、JIS
C2525がある。
As described above, the measurement of the electrical resistance in the length direction of the sample S is preferably performed by so-called four-terminal measurement, but may be performed by two-terminal measurement. As an example of the measurement method, JIS
There is C2525.

以下、上述した実施例装置で行った長尺状試料Sの熱
膨張係数の測定例について説明する。
Hereinafter, a measurement example of the thermal expansion coefficient of the long sample S performed by the above-described example apparatus will be described.

ここでは、試料Sとして、東レ株式会社製の炭素繊維
「トレカ T800H」を用いた。第2図は、上述の実施例
装置で測定された電気抵抗を平均温度に換算するため
に、予め測定された前記試料Sの電気抵抗の温度特性で
ある。この温度特性を予め得るために、試料Sを熱風循
環式恒温槽の雰囲気内にセットし、電気抵抗は、上述し
た実施例と同様に4端子法によって測定し、雰囲気内の
温度は基準温度計によって測定した。
Here, as sample S, a carbon fiber “Torayca T800H” manufactured by Toray Industries, Inc. was used. FIG. 2 shows the temperature characteristics of the electrical resistance of the sample S measured in advance in order to convert the electrical resistance measured by the above-described apparatus into an average temperature. In order to obtain this temperature characteristic in advance, the sample S was set in the atmosphere of a hot-air circulating thermostat, and the electric resistance was measured by the four-terminal method in the same manner as in the above-described embodiment. Was measured by

第2図より明らかなように、この試料Sは、その電気
抵抗と温度との関係が1次式で近似できる温度域をもっ
ていることがわかる。ここでは、第2図の校正図を作成
するために供した試料と、実際に熱膨張係数を測定する
ために供した試料とが同じ断面積をもつことから、電気
抵抗の単位としてΩ/cmを用いたが、両試料の長さが等
しい場合には、電気抵抗の単位をΩで表してもよい。ま
た、試料の断面積が簡単に測定できる場合には、体積抵
抗率で表してもよい。
As is clear from FIG. 2, it is understood that the sample S has a temperature range in which the relationship between the electric resistance and the temperature can be approximated by a linear equation. Here, since the sample provided for preparing the calibration diagram of FIG. 2 and the sample provided for actually measuring the coefficient of thermal expansion have the same cross-sectional area, the unit of electrical resistance is Ω / cm However, when the lengths of both samples are equal, the unit of the electric resistance may be represented by Ω. When the cross-sectional area of the sample can be easily measured, it may be represented by volume resistivity.

第3図は、上述した試料S(炭素繊維:トレカ T800
H)を、第1図に示した実施例装置で測定した得られた
長さ変化と平均温度との関係を示した特性図である。図
中、○印は昇温過程で得られた測定値、△印は降温過程
で得られた測定値を示している。縦軸は、レーザスキャ
ンマイクロメータ5によって測定された試料Sの長さの
変化値ΔLと、この長さ変化を温度変化前の試料長さで
除算した変化率(ΔL/L×103)である。横軸は、昇温あ
るいは降温過程で試料Sに、試料自体が自己加熱しない
程度の定電流Iを流し、そのときの電圧値Vを測定し、
抵抗R=V/Iの関係から抵抗値Rをもとめ、その抵抗値
を電圧端子b1,b2間の試料長さLで除算して単位長さ当
たりの抵抗値〔Ω/cm〕を求め、第2図の校正図を利用
して前記抵抗値を温度に換算したものである。
FIG. 3 shows the sample S (carbon fiber: trading card T800) described above.
FIG. 2H is a characteristic diagram showing the relationship between the obtained length change and the average temperature measured by the apparatus of the embodiment shown in FIG. In the figure, the circles indicate measured values obtained during the temperature rising process, and the triangles indicate measured values obtained during the cooling process. The vertical axis represents the change value ΔL of the length of the sample S measured by the laser scan micrometer 5 and the change rate (ΔL / L × 10 3 ) obtained by dividing the change in length by the sample length before the temperature change. is there. The horizontal axis is a constant current I that does not self-heat the sample itself during the heating or cooling process, and the voltage value V at that time is measured.
A resistance value R is obtained from a relationship of resistance R = V / I, and the resistance value is divided by a sample length L between the voltage terminals b 1 and b 2 to obtain a resistance value per unit length [Ω / cm]. The resistance value is converted into a temperature using the calibration diagram of FIG.

第3図から明らかなように、この試料Sの熱膨張係数
は、測定温度域内で一定であり、試料Sの長さと温度と
の関係は、昇温時および降温時ともに変化しないことが
わかる。
As is clear from FIG. 3, the coefficient of thermal expansion of the sample S is constant within the measurement temperature range, and the relationship between the length of the sample S and the temperature does not change at the time of temperature rise and temperature decrease.

このようにして得られた測定データから、試料Sの適
当な平均温度変化(ΔT)と、そのときの試料長さの変
化(ΔL)とを求め、温度変化前の電圧端子b1,b2間の
試料長さ(L)とから、熱膨張係数(α)を求めると、
前記試料Sの熱膨張係数は、−0.55×10-6であった。因
みに、温度変化の影響を受ける加熱炉7の端部近くに電
圧端子を設定して試料Sの熱膨張係数を測定すると、加
熱炉7の両端近傍の温度勾配による長さ変化の影響によ
り、その値は−0.58×10-6になった。
From the measurement data thus obtained, an appropriate average temperature change (ΔT) of the sample S and a change in the sample length (ΔL) at that time are obtained, and the voltage terminals b 1 and b 2 before the temperature change are obtained. When the coefficient of thermal expansion (α) is obtained from the sample length (L) between
The thermal expansion coefficient of the sample S was -0.55 * 10 < -6 >. Incidentally, when a voltage terminal is set near the end of the heating furnace 7 affected by the temperature change and the coefficient of thermal expansion of the sample S is measured, the influence of the length change due to the temperature gradient near both ends of the heating furnace 7 indicates that The value became −0.58 × 10 −6 .

なお、第1図に示した測定装置では、試料Sの両端部
で温度変化の影響を受けない2点間(第1図中、電圧端
子b1,b2間)の電圧値から、前記2点間の試料Sの平均
温度を求めているが、これは、前記2点間をさらに細か
く分割した複数個の区間でそれぞれ電圧値を検出して各
区間の抵抗値を求めて、各区間の平均温度変化ΔT1,ΔT
2,ΔT3,…にそれぞれ換算し、これを次式に代入して、
熱膨張係数αを求めるようにしてもよい。
In the measuring apparatus shown in FIG. 1 , the voltage value between two points (between the voltage terminals b 1 and b 2 in FIG. 1 ) at both ends of the sample S, which is not affected by the temperature change, The average temperature of the sample S between the points is obtained by detecting a voltage value in each of a plurality of sections obtained by further dividing the two points and calculating a resistance value of each section. Average temperature change ΔT 1 , ΔT
2 , TT 3 , ...
The thermal expansion coefficient α may be obtained.

ΔL=α・L1・ΔT1+α・L2・ΔT2 +α・L3・ΔT3+… =α(L1・ΔT1+L2・ΔT2 +L3・ΔT3+…) ……(7) ここで、α=α=α(=α)、L1,L2,L3,…は
各区間の温度変化前の試料長さである。
ΔL = α 1 · L 1 · ΔT 1 + α 2 · L 2 · ΔT 2 + α 3 · L 3 · ΔT 3 + ... = α (L 1 · ΔT 1 + L 2 · ΔT 2 + L 3 · ΔT 3 + ...) ... (7) Here, α 1 = α 2 = α 3 (= α), and L 1 , L 2 , L 3 ,... Are the sample lengths before the temperature change in each section.

[発明の効果] 以上の説明から明らかなように、本発明に係る長尺状
試料の熱膨張係数測定方法および測定装置によれば、長
尺状試料の両端部にある温度変化の影響を実質的に受け
ない2点間の抵抗値を測定し、その抵抗値を前記2点間
の試料Sの平均温度変化に換算し、この平均温度変化に
基づいて熱膨張係数を求めているので、加熱手段の温度
分布のバラツキや加熱手段の端部の温度勾配の影響に左
右されないで長尺状試料の熱膨張係数を精度よく測定す
ることができる。
[Effects of the Invention] As is clear from the above description, according to the method and the apparatus for measuring the thermal expansion coefficient of a long sample according to the present invention, the effects of temperature changes at both ends of the long sample are substantially reduced. The resistance value between the two points which are not subjected to the measurement is measured, the resistance value is converted into the average temperature change of the sample S between the two points, and the thermal expansion coefficient is obtained based on the average temperature change. The coefficient of thermal expansion of the long sample can be accurately measured without being affected by the variation in the temperature distribution of the means or the influence of the temperature gradient at the end of the heating means.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る長尺状試料の熱膨張係
数測定装置の概略構成を示した説明図、第2図は試料の
電気抵抗の温度特性図、第3図は試料の長さ変化と平均
温度変化との関係を示した特性図、第4図は試料中の不
均一温度分布領域の温度分布を示した模式図である。 S……長尺状試料、1……支柱 2……クランプ機構、3……錘 4……マーカ 5……レーザスキャンマイクロメータ 6……表示器 7……加熱炉、8……炉芯管 9……定電流源、10……電圧測定器 a1,a2……電流端子 b1,b2……電圧端子
FIG. 1 is an explanatory view showing a schematic configuration of a device for measuring the thermal expansion coefficient of a long sample according to one embodiment of the present invention, FIG. 2 is a temperature characteristic diagram of the electrical resistance of the sample, and FIG. FIG. 4 is a characteristic diagram showing a relationship between a change in length and a change in average temperature, and FIG. 4 is a schematic diagram showing a temperature distribution in a non-uniform temperature distribution region in a sample. S ... Long sample, 1 ... Post 2 ... Clamp mechanism 3 ... Weight 4 ... Marker 5 ... Laser scan micrometer 6 ... Display 7 ... Heating furnace, 8 ... Core tube 9 ...... constant current source, 10 ...... voltmeter a 1, a 2 ...... current terminal b 1, b 2 ...... voltage terminal

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 25/00 - 25/72 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) G01N 25/00-25/72 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】長尺状試料の一端を固定し、他端に張力を
かけた状態で、前記試料の長さ方向の中間部分に温度変
化を与え、この温度変化の影響を実質的に受けない試料
両端部近傍の2点間の電気抵抗を測定し、この電気抵抗
を前記試料の平均温度変化(ΔT)に換算し、この平均
温度変化(ΔT)と、温度変化を与える前の前記2点間
の試料長さ(L)と、温度変化によって生じた試料長さ
の変化(ΔL)とにより、熱膨張係数(α) を求めることを特徴とする長尺状試料の熱膨張係数測定
方法。
In a state where one end of a long sample is fixed and tension is applied to the other end, a temperature change is applied to an intermediate portion in the longitudinal direction of the sample, and the temperature change is substantially affected. The electrical resistance between two points near both ends of the sample is measured, and the electrical resistance is converted into an average temperature change (ΔT) of the sample. The coefficient of thermal expansion (α) is determined by the sample length (L) between points and the change in sample length (ΔL) caused by a temperature change. A method for measuring the coefficient of thermal expansion of a long sample, characterized in that:
【請求項2】長尺状試料は炭素繊維である請求項(1)
に記載の長尺状試料の熱膨張係数測定方法。
2. The method according to claim 1, wherein the elongated sample is a carbon fiber.
4. The method for measuring the coefficient of thermal expansion of a long sample according to item 1.
【請求項3】長尺状試料の一端を固定する固定手段と、
前記試料の他端に張力を作用させる張力付与手段と、前
記試料の中間部分を取り囲んで、その中間部分に温度変
化を与える加熱手段と、前記長尺状試料の張力付与側端
部の長さ方向の位置変化を検出する検出手段と、前記加
熱手段による温度変化の影響を実質的に受けない試料両
端部近傍の2点間に通電する通電手段と、前記2点間の
電圧を測定する電圧測定手段とを備えたことを特徴とす
る長尺状試料の熱膨張係数測定装置。
3. A fixing means for fixing one end of a long sample,
Tension applying means for applying a tension to the other end of the sample, heating means for surrounding an intermediate portion of the sample and changing the temperature of the intermediate portion, and a length of a tension applying side end of the elongated sample. Detecting means for detecting a change in position in the direction; energizing means for energizing between two points near both ends of the sample which are substantially unaffected by the temperature change by the heating means; and a voltage for measuring a voltage between the two points An apparatus for measuring the thermal expansion coefficient of a long sample, comprising a measuring means.
JP7023390A 1990-03-20 1990-03-20 Method and apparatus for measuring thermal expansion coefficient of long sample Expired - Fee Related JP2898333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023390A JP2898333B2 (en) 1990-03-20 1990-03-20 Method and apparatus for measuring thermal expansion coefficient of long sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7023390A JP2898333B2 (en) 1990-03-20 1990-03-20 Method and apparatus for measuring thermal expansion coefficient of long sample

Publications (2)

Publication Number Publication Date
JPH03269352A JPH03269352A (en) 1991-11-29
JP2898333B2 true JP2898333B2 (en) 1999-05-31

Family

ID=13425644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023390A Expired - Fee Related JP2898333B2 (en) 1990-03-20 1990-03-20 Method and apparatus for measuring thermal expansion coefficient of long sample

Country Status (1)

Country Link
JP (1) JP2898333B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430718C (en) * 2004-03-25 2008-11-05 宝钢集团上海梅山有限公司 Equipment and method for detecting steel solidification shrinkage rate
CN103630567B (en) * 2013-12-23 2015-09-09 哈尔滨工业大学 For measuring the specimen heating system of the anti-ground unrest of trnaslucent materials sample emissions rate
CN105301042A (en) * 2015-11-20 2016-02-03 海南中航特玻科技有限公司 Method using dilatometer to measure electronic flat glass shrinkage
CN105606638A (en) * 2015-12-14 2016-05-25 中国地质大学(北京) Instrument for testing burst temperature of fluid inclusion
CN106931897B (en) * 2017-03-31 2019-09-27 哈尔滨工程大学 Vibration damping flexibility connection pipe deformation measuring device
CN109765262B (en) * 2019-02-26 2024-01-12 陈艺征 Thermal expansion coefficient measuring instrument
CN112014421B (en) * 2020-09-24 2024-01-16 安徽优泰新材料有限公司 High temperature resistance detection method for nylon heat insulation strip

Also Published As

Publication number Publication date
JPH03269352A (en) 1991-11-29

Similar Documents

Publication Publication Date Title
Wallace et al. Specific heat of high purity iron by a pulse heating method
US4893079A (en) Method and apparatus for correcting eddy current signal voltage for temperature effects
US3665756A (en) Strain gauge temperature compensation system
EP0631147A1 (en) Eddy current test method and apparatus
EP0644418A1 (en) Measuring thermal conductivity and apparatus therefor
JP2898333B2 (en) Method and apparatus for measuring thermal expansion coefficient of long sample
US4643586A (en) Equipment and method for calibration of instruments having a temperature sensing unit
US5044764A (en) Method and apparatus for fluid state determination
EP0028487A1 (en) Hall effect thickness measuring instrument
US3938037A (en) Device for measuring the ferrite content in an austenitic stainless steel weld material
US2852850A (en) Method and apparatus for thickness measurement
US6390674B1 (en) Thermal analysis apparatus and method capable of accurately measuring a temperature of a large diameter sample
Hall et al. The measurement of specific heats at low temperatures by an adiabatic technique
Grigor et al. Density balance for low temperatures and elevated pressures
JPS624641B2 (en)
Belanger The Behavior of Carbon Resistor Thermometers in Magnetic Fields up to 100 kOe in the Pumped Liquid Helium and Hydrogen Temperature Ranges
Trott et al. Improved accuracy and linearity of Hall probes and their application to linked scans
JP2567441B2 (en) Measuring method of thermal conductivity, measuring device and thermistor
JP3670167B2 (en) Equipment for measuring thermal conductivity of fine single wires
JP2674684B2 (en) Thermal expansion coefficient measurement method
JP2001337146A (en) Sensitivity calibration device for magnetic sensor
CN218036159U (en) Young modulus force measurement measuring frame for material performance measurement
RU2020435C1 (en) Method for calibration of thermocouples
JPH0697233B2 (en) Flow velocity sensor and flow velocity measuring device using the same
JPH0219722Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees