JPH03268352A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPH03268352A
JPH03268352A JP2067447A JP6744790A JPH03268352A JP H03268352 A JPH03268352 A JP H03268352A JP 2067447 A JP2067447 A JP 2067447A JP 6744790 A JP6744790 A JP 6744790A JP H03268352 A JPH03268352 A JP H03268352A
Authority
JP
Japan
Prior art keywords
semiconductor optical
semiconductor
switch element
light
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2067447A
Other languages
Japanese (ja)
Other versions
JP2813782B2 (en
Inventor
Goji Kawakami
剛司 川上
Yoshinori Nakano
中野 好典
Masahiro Ikeda
正宏 池田
Kenichi Kitayama
研一 北山
Wataru Kawakami
弥 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6744790A priority Critical patent/JP2813782B2/en
Publication of JPH03268352A publication Critical patent/JPH03268352A/en
Application granted granted Critical
Publication of JP2813782B2 publication Critical patent/JP2813782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Thyristors (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To make an optical integrated circuit to be applied easily to a neural network device by providing a means which makes input light to incident to an optical switching element from the outside and another means which makes the output light of the optical switching element to incident to the photoreceptor element of another device to each of a plurality of specific semiconductor optical devices. CONSTITUTION:The semiconductor optical switching element S of each semicon ductor optical device U is connected with a semiconductor photoreceptor element R in parallel or series and with a required power source 4 and input light is made incident to the element S from the outside through an input light incident means. The output light of the element S is made incident to the semiconductor photoreceptor element R of another semiconductor optical device through an output light incident means. Then, the element R is set to a state where the element R has a low end-to-end resistance only. Accordingly, the element S can be turned off when, for example, the element R is connected with the ele ment S in parallel and the optical switching element S of the another semicon ductor optical device is on and emits its output light. Therefore, this optical integrated circuit can be applied easily to a neural network device.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ニューラルネットワーク装置に適用し得る光
集積回路に関する。
The present invention relates to an optical integrated circuit that can be applied to a neural network device.

【従来の技術】[Conventional technology]

従来、ニューラルネットワーク装置に適用し得る光集積
回路が提案されているが、複雑、大型化するなどの理由
で実用化し得るものではなかった。 よって、本発明は、ニューラルネットワーク装置に、実
用化し得るものとして容易に適用し得る、新規な光集積
回路を提案せんとするものである。
Conventionally, optical integrated circuits that can be applied to neural network devices have been proposed, but they have not been put into practical use due to their complexity and large size. Therefore, the present invention aims to propose a novel optical integrated circuit that can be easily applied to a neural network device as a practical device.

【課題を解決するための手段】[Means to solve the problem]

本願第1番目の発明による光集積回路は、■1次元的ま
たは2次元的に配列され、且つメモリ機能を有する半導
体光スイッチ素子とその半導体光スイッチ素子と近接し
て配され且つ電気的に並列または直列に接続された半導
体受光素子とを有する複数の半導体光装置と、■それら
複数の半導体光装置のそれぞれについて、その半導体光
装置の半導体光スイッチ素子に外部から入力光を入射さ
せる入力光入射手段と、■上記複数の半導体光装置中の
一の半導体光装置と、そのまわりに配されている他の半
導体光装置とについて、上記一の半導体光装置の半導体
光スイッチ素子から得られる出力光を、上記他の半導体
光装置中の一部または全ての半導体受光素子に入射させ
る出力光入射手段とを有する。 また、本願第2番目の発明による光集積回路は、本願第
1番目の発明による光集積回路において、複数の半導体
光装置中の一部または全ての半導体光装置のそれぞれに
ついて、その半導体光装置の半導体光スイッチ素子から
得られる出力光の一部を、自身の半導体光装置の半導体
受光素子にバイアス光として入射させる他の出力光入射
手段を有する。
The optical integrated circuit according to the first invention of the present application includes: (1) a semiconductor optical switch element arranged one-dimensionally or two-dimensionally and having a memory function; or a plurality of semiconductor optical devices having semiconductor light-receiving elements connected in series, and (1) Input light input for inputting light from the outside into the semiconductor optical switch element of the semiconductor optical device for each of the plurality of semiconductor optical devices. (1) output light obtained from a semiconductor optical switch element of the first semiconductor optical device with respect to one semiconductor optical device among the plurality of semiconductor optical devices and other semiconductor optical devices arranged around it; output light input means for inputting the output light into some or all of the semiconductor light receiving elements in the other semiconductor optical device. Further, the optical integrated circuit according to the second invention of the present application is the optical integrated circuit according to the first invention of the present application, in which each of a part or all of the semiconductor optical devices among the plurality of semiconductor optical devices is It has another output light input means for making a part of the output light obtained from the semiconductor optical switch element enter the semiconductor light receiving element of its own semiconductor optical device as bias light.

【作用・効果】[Action/effect]

本願第1番目の発明による光集積回路によれば、複数の
半導体光装置中の一の半導体光装置(これを一般にU、
とする)と、そのまわりに配されている他の半導体光装
置(これを一般にU、とする)とについて、各半導体光
装置の半導体光スイッチ素子を、半導体受光素子と並列
にまたは直列に接続されている状態で、所要の電源に接
続させている状態で、一の半導体光装置U8の半導体光
スイッチ素子に、外部から、入力光を、入力光入射手段
を介して、入射させれば、その−の半導体装@Uaの半
導体光スイッチ素子を、それから発光が出力光として得
られるオン状態にさせることができ、また、その−の半
導体装@U、の半導体光スイッチ素子から得られる出力
光を、出力光入射手段を介して、他の半導体光装置Uゎ
中の一部または全ての半導体光装置(これを一般にU 
′とする)の半導体受光素子に入射させ、その半導体装
IU  ’の半導体受光素子を低い両端抵抗しか有しな
い状態にさせることができる。 このため、各半導体光装置の半導体受光素子が半導体光
スイッチ素子と並列に接続されている場合において、半
導体光装置U ′の半導体す 光スイッチ素子が出力光を出射させているオン状態にあ
り、従って、その半導体光スイッチ素子に電流が比較的
大きな値で流れている状態から、半導体光装置U、の半
導体光スイッチ素子に入力光が入射することによって、
いままで、半導体装itu   の半導体光スイッチ素
子に流れていた電流が、半導体装stu、’の半導体受
光素子に流れ、よって、半導体光装置U。 の半導体光スイッチ素子にいままで流れている電流が十
分小さな値になるか流れなくなり、このため、半導体光
装置U ′の半導体光スイb ッチ素子をオン状態から出力光を出射させていないオフ
状態にさせることができる。 また、各半導体光vc置の半導体受光素子が半導体光ス
イッチ素子と並列に接続されている場合において、半導
体光装置U ′の半導体光スインチ素子が出力光を出射
させていないオフ状態にあり、従ってその半導体光スイ
ッチ素子に電流が十分小さな値で流れているかほとんど
流れていない状態から、半導体光装置Uaの半導体光ス
イッチ素子に入力光が入射しても、半導体光装置u、’
の半導体光スイッチ素子をオフ状態に保たせることがで
きる。 また各半導体光装置の半導体受光素子が半導体光スイッ
チ素子と直列に接続されている場合において、半導体光
装置U ′の半導体光スイッチ素子が出力光を出射して
いるオン状態にあり、従って、その半導体光スイッチ素
子に電流が比較的大きな値で流れている状態から、半導
体光装置Uaの半導体光スイッチ素子に入力光が入射す
ることによって、半導体装@Ubの半導体光スイッチ素
子に電流がいままで流れていたよりも大きな値で流れる
ので、半導体光装置U ′の半導体光スイッチ素子から
の出力す 光がいままで得られていたよりも島い強度で得られる。 また、各半導体光装置の半導体受光素子が半導体光スイ
ッチ素子と直列に接続されている場合において、半導体
光装置U  の半導体光スインチ素子が出力光を出射さ
せていないオフ状態にあり、従って、その半導体光スイ
ッチ素子に電流が十分小さな値で流れているかほとんど
流れていない状態から、半導体装aU、の半導体光スイ
ッチ素子に入力光が入射しても、半導体光装置u ′の
半導体光スイッチ素子をオフ状態に保たせることができ
る。 以上のことから、本願第1番目の発明よる光集積回路に
よれば、複数の半導体光装置をニューラルネットにおけ
るニューロンに相当しているプロセッサに対応させる態
様で、ニューラルネットワーク装置に、実用化し得るも
のとして容易に適用させることができる。 また、本願第2番目の発明による光集積回路は、本願第
1番目の発明による光集積回路において、複数の半導体
光装置中の一部または全ての半導体光装置のそれぞれに
ついて、その半導体光装置の半導体光スイッチ素子から
得られる出力光の一部を、自身の半導体光装置の半導体
受光素子にバイアス光として入射させる他の出力光入射
手段を有することを除いて、本願第1番目の発明による
光集積回路と同様の構成を有し、そして、半導体装@(
j ′の半導体光スインチ素子が出力光を出射させてい
るオン状態にあるとき、半導体光装置U ′の半導体光
スインチ素子からの出力光の一部を、他の出力光入射手
段を介して半導体光装置U ′の半導体す 受光素子に、バイアス光として入射させることができる
ので、本願第1番目の発明による光集積回路の場合と同
様の作用・効果を得ることができ、また、この場合、本
願第1番目による光集積回路について上述した半導体装
MUbの半導体光スイッチ素子が出力光を出射させてい
るオン状態から、半導体光装置U、の半導体装スイッチ
素子に入力光が入射する場合の動作を、効果的に行わせ
ることができる。 【実施例] 次に、第1及び第2図を伴って本発明による光集積回路
の実施例を述べよう。 第1及び第2図に示す本発明による光集積回路は次に述
べる構成を有する。 すなわち、後述する半導体光装置の半導体光スイッチ素
子から得られる光に対して透光性を有する基板1を有し
、そして、その基板1の第1の主面1a上に、複数の半
導体光装置Uが、一の半導体光装置と、その一の半導体
光装置が配されている中心点を中心とする六角形の6つ
の頂点位置に、他の6つの半導体光装置が配されている
関係が得られるように配されている。 この場合、各半導体光装置Uは、メモリ機能を有する半
導体光スイッチ素子Sと、その半導体光スイッチ素子S
のまわりに近接して環状に配され且つ第3図に示すよう
に並列にまたは第4図に示すように直列に接続された半
導体受光素子Rとを有する。 この場合、半導体光スイッチ素子Sとしては、第5図に
示す負性特性を呈する電流−電圧特性を有しているそれ
自体は公知の例えばpnpn型を有する光サイリスタを
用い得る。 また、半導体受光素子Sとしては、それ自体は公知のp
npn型を有する光サイリスタを用いる外、それ自体は
公知のフォトダイオード、フォトトランジスタを用い得
る。 また、基板1の第1の主面1aと対向している第2の主
面1b上に、各半導体装ltUの半導体光スイッチ素子
Sを基板1の厚さを通じて外部に臨ませる窓Wを残すよ
うに反射膜2が形成されている。 以上が、本発明による光集積回路の実施例の構成である
。 このような本発明による光集積回路によれば、複数の半
導体光装置U中の一の半導体光装置(これを一般にUa
とする)と、そのまわりに配されている他の半導体光装
置(これを一般にU、とする)とについて、各半導体光
装置Uの半導体光スイッチ素子Sを、半導体受光素子R
と第3図に示すように並列にまたは第4図に示すように
直列に接続されている状態で、必要に応じて負荷抵抗3
を通じて所要の電m4に接続させている状態で、一の半
導体光装置U8の半導体光スイッチ素子Sに、基板1の
主面1b側の外部から、入力光L1を、窓Wによる入力
光入射手段を介して、入射させれば、その一の半導体光
装置Uaの半導体光スイッチ素子Sの電流−電圧特性の
最大電圧極値が、半導体光スイッチ素子Sの負荷線を横
切らない関係に小さくなることから、その半導体光スイ
ッチ素子Sを、それから発光が出力光L2として得られ
るオン状態にさせることができ、また、その一の半導体
光装置U、の半導体光スイッチ素子から得られる出力光
L2を、反射膜2による出力光入射手段を介して、他の
半導体装IUb中の一部または全て(図においては一部
)の半導体装If(これを一般にU ′とする)の半導
体受光す 素子Rに入射させ、その半導体装IU  ’の半導体受
光素子Rを低い両端抵抗しか有しない状態にさせること
ができる。 このため、各半導体装11LIの半導体受光素子Rが半
導体光スイッチ素子Sと第3図に示すように並列に接続
されている場合において、半導体光装置U ′の半導体
光スイッチ素子Sが出力光L2を出射させているオン状
態にあり、従って、その半導体光スイッチ素子Sに電流
が比較的大きな値で流れている状態(第4図において動
作点Bで動作している)から、半導体光装置U、の半導
体光スイッチ素子Sに入力光し1が入射することによっ
て、いままで、半導体光装置U ′の半導体光スイッチ
素子に流れていた電流が、半導体光装置U  の半導体
受光す 素子R1,:!れ、よって、半導体装mu、’の半導体
光スイッチ素子Sにいままで流れている電流が十分小さ
な値になるか流れなくなり、このため、半導体光装置U
 ′の半導体光スインチ素子Sをオン状態から出力光L
2を出射させていないオフ状態(第5図において動作点
Aで動作している)にさせることができる。 また、各半導体装MUの半導体受光素子Rが半導体光ス
イッチ素子Sと第3図に示すように並列に接続されてい
る場合において、半導体光装置U ′の半導体光スイッ
チ素子Sが出力す 光L2を出射させていないオフ状態にあり、従ってその
半導体光スイッチ素子Sに電流が十分小さな値で流れて
いるかほとんど流れていない状態(第5図において動作
点Aで動作している)から、半導体装WIUaの半導体
光スイッチ素子Sに入力光L1が入射しても、半導体光
装置U ′の半導体光スイッチ素子Sをオフ状態に保た
せることができる。 また各半導体光装置Uの半導体受光素子Rが半導体光ス
イッチ素子Sと第4図に示すように直列に接続されてい
る場合において、半導体光装置U ′の半導体光スイッ
チ素子Sが出力光b L2を出射しているオン状態く第5図において動作点B
で動作している)にあり、従って、その半導体光スイッ
チ素子Sに電流が比較的大きな値で流れている状態から
、半導体光装置U8の半導体光スイッチ素子Sに入力光
L1が入射することによって、半導体装IU  ’の半
導ム 体光スイッチ素子Sに電流がいままで流れていたよりも
大きな値で流れるので、半導体光装置Ub′の半導体光
スイッチ素子からの出力光L2がいままで得られていた
よりも高い強度で得られる。 また、各半導体光装置Uの半導体受光素子Rが半導体光
スイッチ素子Sと第4図に示すように直列に接続されて
いる場合において、半導体光装置U ′の半導体光スイ
ッチ素子Sが出力す 光L2を出射させていないオフ状M(第5図において動
作点Bで動作している)にあり、従って、その半導体光
スイッチ素子Sに電流が十分小さな値で流れているかほ
とんど流れていない状態から、半導体光装置U、の半導
体光スイッチ素子Sに入力光L1が入射しても、半導体
装tUゎ′の半導体光スイッチ素子Sをオフ状態に保た
せることができる。 以上のことから、第1及び第2図に示す本発明による光
集積回路によれば、複数の半導体装MUをニューラルネ
ットにおけるニューロンに相当しているプロセッサに対
応させる態様で、ニューラルネットワーク装置に、実用
化し得るものとして容易に適用させることができる。 なお、上述においては、本発明の一例を示したに留まり
、図示詳細説明は省略するが、複数の半導体光装置U中
の一部または全ての半導体光装置Ubのそれぞれについ
て、その半導体装WU、の半導体光スイッチ素子Sから
得られる出力光の一部を、自身の半導体光装置U、の半
導体受光素子Rにバイアス光として入射させる他の出力
光入射手段を有することを除いて、第1及び第2図で上
述した本発明による光集積回路と同様の構成を有するも
のとすることもでき、しかるときは、半導体光装置Ub
′の半導体光スイッチ素子Sが出力光を出射させている
オン状態にあるとき、半導体装@U ′の半す 導体光スイッチ素子Sからの出力光の一部を、他の出力
光入射手段を介して半導体光装置U。 の半導体受光素子Rに、バイアス光として入射させるこ
とができるので、第1及び第2図で上述した本発明によ
る光集積回路の場合と同様の作用・効果を得ることがで
き、また、この場合、第1及び第2図で上述した光集積
回路について上述した半導体光装置U  の半導体光ス
イッヂ素子Sが出力光を出射させているオン状態から、
半導体装ILIaの半導体光スイッチ素子Sに入力光が
入射する場合の動作を、効果的に行わせることができる
。 また、第6図に示すように、窓Wの内側に反射防止用膜
4を設け、半導体光装置Uaの半導体光スイッチ素子S
からの出力光が不必要に自己の半導体光装置tJaまた
は他の所望とせざる半導体光装置ubに入射したりしな
いようにすることもできる。 さらに、上述においては、出力光入射手段としての反射
I!i12が、基板1の平らな主面1bに形成されてい
るとして、それらが平らなミラーを形成している場合に
ついて述べたが、出力光入射手段を、第7図に示すよう
に凸面ミラーを形成しているものとしたり、第8図に示
すように凹面ミラーを形成しているものとしたりし、半
導体層素Uaの半導体光スイッチ素子Sからの出力光L
2を所定の位置の半導体光装置Ubの半導体受光素子R
に洗濯的に入射させるようにしたり、所望の位置の半導
体光装置Ubに出力光L2を高いまたは低い強度で入射
させるようにしたりさせることもできる。 その他、本発明の精神を脱することなしに、種々の変型
、変更をなし得るであろう。
According to the optical integrated circuit according to the first invention of the present application, one semiconductor optical device among a plurality of semiconductor optical devices (generally referred to as U,
) and other semiconductor optical devices (generally referred to as U) arranged around it, the semiconductor optical switch elements of each semiconductor optical device are connected in parallel or in series with the semiconductor photodetector. If input light is made to enter the semiconductor optical switch element of one semiconductor optical device U8 from the outside through the input light input means while the semiconductor optical device U8 is connected to a required power source, The semiconductor optical switch element of the - semiconductor device @Ua can be brought into an on state from which light emission is obtained as output light, and the output light obtained from the semiconductor optical switch element of the - semiconductor device @U can be turned on. is transmitted to some or all of the semiconductor optical devices (generally referred to as U) in other semiconductor optical devices U through the output light input means.
It is possible to make the semiconductor light receiving element of the semiconductor device IU' have a low resistance at both ends. Therefore, when the semiconductor light receiving element of each semiconductor optical device is connected in parallel with the semiconductor optical switch element, the semiconductor optical switch element of the semiconductor optical device U' is in an on state emitting output light. Therefore, when input light enters the semiconductor optical switch element of the semiconductor optical device U from a state in which a relatively large current is flowing through the semiconductor optical switch element,
The current that has so far flowed through the semiconductor optical switch element of the semiconductor device itu flows into the semiconductor light receiving element of the semiconductor device stu,', and thus the semiconductor optical device U. The current that has been flowing through the semiconductor optical switch element of the semiconductor optical device U' becomes a sufficiently small value or stops flowing, and as a result, the semiconductor optical switch element of the semiconductor optical device U' changes from the on state to the off state where no output light is emitted. can be put into a state. Furthermore, when the semiconductor light receiving element of each semiconductor optical VC device is connected in parallel with the semiconductor optical switch element, the semiconductor optical switch element of the semiconductor optical device U' is in an off state in which it does not emit output light, and therefore Even if input light enters the semiconductor optical switch element of the semiconductor optical device Ua from a state where the current is flowing at a sufficiently small value or is almost not flowing through the semiconductor optical switch element, the semiconductor optical device u,'
It is possible to keep the semiconductor optical switch device in an off state. Further, when the semiconductor light receiving element of each semiconductor optical device is connected in series with the semiconductor optical switch element, the semiconductor optical switch element of the semiconductor optical device U' is in an on state emitting output light, From a state in which a relatively large current is flowing through the semiconductor optical switch element, input light enters the semiconductor optical switch element of the semiconductor optical device Ua, causing current to flow through the semiconductor optical switch element of the semiconductor device @Ub. Since the current flows at a larger value than the current current, the output light from the semiconductor optical switch element of the semiconductor optical device U' can be obtained with a lower intensity than that which has been obtained up to now. Furthermore, in the case where the semiconductor light receiving element of each semiconductor optical device is connected in series with the semiconductor optical switch element, the semiconductor optical switch element of the semiconductor optical device U is in an off state in which it does not emit output light, so that Even if input light is incident on the semiconductor optical switch element of semiconductor device aU when the current is flowing at a sufficiently small value or is almost not flowing through the semiconductor optical switch element, the semiconductor optical switch element of semiconductor optical device u' It can be kept in the off state. From the above, according to the optical integrated circuit according to the first invention of the present application, a plurality of semiconductor optical devices can be put into practical use as a neural network device in a manner that corresponds to a processor corresponding to a neuron in a neural network. It can be easily applied as Further, the optical integrated circuit according to the second invention of the present application is the optical integrated circuit according to the first invention of the present application, in which each of a part or all of the semiconductor optical devices among the plurality of semiconductor optical devices is The light according to the first invention of the present application, except that it has another output light input means for making a part of the output light obtained from the semiconductor optical switch element enter the semiconductor light receiving element of its own semiconductor optical device as bias light. It has the same configuration as an integrated circuit, and is a semiconductor device @(
When the semiconductor optical pinch element of the semiconductor optical device U' is in an on state emitting output light, a part of the output light from the semiconductor optical pinch element of the semiconductor optical device U' is transmitted to the semiconductor via another output light input means. Since the bias light can be incident on the semiconductor light-receiving element of the optical device U', the same operation and effect as in the case of the optical integrated circuit according to the first invention of the present application can be obtained, and in this case, Regarding the optical integrated circuit according to the first aspect of the present application, the operation when input light enters the semiconductor switch element of the semiconductor optical device U from the ON state in which the semiconductor optical switch element of the semiconductor device MUb described above emits output light. can be carried out effectively. [Embodiment] Next, an embodiment of the optical integrated circuit according to the present invention will be described with reference to FIGS. 1 and 2. The optical integrated circuit according to the present invention shown in FIGS. 1 and 2 has the following configuration. That is, it has a substrate 1 that is transparent to light obtained from a semiconductor optical switch element of a semiconductor optical device, which will be described later, and a plurality of semiconductor optical devices are arranged on a first main surface 1a of the substrate 1. U represents a relationship in which one semiconductor optical device and six other semiconductor optical devices are arranged at six vertices of a hexagon centered on the center point where the first semiconductor optical device is arranged. It is arranged so that it can be obtained. In this case, each semiconductor optical device U includes a semiconductor optical switch element S having a memory function and the semiconductor optical switch element S.
It has semiconductor light-receiving elements R disposed in an annular shape in close proximity to the semiconductor light-receiving elements R and connected in parallel as shown in FIG. 3 or in series as shown in FIG. In this case, as the semiconductor optical switch element S, a known optical thyristor, for example, a pnpn type optical thyristor, which has a current-voltage characteristic exhibiting a negative characteristic as shown in FIG. 5, can be used. In addition, as the semiconductor light receiving element S, the well-known p
In addition to using an npn type optical thyristor, a known photodiode or phototransistor may be used. Furthermore, a window W is left on the second main surface 1b facing the first main surface 1a of the substrate 1, through which the semiconductor optical switch element S of each semiconductor device LTU is exposed to the outside through the thickness of the substrate 1. The reflective film 2 is formed as shown in FIG. The above is the configuration of the embodiment of the optical integrated circuit according to the present invention. According to such an optical integrated circuit according to the present invention, one semiconductor optical device among a plurality of semiconductor optical devices U (generally referred to as Ua
) and other semiconductor optical devices (generally referred to as U) arranged around it, the semiconductor optical switch element S of each semiconductor optical device U is replaced by the semiconductor light receiving element R.
and are connected in parallel as shown in Figure 3 or in series as shown in Figure 4, and the load resistor 3 is connected as required.
Input light L1 is input from the outside on the main surface 1b side of the substrate 1 to the semiconductor optical switch element S of one semiconductor optical device U8 while the input light L1 is connected to the required electric current m4 through the window W. , the maximum voltage extreme value of the current-voltage characteristic of the semiconductor optical switch element S of the first semiconductor optical device Ua becomes so small that it does not cross the load line of the semiconductor optical switch element S. , the semiconductor optical switch element S can be brought into an on state from which light emission is obtained as output light L2, and the output light L2 obtained from the semiconductor optical switch element of the first semiconductor optical device U can be Via the output light input means of the reflective film 2, it is transmitted to the semiconductor light-receiving element R of a semiconductor device If (generally referred to as U') in a part or all (a part in the figure) of another semiconductor device IUb. The semiconductor light-receiving element R of the semiconductor device IU' can be made to have only a low resistance at both ends. Therefore, when the semiconductor light receiving element R of each semiconductor device 11LI is connected in parallel with the semiconductor optical switch element S as shown in FIG. The semiconductor optical device U is in the on state in which it emits light, and therefore a relatively large current flows through the semiconductor optical switch element S (operating at the operating point B in FIG. 4). As a result of the input light 1 being incident on the semiconductor optical switch element S of the semiconductor optical device U', the current flowing through the semiconductor optical switch element of the semiconductor optical device U' is transferred to the semiconductor light receiving element R1 of the semiconductor optical device U': ! Therefore, the current that has been flowing in the semiconductor optical switch element S of the semiconductor device mu,' becomes a sufficiently small value or stops flowing, and therefore the semiconductor optical device U
’ from the on state to the output light L
2 can be placed in an off state (operating at operating point A in FIG. 5) in which no light is emitted. Furthermore, when the semiconductor light receiving element R of each semiconductor device MU is connected in parallel with the semiconductor optical switch element S as shown in FIG. 3, the light L2 output by the semiconductor optical switch element S of the semiconductor optical device U' is The semiconductor optical switch element S is in an off state in which no light is emitted, and therefore a sufficiently small current or almost no current is flowing through the semiconductor optical switch element S (operating at operating point A in Fig. 5). Even if the input light L1 is incident on the semiconductor optical switch element S of the WIUa, the semiconductor optical switch element S of the semiconductor optical device U' can be kept in the off state. Further, when the semiconductor light receiving element R of each semiconductor optical device U is connected in series with the semiconductor optical switch element S as shown in FIG. 4, the semiconductor optical switch element S of the semiconductor optical device U' receives the output light b L2. In the on state in which the light is emitted, the operating point B is shown in Fig. 5.
Therefore, when the input light L1 enters the semiconductor optical switch element S of the semiconductor optical device U8 from a state in which a current is flowing at a relatively large value through the semiconductor optical switch element S, , the current flows through the semiconductor optical switch element S of the semiconductor device IU' at a value larger than that previously flowing, so that the output light L2 from the semiconductor optical switch element of the semiconductor optical device Ub' has not been obtained until now. obtained with higher strength than Furthermore, when the semiconductor light receiving element R of each semiconductor optical device U is connected in series with the semiconductor optical switch element S as shown in FIG. It is in the off state M where L2 is not emitted (operating at operating point B in Fig. 5), and therefore the semiconductor optical switch element S is in a state where the current is flowing at a sufficiently small value or almost no current. Even if the input light L1 is incident on the semiconductor optical switch element S of the semiconductor optical device U, the semiconductor optical switch element S of the semiconductor device tU' can be kept in the off state. From the above, according to the optical integrated circuit according to the present invention shown in FIGS. 1 and 2, in a neural network device, a plurality of semiconductor devices MU are made to correspond to processors corresponding to neurons in a neural network. It can be easily applied as something that can be put into practical use. Note that the above description has only shown one example of the present invention, and detailed description of the drawings is omitted, but for each of some or all of the semiconductor optical devices Ub among the plurality of semiconductor optical devices U, the semiconductor device WU, Except for having another output light input means for making a part of the output light obtained from the semiconductor optical switch element S of the semiconductor optical device U enter the semiconductor light receiving element R of the own semiconductor optical device U as bias light. It may also have a configuration similar to the optical integrated circuit according to the present invention described above in FIG. 2, and in that case, the semiconductor optical device Ub
When the semiconductor optical switch element S of ' is in the ON state emitting output light, a part of the output light from the semiconductor optical switch element S of the semiconductor device @U ' is transmitted to another output light input means. Through the semiconductor optical device U. Since the bias light can be incident on the semiconductor light-receiving element R of , it is possible to obtain the same operation and effect as in the case of the optical integrated circuit according to the present invention described above in FIGS. 1 and 2, and in this case, , from the on state in which the semiconductor optical switch element S of the semiconductor optical device U described above for the optical integrated circuit described above in FIGS. 1 and 2 emits output light,
The operation when input light is incident on the semiconductor optical switch element S of the semiconductor device ILIa can be performed effectively. Further, as shown in FIG. 6, an anti-reflection film 4 is provided inside the window W, and the semiconductor optical switch element S of the semiconductor optical device Ua is
It is also possible to prevent the output light from entering the own semiconductor optical device tJa or other undesired semiconductor optical devices ub unnecessarily. Furthermore, in the above description, the reflection I! as the output light input means! Although we have described the case where i12 is formed on the flat main surface 1b of the substrate 1 and they form a flat mirror, the output light input means may be a convex mirror as shown in FIG. The output light L from the semiconductor optical switch element S of the semiconductor layer element Ua may be a concave mirror as shown in FIG.
2 is the semiconductor light receiving element R of the semiconductor optical device Ub at a predetermined position.
Alternatively, the output light L2 may be made to enter the semiconductor optical device Ub at a desired position with high or low intensity. Various other modifications and changes may be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明による光集積回路の実施例
を示す路線的平面図、及びその2−2線上の断面図であ
る。 第3図及び第4図は、第1及び第2図に示す本発明によ
る光集積回路の各半導体光装置における半導体光スイッ
チ素子と半導体受光素子との電気的な接続関係を示す図
である。 第5図は、第1及び第2図に示す本発明による光集積回
路の各半導体光装置における半導体光スイッチ素子とし
て用い得る光サイリスタの電流−電圧特性を示す図であ
る。 第6図、第7図及び第8図は、本発明による光集積回路
の他の実施例を示す一部の路線的断面図である。
1 and 2 are a schematic plan view showing an embodiment of an optical integrated circuit according to the present invention, and a sectional view taken along the line 2--2 thereof. 3 and 4 are diagrams showing the electrical connection relationship between the semiconductor optical switch element and the semiconductor light receiving element in each semiconductor optical device of the optical integrated circuit according to the present invention shown in FIGS. 1 and 2. FIG. FIG. 5 is a diagram showing current-voltage characteristics of an optical thyristor that can be used as a semiconductor optical switch element in each semiconductor optical device of the optical integrated circuit according to the present invention shown in FIGS. 1 and 2. FIG. 6, 7, and 8 are partial cross-sectional views showing other embodiments of the optical integrated circuit according to the present invention.

Claims (1)

【特許請求の範囲】 【請求項1】 1次元的または2次元的に配列され、且つメモリ機能を
有する半導体光スイッチ素子と、その半導体光スイッチ
素子と近接して配され且つ電気的に並列または直列に接
続された半導体受光素子とを有する複数の半導体光装置
と、 上記複数の半導体光装置のそれぞれについて、その半導
体光装置の半導体光スイッチ素子に外部から入力光を入
射させる入力光入射手段と、上記複数の半導体光装置中
の一の半導体光装置と、そのまわりに配されている他の
半導体光装置とについて、上記一の半導体光装置の半導
体光スイッチ素子から得られる出力光を、上記他の半導
体光装置の一部または全ての半導体受光素子に入射させ
る出力光入射手段とを有することを特徴とする光集積回
路。 【請求項2】 1次元的または2次元的に配列され、且つメモリ機能を
有する半導体光スイッチ素子と、その半導体光スイッチ
素子と近接して配され且つ電気的に並列または直列に接
続された半導体受光素子とを有する複数の半導体光装置
と、 上記複数の半導体光装置のそれぞれについて、その半導
体光装置の半導体光スイッチ素子に外部から入力光を入
射させる入力光入射手段と、上記複数の半導体光装置中
の一の半導体光装置と、そのまわりに配されている他の
半導体光装置とについて、上記一の半導体光装置の半導
体光スイッチ素子から得られる出力光を、上記他の半導
体光装置の一部または全ての半導体受光素子に入射させ
る出力光入射手段と、 上記複数の半導体光装置中の一部または全ての半導体光
装置のそれぞれについて、その半導体光装置の半導体光
スイッチ素子から得られる出力光の一部を、自身の半導
体光装置の半導体受光素子に入射させる他の出力光入射
手段とを有することを特徴とする光集積回路。 【請求項3】 【請求項1】または【請求項2】記載の光集積回路にお
いて、 上記複数の半導体光装置が、上記出力光に対して透光性
を有する基板の第1の主面上に配され、 上記出力光入射手段が、上記基板の上記第1の主面と対
向している第2の主面上に設けられていることを特徴と
する光集積回路。
[Scope of Claims] [Claim 1] A semiconductor optical switch element arranged one-dimensionally or two-dimensionally and having a memory function, and a semiconductor optical switch element arranged close to the semiconductor optical switch element and electrically parallel or a plurality of semiconductor optical devices having semiconductor light receiving elements connected in series; and, for each of the plurality of semiconductor optical devices, input light input means for inputting input light from the outside into a semiconductor optical switch element of the semiconductor optical device; , regarding one semiconductor optical device among the plurality of semiconductor optical devices and other semiconductor optical devices arranged around it, the output light obtained from the semiconductor optical switch element of the one semiconductor optical device is 1. An optical integrated circuit comprising output light input means for inputting output light to some or all semiconductor light receiving elements of another semiconductor optical device. 2. A semiconductor optical switch element arranged one-dimensionally or two-dimensionally and having a memory function, and a semiconductor disposed close to the semiconductor optical switch element and electrically connected in parallel or in series. a plurality of semiconductor optical devices having a light receiving element; and for each of the plurality of semiconductor optical devices, input light input means for inputting input light from the outside into a semiconductor optical switch element of the semiconductor optical device; Regarding one semiconductor optical device in the apparatus and other semiconductor optical devices arranged around it, the output light obtained from the semiconductor optical switch element of the one semiconductor optical device is transferred to the other semiconductor optical device. An output light input means for making the light incident on some or all of the semiconductor light receiving elements; and an output obtained from the semiconductor optical switch element of the semiconductor optical device for each of the some or all of the semiconductor optical devices among the plurality of semiconductor optical devices. 1. An optical integrated circuit comprising another output light input means for inputting a part of the light to a semiconductor light receiving element of its own semiconductor optical device. 3. The optical integrated circuit according to claim 1 or 2, wherein the plurality of semiconductor optical devices are arranged on a first main surface of a substrate that is transparent to the output light. An optical integrated circuit, wherein the output light input means is provided on a second main surface of the substrate opposite to the first main surface.
JP6744790A 1990-03-16 1990-03-16 Optical integrated circuit Expired - Lifetime JP2813782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6744790A JP2813782B2 (en) 1990-03-16 1990-03-16 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6744790A JP2813782B2 (en) 1990-03-16 1990-03-16 Optical integrated circuit

Publications (2)

Publication Number Publication Date
JPH03268352A true JPH03268352A (en) 1991-11-29
JP2813782B2 JP2813782B2 (en) 1998-10-22

Family

ID=13345191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6744790A Expired - Lifetime JP2813782B2 (en) 1990-03-16 1990-03-16 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JP2813782B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079774A (en) * 1983-10-05 1985-05-07 Matsushita Electric Ind Co Ltd Optical integrated circuit
JPS60260178A (en) * 1984-06-07 1985-12-23 Matsushita Electric Ind Co Ltd Optical integrated circuit device
JPH0251713A (en) * 1988-08-15 1990-02-21 Nippon Telegr & Teleph Corp <Ntt> Optical neural computer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079774A (en) * 1983-10-05 1985-05-07 Matsushita Electric Ind Co Ltd Optical integrated circuit
JPS60260178A (en) * 1984-06-07 1985-12-23 Matsushita Electric Ind Co Ltd Optical integrated circuit device
JPH0251713A (en) * 1988-08-15 1990-02-21 Nippon Telegr & Teleph Corp <Ntt> Optical neural computer

Also Published As

Publication number Publication date
JP2813782B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US3486029A (en) Radiative interconnection arrangement
US4835595A (en) Optical interconnections for integrated circuits
US4965212A (en) Optical sensor
JPS6351681A (en) Semiconductor device
EP0371814A2 (en) Light-sensitive semiconductor device
JP2001189418A (en) Optical information processing device
JPS62219581A (en) Optoelectric device compensating dark current
JPH03268352A (en) Optical integrated circuit
JP2812874B2 (en) Optical coupling device
US7554707B1 (en) Method and apparatus for optical processing
JPH09213083A (en) Optical memory element
JPH05197437A (en) Optical arithmetic storage device
JPS61229359A (en) Semiconductor device
JPS58138083A (en) Light-emitting diode device
JPH05226688A (en) Photocoupler
JPS6461966A (en) Photocoupler
JPS62100018A (en) Switching device
JPS60260178A (en) Optical integrated circuit device
JPH01181481A (en) Photo coupler
JPS606112B2 (en) Semiconductor photosensitive light emitting device
JP2788662B2 (en) Optical logic operation gate
JPH0540288A (en) Semiconductor beam switch device
JPS6286775A (en) Light emitting circuit
JP3047535B2 (en) Charge transfer device and method of manufacturing the same
JP3533921B2 (en) Electronic automatic flasher

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12