JPH01181481A - Photo coupler - Google Patents

Photo coupler

Info

Publication number
JPH01181481A
JPH01181481A JP63002924A JP292488A JPH01181481A JP H01181481 A JPH01181481 A JP H01181481A JP 63002924 A JP63002924 A JP 63002924A JP 292488 A JP292488 A JP 292488A JP H01181481 A JPH01181481 A JP H01181481A
Authority
JP
Japan
Prior art keywords
base
photo
diode
inverse
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63002924A
Other languages
Japanese (ja)
Other versions
JP2596957B2 (en
Inventor
Masumi Tanaka
田中 真澄
Hidekazu Awaji
淡路 英一
Katsunori Makiya
真喜屋 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP292488A priority Critical patent/JP2596957B2/en
Publication of JPH01181481A publication Critical patent/JPH01181481A/en
Application granted granted Critical
Publication of JP2596957B2 publication Critical patent/JP2596957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain a large current output, by using a planar type photo transistor as a photodetector, including a P-type diffusion resistance of the photo transistor as a base resistor, and connecting two photo transistors including the base resistor, in inverse series. CONSTITUTION:A light emitting element 1 composed of infrared ray emitting diode and the like, and a photo transistor 2 constituting a photo detector are subjected to Darlington connection. The respective Darlington photo transistors 2a, 2a are formed respectively with one planar type chip, and connected in inverse series. In a P<+> type diffusion region forming B2 (base), a P type diffusion resistance RBE is formed between B2 (base) and E2 (emitter), and acts as an inverse direction diode by inverse biasing. Thereby parts like a diode stack are unnecessitated, and the control of AC large current output is simply enabled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、AC高電流出力の光結合素子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an AC high current output optical coupling device.

〈従来の技術〉 近年、光結合素子は、機器の高機能化や、電子化が進む
につれて、これまでにない機能が要求されつつある。例
えば、電話機では通話回線は極性が力に反転し、又、通
話電流もMAX 120 mAと比較的高電流の為、こ
の機器に使用される光結合素子は、AC高電流出力タイ
プが必要であった0従来から、第6図のようなフォトト
ライアックタイプ、第7図のよりなFETを用いた双方
向リニア出力タイプが知られている。図において、11
は発光ダイオード、12はフォトトライアック、13は
ジャンジョン型FETである。
<Prior Art> In recent years, optical coupling devices are required to have unprecedented functions as devices become more sophisticated and become more electronic. For example, in a telephone, the polarity of the telephone line is reversed to power, and the telephone current is relatively high at MAX 120 mA, so the optical coupling element used in this device must be of the AC high current output type. Conventionally, a phototriac type as shown in FIG. 6 and a bidirectional linear output type using a linear FET as shown in FIG. 7 have been known. In the figure, 11
1 is a light emitting diode, 12 is a phototriac, and 13 is a junction FET.

〈発明が解決しようとする問題点〉 しかし、トライアックタイプの場合は、−度、オン状態
になると、出力電流が小さくなるまでオフ状態とならな
い為、動作上、電話機には不向きである。又、リニア出
力タイプは、出力電流が数lOOμ〜数mAと低電流で
ある欠点があった。′本発明は上記点に鑑みてなされ、
トライアックタイプのような動作上の不都合がなく、か
つ高電流出力がとれる光結合素子を提供することを目的
とする。
<Problems to be Solved by the Invention> However, the triac type is unsuitable for use in telephones because once it is turned on, it does not turn off until the output current becomes small. Furthermore, the linear output type has the disadvantage that the output current is low, ranging from several lOOμ to several mA. 'The present invention has been made in view of the above points,
It is an object of the present invention to provide an optical coupling element that does not have operational disadvantages like a triac type and can provide a high current output.

く問題点を解決するための手段〉 本発明では、受光素子としてプレーナ型のフォトトラン
ジスタを用い、p型拡散抵抗をベース抵抗として内蔵し
、このフォトトランジスタを逆直列に接続して構成する
Means for Solving the Problems> In the present invention, a planar phototransistor is used as a light receiving element, a p-type diffused resistor is built in as a base resistor, and the phototransistors are connected in anti-series.

く作 用〉 上記において、p型ベース抵抗が一方のフォトトランジ
スタの逆バイアス時、逆方向に導通するダイオードの機
能を果し、AC出力動作が可能となる。しかもトランジ
スタ構成であることによって高電流の出力が得られ、ま
たトライアックと異なり入力電流がオフになると直ちに
出力電流もオフすることができる。
Function> In the above, the p-type base resistor functions as a diode that conducts in the reverse direction when one of the phototransistors is reverse biased, thereby enabling AC output operation. Moreover, the transistor configuration allows a high current output to be obtained, and unlike a triac, the output current can also be turned off immediately when the input current is turned off.

〈実施例〉 第1図に本発明一実施例における回路図を示す。<Example> FIG. 1 shows a circuit diagram in one embodiment of the present invention.

1は赤外発光ダイオード等からなる発光素子、2は受光
素子を構成するフォトトランジスタで、ここではダーリ
ントン接続したものを用いている。
Reference numeral 1 denotes a light emitting element such as an infrared light emitting diode, and 2 a phototransistor constituting a light receiving element, which is connected in a Darlington manner here.

各ダーリントンフォトトランジスタ2a、2aはそれぞ
れプレーナ型の1チツプで形成され、これを逆直列に接
続している。
Each Darlington phototransistor 2a, 2a is formed of a single planar chip, which are connected in anti-series.

第2図にダーリントンフォトトランジスタ2aのチップ
内構成を示す。Bl (ベース)、El(エミッタ)、
Bz  (ベース)、E2  (エミッタ)、C(コレ
クタ)は第1図の符号と対応するものであり、B2  
(ベース)を形成するp 型拡散領域内にB2 (ベー
ス)とE2(エミッタ)間のp型拡散抵抗RBEを形成
している。第2図に明らかなように、このp型拡散ベー
ス抵抗RBEが逆バイアスにより逆方向ダイオードの役
目を果すこととなる0第1図ではDでこのダイオードを
示している。
FIG. 2 shows the internal structure of the Darlington phototransistor 2a. Bl (base), El (emitter),
Bz (base), E2 (emitter), and C (collector) correspond to the symbols in Figure 1, and B2
A p-type diffusion resistor RBE between B2 (base) and E2 (emitter) is formed within the p-type diffusion region forming the (base). As is clear from FIG. 2, this p-type diffused base resistor RBE acts as a reverse diode when reverse biased. This diode is indicated by D in FIG.

第3図は上記実施例のV−I特性図であり、V34(−
縦軸)は端子T3 ・14間の出力電圧、I” 3 >
If (横軸)は同出力電流、パラメータのIFは端子
Tl −T2からの入力電流を示している。本図より明
らかなように、100mA等十分高電流でのAC出力動
作が可能であり、また入力電流■1がオフとなると直ち
に出力電流■3−4もオフすることができる。
FIG. 3 is a VI characteristic diagram of the above embodiment, and shows V34(-
The vertical axis) is the output voltage between terminals T3 and 14, I”3>
If (horizontal axis) indicates the same output current, and the parameter IF indicates the input current from the terminal Tl-T2. As is clear from the figure, AC output operation is possible at a sufficiently high current such as 100 mA, and when input current (1) is turned off, output current (3-4) can also be turned off immediately.

なお、p型拡散ベース抵抗RBEの付加により、出力電
流■3−4を若干低下するものの、暗電流を低・減し、
またライズタイムtr、フォールタイムtfの改善によ
り応答特性を向上できる利点がある。
Note that by adding the p-type diffused base resistor RBE, although the output current (3-4) is slightly lowered, the dark current is reduced.
Furthermore, there is an advantage that response characteristics can be improved by improving rise time tr and fall time tf.

以上の実施例ではダーリントン接続したフォトトランジ
スタを用いたが、出力電流はやや低下するが第4図のよ
うに、シングルフォトトランジスタ2a’、2a’を逆
直列に接続することによって構成してもよい。RBEは
前記実施例と同様のp型拡散抵抗によるベース抵抗であ
り、Dは逆バイアス時に生じるダイオードを示している
In the above embodiment, Darlington-connected phototransistors were used, but it may also be configured by connecting single phototransistors 2a', 2a' in anti-series as shown in FIG. 4, although the output current will be slightly lower. . RBE is a base resistance formed by a p-type diffused resistor similar to the previous embodiment, and D indicates a diode generated during reverse bias.

また、第5図に示すように発光素子として赤外発光ダイ
オード1.1を逆並列に接続し、AC人・出力構成の光
結合素子も可能であることはいうまでもない。
Furthermore, as shown in FIG. 5, infrared light emitting diodes 1.1 can be connected in antiparallel as light emitting elements to form an optical coupling element having an AC output configuration.

〈発明の効果〉 上述のように本発明によれば、ダイオ−トスタンク等の
部品が不要で、簡便にAC高電流出力の制御が行える有
用な光結合素子が提供できる0
<Effects of the Invention> As described above, according to the present invention, it is possible to provide a useful optical coupling element that does not require parts such as a diode tank and can easily control AC high current output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路構成図、第2図は
チップ構成図、第3図はV−I特性図、第4図は他の実
施例を示す回路構成図、第5図はさらに他の実施例を示
す回路構成図、第6図は従来例を示す回路構成図、第7
図は他の従来例を示す回路図である。 1・・・発光素子、  2・・・受光素子、  2a+
 2a。 2a’ 、2a’・・・フォトトランジスタ’   R
BE ・・・p型拡散ベース抵抗、 D・・・ダイオー
ド。 代理人 弁理士 杉 山 毅 至(他1名)第1図 V3−4Cl/) 第3図 2a″
FIG. 1 is a circuit configuration diagram showing one embodiment of the present invention, FIG. 2 is a chip configuration diagram, FIG. 3 is a V-I characteristic diagram, FIG. 4 is a circuit diagram showing another embodiment, and FIG. The figures are circuit configuration diagrams showing still another embodiment, FIG. 6 is a circuit configuration diagram showing a conventional example, and FIG. 7 is a circuit configuration diagram showing a conventional example.
The figure is a circuit diagram showing another conventional example. 1... Light emitting element, 2... Light receiving element, 2a+
2a. 2a', 2a'...phototransistor' R
BE: p-type diffused base resistance, D: diode. Agent Patent attorney Takeshi Sugiyama (and 1 other person) Figure 1 V3-4Cl/) Figure 3 2a''

Claims (1)

【特許請求の範囲】[Claims] 1、発光素子と受光素子を備え、前記受光素子としてプ
レーナ型のフォトトランジスタを用い、前記フォトトラ
ンジスタのp型拡散抵抗をベース抵抗として内蔵し、該
ベース抵抗内蔵の2個のフォトトランジスタを逆直列に
接続してなることを特徴とする光結合素子。
1. A light-emitting element and a light-receiving element are provided, a planar phototransistor is used as the light-receiving element, a p-type diffused resistor of the phototransistor is built in as a base resistor, and two phototransistors with built-in base resistors are connected in reverse series. An optical coupling element characterized by being connected to.
JP292488A 1988-01-08 1988-01-08 Optical coupling device Expired - Fee Related JP2596957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP292488A JP2596957B2 (en) 1988-01-08 1988-01-08 Optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP292488A JP2596957B2 (en) 1988-01-08 1988-01-08 Optical coupling device

Publications (2)

Publication Number Publication Date
JPH01181481A true JPH01181481A (en) 1989-07-19
JP2596957B2 JP2596957B2 (en) 1997-04-02

Family

ID=11542891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP292488A Expired - Fee Related JP2596957B2 (en) 1988-01-08 1988-01-08 Optical coupling device

Country Status (1)

Country Link
JP (1) JP2596957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511613A (en) * 2008-02-02 2011-04-07 ジャック、ラッセル Bipolar power controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129340A (en) * 2002-09-30 2004-04-22 Mitsumi Electric Co Ltd Power supply and electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450287A (en) * 1977-09-28 1979-04-20 Toshiba Corp Insulation output circuit
JPS5830169A (en) * 1981-08-14 1983-02-22 Fujitsu Ltd Semiconductor electronic circuit
JPS58159384A (en) * 1982-03-17 1983-09-21 Toshiba Corp Darlington photo-transistor
JPS61242071A (en) * 1985-04-19 1986-10-28 Matsushita Electronics Corp Composite type transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450287A (en) * 1977-09-28 1979-04-20 Toshiba Corp Insulation output circuit
JPS5830169A (en) * 1981-08-14 1983-02-22 Fujitsu Ltd Semiconductor electronic circuit
JPS58159384A (en) * 1982-03-17 1983-09-21 Toshiba Corp Darlington photo-transistor
JPS61242071A (en) * 1985-04-19 1986-10-28 Matsushita Electronics Corp Composite type transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511613A (en) * 2008-02-02 2011-04-07 ジャック、ラッセル Bipolar power controller

Also Published As

Publication number Publication date
JP2596957B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US4074143A (en) Optoelectronic device with optical feedback
KR840004280A (en) Display drive
KR950001922B1 (en) Optical coupling detector
JPH01181481A (en) Photo coupler
KR100187388B1 (en) Photocoupler capable of effecting phase control with an embedded junction capacitor
KR940008109B1 (en) Telephone ringing control circuit
JPH03135216A (en) Improved zero voltage changeover type ac relay circuit
JPS593896B2 (en) bipolar transistor switch device
JP3798739B2 (en) Signal generation / correction circuit and signal generation / correction method
JPH0648886Y2 (en) Photo-interrupter
RU1775810C (en) Modulator valve control device
JP2759226B2 (en) Reference voltage generation circuit
JPH0260131B2 (en)
JPH0269980A (en) Photodiode bias circuit
JP2813782B2 (en) Optical integrated circuit
JPH01146374A (en) Photodetector circuit
CA1208705A (en) Bipolar wide dynamic range photodetector system
KR950001242Y1 (en) Battery voltage detecting circuit
JPH0631532Y2 (en) Constant voltage power supply circuit
JPH02165709A (en) Light receiving semiconductor integrated circuit
RU2269197C1 (en) Current amplifier
JP3177115B2 (en) Receiver amplifier
JP2608574B2 (en) Line control circuit
JPH0497613A (en) Photoelectric circuit and optical semiconductor device
SU365838A1 (en) TRIGGER DEVICE FOR REVERSING CURRENT

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees