JPH03267767A - Detecting circuit for power source voltage - Google Patents

Detecting circuit for power source voltage

Info

Publication number
JPH03267767A
JPH03267767A JP6555290A JP6555290A JPH03267767A JP H03267767 A JPH03267767 A JP H03267767A JP 6555290 A JP6555290 A JP 6555290A JP 6555290 A JP6555290 A JP 6555290A JP H03267767 A JPH03267767 A JP H03267767A
Authority
JP
Japan
Prior art keywords
node
power supply
type
shapes
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6555290A
Other languages
Japanese (ja)
Inventor
Hidetoshi Suzuki
秀利 鈴木
Osamu Segawa
修 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6555290A priority Critical patent/JPH03267767A/en
Publication of JPH03267767A publication Critical patent/JPH03267767A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/32Compensating for temperature change

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To eliminate a temperature dependence with a desired voltage value by using plural diodes and resistors for deciding a potential value inputted to the input terminal of comparator and offsetting the threshold voltage and the temperature dependence of a shifting degree. CONSTITUTION:The potential of a 1st node 1 against power source voltage VDD has a point A which is independent of the temperature variation and this point A shifts on a broken line l by changing the shapes of an N-type MOSFET 2 (described as N-type 2 hereafter) and a resistor 3. Similarly, a point B exists in a 3rd node 7 and shifts on a broken line m according to the shapes of P-type 8 and a resistor 9. Then, by means of adequately selecting the shapes of N-type 2, P-type 8, and resistors 3, 9, the potentials of the 1st node 1 and 3rd node 7 become to have no temperature dependence when the VDD attains the desired reset release voltage. Also, by means of making the shapes of N-types 5, 2 and P-types 11, 8 to the same and adequately selecting the shapes of resistors 6, 12, the 2nd node 4 and 4th node 10 become to have no temperature dependence and to be the same potential when the VDD attains the desired reset voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電源電圧が印加されたことを検出する電源電
圧検出回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a power supply voltage detection circuit that detects application of a power supply voltage.

(従来の技術) 半導体集積回路において、電源を立ち上げた際に動作が
不安定となり、そのため初期出力が確定されない回路が
あり、場合によってはこの回路の初期出力を確定させる
必要がある。
(Prior Art) In semiconductor integrated circuits, there are circuits whose operation becomes unstable when the power is turned on, so that the initial output is not determined. In some cases, it is necessary to determine the initial output of this circuit.

第4図はこのような確定しない初期出力を有する回路に
出力確定用制御信号を供給する電源電圧検出回路のMO
5型電界効果トランジスタを用いた従来例である。
Figure 4 shows the MO of a power supply voltage detection circuit that supplies a control signal for output determination to a circuit having such an undetermined initial output.
This is a conventional example using a type 5 field effect transistor.

第4図において21.22は抵抗器、23はNチャンネ
ル型のMO8型電界効果トランジスタ(以下N型MO8
FETと記す)、24はPチャンネル型のMO5型電界
効果トランジスタ(以下P型MO5FETと記す)、2
5はコンパレータ、251.252はコンパレータ25
の入力端子、253はコンパレータ25の出力端子、2
6は波形整形用増幅器、261は波形整形用増幅器26
の出力端子である。
In Fig. 4, 21 and 22 are resistors, and 23 is an N-channel MO8 field effect transistor (hereinafter referred to as an N-type MO8 field effect transistor).
FET), 24 is a P-channel MO5 field effect transistor (hereinafter referred to as P-type MO5FET), 2
5 is a comparator, 251.252 is a comparator 25
253 is the output terminal of the comparator 25, 2
6 is a waveform shaping amplifier, 261 is a waveform shaping amplifier 26
This is the output terminal of

以上のように構成された従来の電源電圧検出回路につい
て以下その動作を説明する。
The operation of the conventional power supply voltage detection circuit configured as described above will be described below.

第4図において、電源電圧VDDと接地電位VSSとの
間を第1のノード27を介して抵抗器21とN型MOS
FET23を直列接続し、また第2のノード28を介し
て抵抗器22とP型MO8FET24とを直列接続し、
第1のノード27と第2のノード28の電位をそれぞれ
コンパレータ25の入力端子251および252に供給
する。
In FIG. 4, a resistor 21 and an N-type MOS are connected through a first node 27 between a power supply voltage VDD and a ground potential VSS.
The FET 23 is connected in series, and the resistor 22 and the P-type MO8FET 24 are connected in series via the second node 28.
The potentials of the first node 27 and the second node 28 are supplied to input terminals 251 and 252 of the comparator 25, respectively.

第5図に電源電圧に対する各入力端子電圧の温度依存性
を示す、電源電圧VDDを上げていき、ある値(以下リ
セット解除電圧と記す)に達するとコンパレータ25の
入力端子252に入力される入力信号の電圧値が入力端
子251に入力される信号の電圧値よりも大きくなり、
コンパレータ25の出力値が変化する。その出力信号は
増幅器26により増幅されて出力端子261から出力さ
れる。電源電圧の印加により半導体装置中の各回路に初
期出力を決定させるリセット信号が加わり、出力端子2
61の出力変化によりリセットが解除される。
FIG. 5 shows the temperature dependence of each input terminal voltage on the power supply voltage. When the power supply voltage VDD is increased and reaches a certain value (hereinafter referred to as reset release voltage), the input is input to the input terminal 252 of the comparator 25. The voltage value of the signal becomes larger than the voltage value of the signal input to the input terminal 251,
The output value of the comparator 25 changes. The output signal is amplified by the amplifier 26 and output from the output terminal 261. By applying the power supply voltage, a reset signal is applied to each circuit in the semiconductor device to determine the initial output, and output terminal 2
The reset is canceled by the change in the output of 61.

(本発明が解決しようとする課題) 前記従来の構成では、第5図に示すようにコンパレータ
の入力端子251.252に入力される電圧値には各々
温度依存性を持たない点C,Dがある。
(Problems to be Solved by the Present Invention) In the conventional configuration, as shown in FIG. 5, the voltage values input to the input terminals 251 and 252 of the comparator have points C and D that have no temperature dependence, respectively. be.

コノ点Cは、N型MOSFET23と抵抗器21の形状
を変えることにより第5図中の破線p上の所望の電位に
定めることができる。また、点りはP型MO8FET2
4と抵抗器22の形状を変えることにより第5図中の破
線q上の所望の電位に定めることができる。そこで、破
線pと破線qとの交点で、点Cと点りが一致するように
なれば、リセット解除電圧値は温度依存性を持たなくな
る。
The point C can be set at a desired potential on the broken line p in FIG. 5 by changing the shapes of the N-type MOSFET 23 and the resistor 21. Also, the light is P type MO8FET2
By changing the shapes of resistor 4 and resistor 22, a desired potential on the broken line q in FIG. 5 can be set. Therefore, if the dot coincides with the point C at the intersection of the broken line p and the broken line q, the reset release voltage value will no longer have temperature dependence.

しかし、破線pと破線qとの交点はN型MOSFET2
3と、P型MO8FET24および抵抗器21と抵抗器
22の形状には依存しない。そのため、所望のリセット
解除電圧値において温度依存性を持たなくすることはで
きない。
However, the intersection of the broken line p and the broken line q is the N-type MOSFET2.
3, and does not depend on the shapes of the P-type MO8FET 24 and the resistors 21 and 22. Therefore, it is impossible to eliminate temperature dependence at a desired reset release voltage value.

本発明は、上記問題を解決するもので、所望のリセット
解除電圧値で温度依存性を持たなくすることを目的とし
ている。
The present invention solves the above problem, and aims to eliminate temperature dependence at a desired reset release voltage value.

(課題を解決するための手段) この目的を達成するために5本発明の電源電圧検出回路
はコンパレータの入力端子に入力する電圧値をきめるの
にダイオードと抵抗器を複数個用い。しきい値電圧の温
度依存性と移動度の温度依存性を相殺させる構成となっ
ている。
(Means for Solving the Problems) To achieve this object, the power supply voltage detection circuit of the present invention uses a plurality of diodes and resistors to determine the voltage value input to the input terminal of the comparator. The configuration is such that the temperature dependence of threshold voltage and the temperature dependence of mobility are offset.

(作 用) この構成にすれば、所望の電源電圧値においてコンパレ
ータの入力端子電圧は温度依存性をもたず、コンパレー
タ出力であるところのリセットパルスも温度依存性を持
たない。
(Function) With this configuration, the input terminal voltage of the comparator has no temperature dependence at a desired power supply voltage value, and the reset pulse, which is the comparator output, also has no temperature dependence.

(実施例) 以下、本発明の実施例について図面に基づいて説明する
。第1図は、本発明の一実施例であり、ダイオード手段
としてドレインとゲートを接続したMOSFETを用い
た場合を示す。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 shows an embodiment of the present invention, in which a MOSFET whose drain and gate are connected is used as the diode means.

第1図において電源電圧VDDと接地電位■sSとの間
を第1のノード1を介してN型MO8FET2と抵抗器
3を直列接続し、第2のノード4を介してN型MO8F
ET5と抵抗器6を直列接続し、第3ノード7を介し”
cp型MO8FET8と抵抗器9を直列接続し、第4の
ノード1oを介してP型MO8FETIIと抵抗器12
を直列接続し、第1のノード1をN型MO8FET5の
ゲートニ接続し、第3のノード7をP型MOS F E
 Tl1(7)ゲートに接続し、第2のノード4をコン
パレータ13の入力端子131に接続し、第4のノード
1oをコンパレータ13の入力端子132に接続し、コ
ンパレータ結果を波形整形用増幅器14を通して出方す
る構成である。
In FIG. 1, an N-type MO8FET 2 and a resistor 3 are connected in series between the power supply voltage VDD and the ground potential ■sS via a first node 1, and an N-type MO8FET 2 and a resistor 3 are connected in series via a second node 4.
Connect ET5 and resistor 6 in series, and connect through the third node 7.
A cp-type MO8FET 8 and a resistor 9 are connected in series, and a p-type MO8FET II and a resistor 12 are connected via a fourth node 1o.
are connected in series, the first node 1 is connected to the gate of N-type MO8FET5, and the third node 7 is connected to P-type MO8FET5.
Tl1 (7) gate, the second node 4 is connected to the input terminal 131 of the comparator 13, the fourth node 1o is connected to the input terminal 132 of the comparator 13, and the comparator result is passed through the waveform shaping amplifier 14. It is a composition that will come out.

第2図は、電源電圧に対する第1のノード1と第3のノ
ード7の電位の温度依存性を示す。
FIG. 2 shows the temperature dependence of the potentials of the first node 1 and the third node 7 with respect to the power supply voltage.

第3図は、コンパレータ13の各入力端子電圧の温度依
存性を示す。
FIG. 3 shows the temperature dependence of each input terminal voltage of the comparator 13.

以下、第1図、第2図および第3図を用いて本発明の電
源電圧検出回路の動作を説明する。
The operation of the power supply voltage detection circuit of the present invention will be described below with reference to FIGS. 1, 2, and 3.

電源電圧VDDが接地電位からMOSFETのしきい値
電圧に達するまではN型MO8FET2は非導通状態で
第1のノード1の電位は電源電圧VDDである。さらに
N型MO8FET5も非導通状態となり第2のノード4
の電位も電源電圧VDDである。また、P型MO8FE
T8は非導通状態となり、第3のノード7の電位は接地
電位である。さらにP型MO8FETIIも非導通状態
となり、第4のノード10の電位も接地電位である。
Until the power supply voltage VDD reaches the threshold voltage of the MOSFET from the ground potential, the N-type MO8FET 2 is in a non-conductive state and the potential of the first node 1 is the power supply voltage VDD. Furthermore, the N-type MO8FET 5 also becomes non-conductive and the second node 4
The potential of is also the power supply voltage VDD. In addition, P-type MO8FE
T8 becomes non-conductive, and the potential of the third node 7 is the ground potential. Further, the P-type MO8FET II also becomes non-conductive, and the potential of the fourth node 10 is also at the ground potential.

電源電圧VDDがMOSFETのしきい値電圧以上にな
ると、N型MO8FET2が導通状態となり、抵抗器3
とN型MO8FET2の飽和特性によって分圧された電
位が第1のノード1に出力される。さらにN型MO5F
ET5も導通状態になり、抵抗器6とN型MO8FET
5の飽和特性により分圧された電位が第2のノード4に
出力される。一方、P型MO5FET8も同時に導通状
態になり、抵抗器9とP型MO8FET8の飽和特性に
よって分圧された電位が第3のノード7に出力される。
When the power supply voltage VDD becomes equal to or higher than the threshold voltage of the MOSFET, the N-type MO8FET2 becomes conductive, and the resistor 3
A potential divided by the saturation characteristics of the N-type MO8FET 2 is output to the first node 1. Furthermore, N-type MO5F
ET5 also becomes conductive, and resistor 6 and N-type MO8FET
The voltage divided by the saturation characteristic of 5 is output to the second node 4. On the other hand, the P-type MO5FET 8 also becomes conductive at the same time, and a potential divided by the saturation characteristics of the resistor 9 and the P-type MO8FET 8 is output to the third node 7.

さらにP型MO5FETIIも導通状態になり、抵抗器
12とP型MO8FETIIの飽和特性により分圧され
た電位が第4のノード10に出力される。
Furthermore, the P-type MO5FETII also becomes conductive, and the voltage divided by the saturation characteristics of the resistor 12 and the P-type MO8FETII is output to the fourth node 10.

電源電圧VDDに対する第1のノード1の電位は第2図
のように温度変化に依存しない点Aが存在し、この点A
はN型MO5FET2と抵抗器3の形状を変えれば、第
2図中の破線Q上を動くことになる。一方、第3のノー
ド7に関しても同様に温度変化に依存しない点Bが存在
し、この点BはP型MO8FET8と抵抗器9の形状に
より、第2図中の破線m上を動く。
The potential of the first node 1 with respect to the power supply voltage VDD has a point A that does not depend on temperature changes as shown in FIG.
If the shapes of the N-type MO5FET 2 and the resistor 3 are changed, it will move on the broken line Q in FIG. On the other hand, regarding the third node 7, there is a point B that is similarly independent of temperature changes, and this point B moves on the broken line m in FIG. 2 due to the shapes of the P-type MO8FET 8 and the resistor 9.

そこで、N型MO8FET2.8および抵抗器3.9の
形状を適当に選ぶことにより、電源電圧VDDが所望の
リセット解除電圧に達したときに第1のノード1および
第3のノード7の電位が温度依存性を持たなくなるよう
にする。また、N型MO5FET5をN型MO5FET
2と同一形状とし、P型MO8FETIIをP型MO3
FET8と同一形状とし、抵抗器6および12の形状を
適当に選ぶことにより、電源電圧VDDが所望のリセッ
ト電圧に達したとき、第2のノード4と第4のノード1
0が、温度依存性をもたずに同一電位となる。
Therefore, by appropriately selecting the shapes of the N-type MO8FET 2.8 and the resistor 3.9, the potentials of the first node 1 and the third node 7 can be adjusted when the power supply voltage VDD reaches the desired reset release voltage. Make it independent of temperature. Also, N-type MO5FET5 is replaced with N-type MO5FET5.
Same shape as 2, P type MO8FETII is replaced with P type MO3
By using the same shape as FET 8 and appropriately selecting the shapes of resistors 6 and 12, when the power supply voltage VDD reaches the desired reset voltage, the second node 4 and the fourth node 1
0 is the same potential without temperature dependence.

さらに電源電圧VDDが所望のリセット解除電圧値以上
になると、コンパレータ13の入力端子131、132
の電位の大小関係が反転する。コンパレータ13の出力
は、電源電圧が印加されてリセット解除電圧に達するま
での期間、リセットパルスを出力する。この出力は、波
形整形用増幅器26により波形整形され、出力から他の
回路にリセット信号を伝達する。
Further, when the power supply voltage VDD exceeds the desired reset release voltage value, the input terminals 131 and 132 of the comparator 13
The magnitude relationship of the potentials is reversed. The output of the comparator 13 outputs a reset pulse during the period from when the power supply voltage is applied until it reaches the reset release voltage. This output is waveform-shaped by a waveform-shaping amplifier 26, and a reset signal is transmitted from the output to other circuits.

尚、上記実施例ではダイオード手段としてMOSFET
を用いたが、他にもダイオードとして動作するように接
続されたバイポーラトランジスタを用いてもよい。
Incidentally, in the above embodiment, a MOSFET is used as the diode means.
However, a bipolar transistor connected to operate as a diode may also be used.

(発明の効果) 以上説明したように本発明によれば、電源電圧によって
回路網に制御信号を出力する電源電圧検出回路において
、リセット解除電圧値を仕様に合わせて定めることがで
き、かつ温度依存性のないものとなり、その実用上の効
果は大である。
(Effects of the Invention) As explained above, according to the present invention, in a power supply voltage detection circuit that outputs a control signal to a circuit network based on the power supply voltage, the reset release voltage value can be determined according to specifications, and is temperature-dependent. The practical effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における電源電圧検出回路の
回路図、第2図は本発明の一実施例におけるノード電位
の特性図、第3図は本発明の一実施例における電源電圧
検出回路のコンパレータ入力端子131.132に入力
される電圧値と電源電圧の関係を示す特性図、第4図は
従来例の電源電圧検出回路の回路図、第5図は従来例の
電源電圧検出回路のコンパレータ入力端子に入力される
電圧値と電源電圧の関係を示す特性図である。 1・・・第1のノード、 2,5・・−N型M○5FE
T、 3,6,9.12・・・抵抗器、4・・・第2の
ノード、  7・・・第3のノード。 10・・・第4のノード、  8.11・・・P型MO
3FET、 13・・・コンパレータ、  131゜1
32・・・入力端子、 14・・・波形整形用増幅器。
FIG. 1 is a circuit diagram of a power supply voltage detection circuit in an embodiment of the present invention, FIG. 2 is a characteristic diagram of a node potential in an embodiment of the present invention, and FIG. 3 is a power supply voltage detection circuit in an embodiment of the present invention. A characteristic diagram showing the relationship between the voltage value input to the comparator input terminals 131 and 132 of the circuit and the power supply voltage. Figure 4 is a circuit diagram of a conventional power supply voltage detection circuit. Figure 5 is a conventional power supply voltage detection circuit. FIG. 3 is a characteristic diagram showing the relationship between the voltage value input to the comparator input terminal of the power supply voltage and the power supply voltage. 1...first node, 2,5...-N type M○5FE
T, 3, 6, 9. 12...Resistor, 4...Second node, 7...Third node. 10... Fourth node, 8.11... P-type MO
3FET, 13... Comparator, 131°1
32... Input terminal, 14... Waveform shaping amplifier.

Claims (2)

【特許請求の範囲】[Claims] (1)一方の電源端子と第1のノードとの間に順方向に
接続された第1のダイオード手段と、前記第1のノード
と他方の電源端子との間に接続された第1の抵抗手段と
、前記一方の電源端子と第2のノードとの間に順方向に
接続された第1の能動素子と、前記第2のノードと、前
記他方の電源端子との間に接続された第2の抵抗手段と
、前記一方の電源端子と第3のノードとの間に接続され
た第3の抵抗手段と、前記第3のノードと前記他方の電
源端子との間に接続された第2のダイオード手段と、前
記一方の電源端子と第4のノードとの間に接続された第
4の抵抗手段と、前記第4のノードと前記他方の電源端
子との間に接続された第2のダイオード手段と、前記第
2のノードと前記第4のノードの電位の一致を検出する
手段を有していることを特徴とする電源電圧検出回路。
(1) A first diode means connected in the forward direction between one power supply terminal and a first node, and a first resistor connected between the first node and the other power supply terminal. means, a first active element connected in a forward direction between the one power supply terminal and the second node, and a first active element connected between the second node and the other power supply terminal. a third resistance means connected between the one power supply terminal and the third node; and a second resistance means connected between the third node and the other power supply terminal. a fourth resistor connected between the one power supply terminal and the fourth node; and a second resistor connected between the fourth node and the other power supply terminal. A power supply voltage detection circuit comprising: diode means; and means for detecting coincidence of potentials of the second node and the fourth node.
(2)電源電圧が所望の電位に達するときに、前記第2
のノードの電位と、前記第4のノードの電位が同電位で
かつ温度依存性を持たなくなるべく、前記第1のダイオ
ード手段と、前記第2のダイオード手段と、前記第1の
ダイオード手段と、前記第2のダイオード手段の形状、
及び、前記第1の抵抗手段と、前記第2の抵抗手段と、
前記第3の抵抗手段と、前記第4の抵抗手段の抵抗値が
選択されていることを特徴とする請求項(1)記載の電
源電圧検出回路。
(2) When the power supply voltage reaches the desired potential, the second
The first diode means, the second diode means, and the first diode means, so that the potential of the node and the potential of the fourth node are the same potential and have no temperature dependence. the shape of the second diode means;
and the first resistance means, the second resistance means,
2. The power supply voltage detection circuit according to claim 1, wherein the resistance values of the third resistance means and the fourth resistance means are selected.
JP6555290A 1990-03-17 1990-03-17 Detecting circuit for power source voltage Pending JPH03267767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6555290A JPH03267767A (en) 1990-03-17 1990-03-17 Detecting circuit for power source voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6555290A JPH03267767A (en) 1990-03-17 1990-03-17 Detecting circuit for power source voltage

Publications (1)

Publication Number Publication Date
JPH03267767A true JPH03267767A (en) 1991-11-28

Family

ID=13290287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6555290A Pending JPH03267767A (en) 1990-03-17 1990-03-17 Detecting circuit for power source voltage

Country Status (1)

Country Link
JP (1) JPH03267767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079947A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Supply voltage detection circuit
JP2012107982A (en) * 2010-11-17 2012-06-07 Fujitsu Semiconductor Ltd Power supply voltage determination circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079947A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Supply voltage detection circuit
JP2012107982A (en) * 2010-11-17 2012-06-07 Fujitsu Semiconductor Ltd Power supply voltage determination circuit

Similar Documents

Publication Publication Date Title
US20060170462A1 (en) Reliability comparator with hysteresis
JPH05315852A (en) Current limit circuit and constant voltage source for the same
EP0497319A1 (en) Semiconductor integrated circuit device having substrate potential detection circuit
JP2011146902A (en) Ringing suppression circuit
EP0230306B1 (en) Schmitt trigger circuit
JPH09321586A (en) Level comparator
JPH043513A (en) Power-on reset circuit
JP2007534244A (en) Output stage system
KR20000075637A (en) Current-limit circuit
JPH03267767A (en) Detecting circuit for power source voltage
US6501320B1 (en) Self-powered, maximum-conductive, low turn-on voltage CMOS rectifier
US5077490A (en) Schottky-diode emulator for BiCMOS logic circuit
JP2679582B2 (en) Semiconductor device
JPH03211472A (en) Source voltage detecting circuit
JP2926921B2 (en) Power-on reset circuit
JPH027615A (en) Power supply voltage detection circuit
JP2511537B2 (en) Power-on reset circuit
KR970003188B1 (en) Ac voltage clipper in mos-technology
US6831488B1 (en) Semiconductor integrated circuit device having an active pull-up/pull-down circuit
JPH0697796A (en) Power-on reset circuit
JPH0210763A (en) Semiconductor integrated circuit
JPH0548014A (en) Power-on resetter
JPH0786525A (en) C-mos output circuit and semiconductor integrated circuit employing the same
JPH03220818A (en) Logic circuit
JPH05204479A (en) Constant voltage circuit